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ABSTRACT How to manage the uncertainty of the basic probability assignment accurately and efficiently is
of significance and also an open issue. Plenty of functions have been established to cover the issue, especially
Deng entropy recently. Deng entropy can deal with the more complex situation of the focal elements
(propositions). However, Deng entropy has some limitations when the propositions are of the intersection.
In this paper, a modified function is proposed by considering the scale of the frame of discernment and
the influence of the intersection between statements on uncertainty. The proposed belief entropy provides a
promising way to measure the uncertain information. Some numerical examples and an application in pattern
recognition are used to show the efficiency and accuracy of the proposed belief entropy.

INDEX TERMS Entropy, Deng entropy, Shannnon entropy, Dempster-Shafer evidence theory, pattern
recognition.

I. INTRODUCTION
The theory of evidence, which is also referred to as evidence
theory or Dempster-Shafer theory (DST) has a wide range
of applications in information fusion and decision-making.
It has been used in uncertainty seasoning and is capable of
taking all kinds of the information and data of the subjec-
tive world as the condition, then analyze and summarize the
basic probability of the system, and thus make an accurate
decision [1], [2].

Uncertainty measure (UM) can be represented as the
quality of the information, which has been applied in
feature selection [3], probability density estimation [4],
machine learning [5], complex network [6], [7], quantum
entanglement [8], complexity evaluation [9]. How to manage
the uncertainty of the basic probability assignment (BPA)
accurately and efficiently is of significance and also an
open issue in DST. Plenty of functions have been devel-
oped for uncertainty modeling, they also took use of
extended theories and hybrid methods to present for uncer-
tainty measures. Some use the number of focal element,
such as Dubois &Prade’s weighted Hartley entropy [10],
Klir&Ramer’s discord measure [11], Klir&Parviz’s strife
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measure [12], George & Pal’s conflict measure [13].
Some use the belief function and plausibility function,
such as Hohle’s confusion measure [14], Yager’s dis-
sonance measure [15], distance-based measure [16]–[18],
interval-value based measure [19], [20]. Especially, Deng
entropy [21] which is proposed by Prof. Deng recently is an
efficient function to manage the uncertain information and it
is an extension of Shannon entropy. Deng entropy considered
themore complex situation of the focal element (proposition).
After investigation of Deng entropy carefully, we found that
Deng entropy didn’t consider the influence of the intersection
between statements on uncertainty.

In this paper, we consider and analyze the influence of
the intersection between statements on uncertainty in BPA
in the frame of Deng entropy, so that we find out a much
more efficient way to solve the problems.We propose the new
belief entropy by combining the fixed frame of discernment
and Deng entropy’s idea, which can make up for the previous
shortcomings and could be wider applications in the future.
Thus, it is very feasible to define an uncertainty event. Some
numerical examples and an application in pattern recognition
are used to illustrate the effectiveness of the proposed entropy.

The paper is organized as follows. The preliminaries
briefly introduce some concepts about Dempster-Shafer evi-
dence theory, Shannon entropy, Deng theory and some
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uncertainty measures in Dempster-Shafer framework in
Section 2. In Section 3, the new belief entropy is pro-
posed and some examples will be given to test the capac-
ity. In Section 4, an application is given with the proposed
Entropy. The conclusions and ongoing or future work are
given in the Section 6.

II. PRELIMINARIES
In this section, some preliminaries are briefly intro-
duced, including Dempster-Shafer evidence theory, Shannon
entropy, Deng entropy and several typical uncertainty mea-
sures based on Dempster-Shafer framework.

A. DEMPSTER-SHAFER THEORY OF EVIDENCE
The Dempster-Shafer theory (DST) of evidence, which
was first proposed by Dempster [22] and then devel-
oped by Shafer [23], is regarded as a generalization of
the Bayesian theory of probability. Due to its abil-
ity to handle uncertainty or imprecision embedded in
the evidence, the DST has increasingly been applied in
fault diagnosis [24]–[26], risk analysis [27]–[29], reliabil-
ity analysis [30]–[32], conflict information fusion [33]–[35],
dependent information fusion [36]–[39], medical decision
making [40]–[44], temporal information fusion [45], multi-
modal information integration [46], complex electromechan-
ical systems [47]–[49], etc.

The introduction of DST are briefly summarized as
following: (1)

1) ‘‘Frame of discernment’’ [23]:
Let 2 = {H1,H2, . . . ,HN } be a finite set of n ele-
ments, and P(2) denote the power set composed of 2N

elements of 2.

P(2) = {∅, {H1}, {H2}, . . . , {HN },

{H1 ∪ H2}, {H1 ∪ H3}, . . . ,2} (1)

2) ‘‘Basic probability assignment (BPA)’’ [23]:
The BPA function is defined as a mapping of the power
set P(2) to a number between 0 and 1.

m : P(2)→ [0, 1] (2)

and which satisfies the following conditions:

m(∅ ) = 0,
∑

A⊆P(2)

m(A) = 1 (3)

The mass m(A) represents how strongly the evidence
supports A.

3) ‘‘Belief and plausibility functions’’ [23]:
The belief function Bel is defined as

Bel : P(2)→ [0, 1] and Bel(A) =
∑
B⊆A

m(B) (4)

and the plausibility function Pl is defined as

Pl : P(2) → [0, 1]

Pl(A) = 1− Bel(Ā) =
∑

B∩A6=∅

m(B) (5)

FIGURE 1. The relation between Bel and Pl.

Bel(A) and Pl(A) are the lower limit and the upper
limit, respectively, of the belief level of hypothesis A
which is illustrated in Figure 1. Both imprecision and
uncertainty can be represented by them.

4) ‘‘Dempster’s combination rule’’:
Two bodies of evidence X and Y regarding 2 can be
used to calculate the belief level for some new hypoth-
esis C as follows:
The measure of conflict K is given as

K =
∑

X∩Y=Ø,∀X ,Y⊆2

mi(X )× mi′ (Y ) (6)

and the mass function after combination is

m(C) = mi(X )⊕ mi′ (Y )

=


0, if X ∩ Y = Ø,∑
X∩Y=C,∀X ,Y⊆2

mi(X )× mi′ (Y )

1− K
,

if X ∩ Y 6= Ø.

(7)

B. DISCOUNTING OF BPA
A discounting coefficient α ∈ [0, 1] represents the
weight (reliability) of the evidence, then the discounted evi-
dence mα can be defined as follows [23]:

mα (2) = αm (2)+ (1− α) (8)

mα (A) = αm (A) ∀A ⊂ 2 and A 6= 2 (9)

C. PIGNISTIC PROBABILITY TRANSFORMATION (PPT)
Beliefs manifest themselves at two levels: the credal level
(from credibility) where belief is entertained, and the pignis-
tic level where beliefs are used to make decisions. The term
‘‘pignistic’’ was proposed by Smets [50] and originates from
the word pignus, meaning ‘bet’ in Latin. Pignistic probability
is used for decision making and uses Principle of Insufficient
Reason to derive from BPA. It represents a point estimate in
a belief interval and can be determined as

bet (Ai) =
∑
Ai⊆Ak

m (Ak)
|Ak |

(10)

where Ak is the focal element.

D. SHANNON ENTROPY
Shannon entropy is an uncertain measure of informa-
tion volume in a system which plays an important roles
in information theory [51]. The Shannon entropy is H is
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denoted by:

H = −
N∑
i=1

pilogpi (11)

where N is the number of basic states in a system, and pi is
the probability of state i appears satisfying

∑N
i=1 pi =1.

There still some limitations in Shannon entropy for
DST, thus, the concept of entropy in the framework of
Dempster-Shafer evidence theory is an open issue. Plenty of
researchers have extended many measured functions in the
framework of it.

E. UNCERTAINTY MEASURES BASED ON
DEMPSTER-SHAFER FRAMEWORK
Assume that X is FOD, A and B are focal elements of the
mass function, and |A| denotes the cardinality of A. Then,
definitions of some uncertain measures in DST framework
are briefly introduced as follows.

1) HOHLE’S CONFUSION MEASURE
Hohle’s confusion measure is one of earlier confusion mea-
sures for D-S theory was due to Hohle [14].

CH (m) = −
∑
A⊆X

m (A) log2Bel (A) (12)

2) YAGER’S DISSONANCE MEASURE
Dissonance measure of BPA was defined by Yager [15] as
follow:

EY (m) = −
∑
A⊆X

m (A) log2Pl (A) (13)

3) DUBOIS & PRADE’S WEIGHTED HARTLEY ENTROPY
Dubois & Prade’s weighted Hartley entropy is shown as
follow [10]:

EDP (m) = m (A) log2 |A| (14)

4) KLIR & RAMER’S DISCORD MEASURE
Another discord measure of BPA was defined by Klir and
Ramer [11], as follow:

DKR(m) = −
∑
A⊆X

m (A) log2
∑
B⊆X

m (B)
|A ∩ B|
|A|

(15)

5) KLIR & PARVIZ’S STRIFE MEASURE
Klir & Parviz’s strife measure is denoted as follow [12]:

SKP(m) = −
∑
A⊆X

m (A) log2
∑
B⊆X

m (B)
|A ∩ B|
|B|

(16)

6) GEORGE & PAL’S CONFLICT MEASURE
The total conflict measure prospered by George & Pal,
denoted as HGP, is defined as follow [13]:

HGP(m) =
∑
A⊆X

m (A)
∑
B⊆X

m (B)
(
1−
|A ∩ B|
|A ∪ B|

)
(17)

F. DENG ENTROPY
Deng entropy is a generalization of Shannon entropy in
Dempster-Shafer framework [21].

Ed (m) = −
∑
A⊆X

m (A)log2
m (A)
2|A| − 1

(18)

where A is a proposition in mass function m,|A| denotes the
cardinality of proposition A, and X is the FOD.As shown in
the above definition, Deng entropy, specially, if the belief
is only assigned to single elements, Deng entropy can be
degenerated to the Shannon entropy.

Ed = −
∑
i

m(θi) log
m(θi)

2|θi| − 1
= −

∑
i

m(θi) logm(θi)

Uncertainty plays a significant role in some fields since it
is the foundation and prerequisite to quantitatively study the
questions. There is no doubt that Deng entropy provides a
promising way to measure uncertain degree and to handle
more uncertain information. For more details about Deng
entropy, please refer to [21]. Deng entropy has obtained lots
of concerns from the theory perspective recently [52]–[54],
which has been applied in the ordered propositions
fusion [55], multi-sensor data fusion [56]. Related work of
Deng entropy is also investigated in evidential reasoning [57],
pedestrian detection [58], recognizing fatigue driving [59],
distributed object recognition [60], combination rule of D-S
theory [61].

Based on the frame of Deng entropy, other two uncertainty
measure are presented as follows.

1) Pan et al.s’ ENTROPY
In DST, the probability interval [Bel(A), Pl(A)] can be
obtained more information based on the basic probability
assigned to each focal elements. Here formula use the prob-
ability interval to extend method of measuring uncertain as
follow [62]:

HBel(m) = −
∑
A⊆2θ

Bel (A)+ Pl (A)
2

log
Bel (A)+ Pl (A)

2(2|A| − 1)

(19)

2) Zhou et al.s’ ENTROPY
Another belief entropy in the framework of Dempster-Shafer
is given by Zhou as follow, which considers the scale of FOD,
i.e. |X | [63]:

EMd (m) = −
∑
A⊆X

m (A) log2

(
m (A)
2|A| − 1

e
|A|−1
|X |

)
(20)

In [52], some new properties of Deng entropy has been
discussed. In this paper, we focus some limitations of Deng
entropy to deal with the BPA with intersection of focal ele-
ments. Then we propose a new function of belief entropy
in the frame of Deng entropy. We first give the proposed
belief entropy and then apply two examples to illustrate the
effectiveness of the proposed belief entropy.
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III. PROPOSED BELIEF ENTROPY
Suppose there is a BPA denoted by m, the proposed belief
entropy is denoted as follow,

E (m) = −
∑
A⊆X

m (A) log2

 m(A)
2|A|−1

e

∑
B⊆X
B6=A

|A∩B|
2|X |−1

 (21)

where |A| denotes the cardinality of proposition A,
and |A ∩ B| is the cardinality of the intersection of A and B.

In addition, it is easy to verify that the proposed entropy
is degenerated into Deng entropy when the focal elements
are not in intersection. What is more, the proposed entropy
is degenerated into Shannon entropy when the belief is only
assigned to single elements.

In the next section, we use two examples to present the
effectiveness of the proposed entropy.

A. COUNTER-EXAMPLE 1
Example 1: Now let us consider this example, there is a

target identification, assume that two reliable sensors report
the detection results on their own. Firstly, assume the FOD in
this example is X = {a, b, c, d}. The results are presented by
BOEs listed as follows:

m1:m1 ({a, b}) = 0.4,m1 ({c, d}) = 0.6

m2:m2 ({a, c}) = 0.4,m2 ({b, c}) = 0.6

Intuitively, the uncertainty of m1 is larger than that of m2
for the focal elements of m2 are of intersection. Next, we use
the Deng entropy [21] and Zhou’s method [63] to investigate
the uncertainty of m1 and the uncertainty of m2.
Solve the question using Deng entropy, the uncertainty

measures are calculated as follows:

Ed (m1) = −
∑
A⊆X

m1 (A) log2
m1 (A)
2|A| − 1

= 0.4log2
0.6

22 − 1
= 2.5559

Ed (m2) = −
∑
A⊆X

m2 (A) log2
m2 (A)
2|A| − 1

= 0.4log2
0.6

22 − 1
= 2.5559

Solve the question with Zhou’s belief entropy, the uncer-
tainty measures are calculated as follows:

EMd (m1)

= −

∑
A⊆X

m1 (A) log2

(
m1 (A)
2|A| − 1

e
|A|−1
|X |

)
= −0.4log2

(
0.4

22 − 1
e
2−1
4

)
− 0.6log2

(
0.6

22 − 1
e
2−1
4

)
= 2.3155

EMd (m2)

= −

∑
A⊆X

m2 (A) log2

(
m2 (A)
2|A| − 1

e
|A|−1
|X |

)

= −0.4log2

(
0.4

22 − 1
e
2−1
4

)
− 0.6log2

(
0.6

22 − 1
e
2−1
4

)
= 2.3155

As shown to us, the results given by Deng entropy are the
same. However, although the BOEs have the similar mass
value assignment, but the number of the target isn’t same,
the FOD of the first one has four candidate targets as a,
b, c and d , but the FOD of the second one only has three
targets as a, b and c. On the basis of the logical thinking,
it is expected that their results should be different, the first
one have more uncertainty than the second one because of
the larger information volume.

Zhou et al.s’ method consider this problem, and his belief
entropy addresses the issue to a certain degree. However,
there is still some room for the improvement, because his
measure doesn’t pay attention to the framework of discern-
ment given firstly. In the example, recall the belief entropy,
the length of the frame is 4 in the first one, but the length
of the framework is 3 in the second one, it fails to consider
the influence of the intersection between statements on uncer-
tainty if the scale of FOD is given. We hope that a much more
precise measure to refine the result should be taken,so based
on the fixed framework of discernment θ={a, b, c, d} and
Deng entropy, we get a new belief entropy.

Then, we use the proposed belief entropy to investigate
Example 1, the new belief entropy for these two BOEs is
calculated using Eq.(21) as follows:

E (m1) = −
∑
A⊆X

m1 (A) log2

 m1 (A)
2|A| − 1

e

∑
B⊆X
B 6=A

|A∩B|
2|X |−1


= −0.4log2

(
0.4

22 − 1
e0
)
− 0.6log2

(
0.6

22 − 1
e0
)

= 2.5559

E (m2) = −
∑
A⊆X

m2 (A) log2

 m2 (A)
2|A| − 1

e

∑
B⊆X
B 6=A

|A∩B|
2|X |−1


= −0.4log2

(
0.4

22 − 1
e

1
15

)
− 0.6log2

(
0.6

22 − 1
e

1
15

)
= 2.4597

From the results, the effectiveness of the proposed
entropy can be obtained comparing Deng’s entropy [21] and
Zhou’ entropy [63].

The comparison results of different uncertainty measures
are obtained shown in the Table 1.

It can be concluded that most of the entropies have
the same shortage that couldn’t measure the differences of
uncertain degree between two BOEs, their measures can-
not give a much more accurate and reliable result except
KR [11], KP [12], GP [13]. However, they can’t deal with the
more complex situation of the focal elements (propositions),
i.e. the simultaneity of the propositions. Hence, our focus
lands in the frame of Deng entropy. In this paper, the proposed
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TABLE 1. Uncertainties using different entropy measures.

belief entropy can not only make use of more available infor-
mation to measure the different uncertain degree effectively,
but also consider the influence of the intersection between
statements on uncertainty. Comparing the existing work,
the proposed belief entropy is more reasonable comparing the
previous uncertainty measures.

B. COUNTER-EXAMPLE 2
In order to compare the capacity of the proposed belief
entropy, recall the other example in as follows.
Example 2: Think about another target identification,

assume that three reliable sensors report the detection results
on their own. Comparing with example 1, the number of the
element in this one isn’t same. The results are presented by
BOEs listed as follows:

m1 : m1 ({a, b}) = 0.2,m1 ({c, d}) = 0.6,m1 ({e, f }) = 0.2

m2 : m2 ({a, b}) = 0.2,m2 ({b, c}) = 0.6,m2 ({c, f }) = 0.2

m3 : m3 ({a, b}) = 0.2,m3 ({b, c}) = 0.6,m3 ({e, f }) = 0.2

Intuitively, the uncertainties of m1, m2, and m3 are not the
same. In addition, the uncertainty ofm3 should be largest, and
the uncertainty of m2 should be smallest.
Solve the question using Deng entropy, the uncertainty

measures are calculated as follows:

Ed (m1)

= −

∑
A⊆X

m1 (A)log2
m1 (A)
2|A| − 1

= −0.2log2
0.2

22 − 1
− 0.6log2

0.6
22 − 1

− 0.2log2
0.2

22 − 1
= 2.9559

Ed (m2)

= −

∑
A⊆X

m2 (A)log2
m2 (A)
2|A| − 1

= −0.2log2
0.2

22 − 1
− 0.6log2

0.6
22 − 1

− 0.2log2
0.2

22 − 1
= 2.9559

Ed (m3)

= −

∑
A⊆X

m3 (A)log2
m3 (A)
2|A| − 1

= −0.2log2
0.2

22 − 1
− 0.6log2

0.6
22 − 1

− 0.2log2
0.2

22 − 1
= 2.9559

From the results above, Deng entropy cannot make a dif-
ference between m1 and m2.
Solve the question with Zhou et al.s’ entropy, the uncer-

tainty measures are calculated as follows:

EMd (m1) = −
∑
A⊆X

m1 (A) log2

(
m (A)
2|A| − 1

e
|A|−1
|X |

)
= −0.2log2

(
0.2

22 − 1
e
1
6

)
− 0.6log2

(
0.6

22 − 1
e
1
6

)
− 0.2log2

(
0.2

22 − 1
e
1
6

)
= 2.4750

EMd (m2) = −
∑
A⊆X

m2 (A) log2

(
m (A)
2|A| − 1

e
|A|−1
|X |

)
= −0.2log2

(
0.2

22 − 1
e
1
6

)
− 0.6log2

(
0.6

22 − 1
e
1
6

)
− 0.2log2

(
0.2

22 − 1
e
1
6

)
= 2.4750

EMd (m3) = −
∑
A⊆X

m3 (A) log2

(
m (A)
2|A| − 1

e
|A|−1
|X |

)
= −0.2log2

(
0.2

22 − 1
e
1
6

)
− 0.6log2

(
0.6

22 − 1
e
1
6

)
− 0.2log2

(
0.2

22 − 1
e
1
6

)
= 2.4750

From the results above, Zhou et al.s’ entropy cannot make
a difference betweenm1 andm2 as the same as Deng entropy.

Using the proposed belief entropy, recall Example 2,
the new belief entropy for these two BOEs is calculated as
follows:

E (m1) = −
∑
A⊆X

m1 (A) log2

 m1 (A)
2|A| − 1

e

∑
B⊆X
B 6=A

|A∩B|
2|X |−1


= −0.2log2

(
0.2

22 − 1
e

0
63

)
− 0.6log2

(
0.6

22 − 1
e

0
63

)
− 0.2log2

(
0.2

22 − 1
e

0
63

)
= 2.9559

E (m2) = −
∑
A⊆X

m2 (A) log2

 m2 (A)
2|A| − 1

e

∑
B⊆X
B 6=A

|A∩B|
2|X |−1


= −0.2log2

(
0.2

22 − 1
e

1
63

)
− 0.6log2

(
0.6

22 − 1
e

0
63

)
− 0.2log2

(
0.2

22 − 1
e

1
63

)
= 2.9193
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E (m3) = −
∑
A⊆X

m3 (A) log2

 m3 (A)
2|A| − 1

e

∑
B⊆X
B 6=A

|A∩B|
2|X |−1


= −0.2log2

(
0.2

22 − 1
e

1
63

)
− 0.6log2

(
0.6

22 − 1
e

0
63

)
− 0.2log2

(
0.2

22 − 1
e

0
63

)
= 2.9376

From results in the Example 2, we can conclude that our
proposed method improve the performance of Deng entropy,
and Zhou et al. s’ method.

TABLE 2. Uncertainties using different entropy measures.

The comparison results of different uncertainty measures
are given in the Table 2. It is very obvious that the proposed
method overcome the shortcomings of the previous work.

IV. APPLICATION
In this section, an application in pattern recognition using Iris
dataset [64] is investigated using the proposed entropy. The
role of the proposed entropy is used to measure the quality of
the evidence information, we assume that the larger entropy,
the lower quality of the evidence information, the smaller
entropy, the higher quality of the evidence information. Then
the higher quality of the evidence information, we give them
the lager weights in the process of combination, the lower
quality of the evidence information, we give them the smaller
weights in the process of combination.

In order to realize patter recognition, the method of gen-
erating BPA should firstly be considered. Lots of methods
have been discussed to deal with this issue [65]. In this paper,
we applied the simplest model (interval model to obtain BPA)
byKang et al. [66] to discuss the role of the proposed entropy.

A. PATTERN RECOGNITION CONSIDERING THE
PROPOSED BELIEF ENTROPY
Firstly, we review the similarity of the interval numbers of
generating BPA [66].

1) SIMILARITY OF INTERVAL NUMBERS
A = [a1, a2] and B = [b1, b2] are two interval numbers then
their similarity S (A,B) is defined as follows:

S (A,B) =
1

1+ αD (A,B)
(22)

Of which α > 0 is coefficient of support, D (A,B) is
the distance of interval number A and interval number B,
the function of D refers to [67].

Secondly, we review the flow of obtaining BPA by interval
model from [66].

2) METHOD OF GENERATING BPA
The main thought of generating BPA using interval number is
conclude: First, use the collective samples contribute model
of interval number. Then, obtain the distance of testing sam-
ple and model of interval number. Finally, get the reciprocal
of this distance to generate degree of similarity which can be
normalized in order to get BPA. The steps of generating BPA
are listed as follows: (1)

1) Construct the model of interval number from the
max-min value of collective samples.

2) Calculate the distance between unidentified sample
property value and interval number.

3) Calculate the degree of similarity between unidenti-
fied sample property value and interval number using
Eq. (22).

4) Normalize the similarity and generate the BPA.

After obtaining the BPA, we using the proposed belief to
modify the BPA.

B. IMPROVED BPA USING THE PROPOSED ENTROPY
In this part, a discounting BPA is given based on results of
BPA calculated by Kang’s method, the process is listed as
follows: (1)

1) Calculate the proposed belief entropy value of each
unidentified sample property value using Eq. (21).

2) Use the Proposed value as significance of each uniden-
tified sample property value in order to calculate
the weight of each property by using the function
ωi (x) = e−xi∑

e−xi
.

3) Select the maximum of these entropy value as target.
Get the new discountedweight bymaking each Entropy
value divided by the maximum value.

4) Allocate the new discounted weight to previous BPA
using Eq.(8) and Eq. (9).

C. SIMULATION EXPERIMENT
The overall idea of the experimental design is: we use the
Iris dataset as a verification database in order to introduce
the application of the new generation method in classification
recognition rate. The experiment is depicted as follows:

1) Select 120 samples from Iris Data Set randomly,
of which select 40 samples for each kind of Iris. And
then use sample of max-min value to generate model of
interval number, as is shown in Table 3.

2) Each kind of Iris is still has 10 samples in remaining
30 samples which is regarded as unknown test sample
(Suppose the selected sample data is [6.3, 2.7, 4.9, 1.8,
Iris virsicolor]).
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TABLE 3. The sample statistical model of interval numbers.

TABLE 4. BPAs based on Kang’s method and final fusion result.

TABLE 5. The modified BPAs based on the proposed belief entropy and
final fusion result.

3) Get the value of BPA by calculating the degree of
similarity and proposed entropy. Then the each group
of BPA is shown in Table 4.

4) Because there are four properties, we can generate four
pieces of evidence shown in Table 4, then we calculate
the belief entropy of each BPA using Eq. (21). Then we
use the process in Section IV-B to discount the previous
BPAs. The discounted BPAs are shown in Table 5

5) Then obtain the fusion value by using the DS rule of
composition using Eq. (7).

6) The type of unknown sample is determined by Com-
bined BPA. The maximum probability value of PPT
using Eq. (10) for the combinedBPAof property is final
result.

Form the final result of Table 4 and Table 5, the proposed
method can make a right recognition, i.e. the selected sample
is ‘Iris versicolor’, but Kang’ s method cannot make the right
decision.

In consideration of scale of samples, we tested all 150 sam-
ples as the result. In order to understand the effect of this
method in recognition of Iris Data Set, we make coefficient
of support α = 5 as Kang’s method [66], under the condition
of the sample statistical model of interval numbers in Table 3.
After testing statistics of all 150 samples, we get result that

TABLE 6. The final fusion result (recognition rate).

global recognition rate is 96.67% and the recognition rate of
Setosa, Versicolor, Virginica is 100%, 96%, 94% respectively,
but the result of previous method by Kang is that global
recognition rate is 95.33% and the recognition rate of Setosa,
Versicolor, Virginica is 100%, 98%, 90% respectively. The
comparing result is shown in Table 6. It is clearly shown that
the recognition rate is improved using discounting method
forced by the proposed belief entropy. At the same time,
this new method also exert the excellent advantage in other
similar area.

V. CONCLUSION
In this paper, a modified function is proposed by considering
the scale of the frame of discernment (FOD) and the influence
of the intersection between statements on uncertainty. Some
numerical examples and an application in pattern recognition
are used to show the efficiency and accuracy of the pro-
posed belief entropy. Results show that the proposed belief
entropy overcome the shortcomings of the previous work,
the improved recognition rate enhanced effectiveness of the
propose belief entropy. Further study of this work will be
focused on the application prospect of the proposed measures
and it provides a promising way to measure the uncertain
degree in decision making, fault diagnosis pattern recogni-
tion, risk analysis and so on.
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