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ABSTRACT In intensity-modulated radiation therapy (IMRT), a network flow is adopted to solve the pricing
problem of the generic column generation approach in order to obtain a deliverable aperture. However,
excessive computation results from the direct use of a network flow. In addition, a decline in plan quality
may result from the direct determination of the leaf position using the gradient information. To overcome
these problems, a column generation approach based on region growth is proposed. The proposed method
is designed to reduce the computational cost of solving the pricing problem and improve the IMRT plan
quality. First, the gradients of the beamlets are obtained by an objective function constructed under the
constraint conditions of the organs. Second, the gradients are transformed nonlinearly. Third, the positions
of the continuous negative gradient regions in each row of the aperture are determined and stored. Fourth,
these gradients are taken as a whole and added to the aperture network flow, which is solved as a shortest-
path problem. Finally, the deliverable aperture is obtained and added to the treatment plan. To verify the
effectiveness of the proposed method, experiments involving five five-field prostate cancer cases and five
nine-field head and neck cancer cases were conducted. Compared with the generic column generation
method, the dose distribution of the target is ensured by the proposed method, which also effectively
protects organs at risk and reduces the running time. Specifically, in ten groups of comparative experiments,
the normal tissue complication probability of the proposed method is reduced by up to 3.37%, and the
maximum acceleration rate is 20.44%. According to the experimental results, the proposed method is more
consistent with clinical requirements compared with the generic column generation method.

INDEX TERMS Column generation, direct aperture optimization, image processing, intensity-modulated
radiation therapy, region growth.

I. INTRODUCTION
Intensity-modulated radiation therapy (IMRT) is an advanced
three-dimensional conformal radiotherapy technology.
In IMRT, the two known methods for realizing the static
intensity-modulated mode are the two-step approach [1]–[4]
and direct aperture optimization (DAO) [5]–[8]. In the
two-step approach, a fluence map that satisfies the clinical
requirements is initially generated. Then, a sequencing step is
performed to obtain the deliverable apertures and correspond-
ing monitor units (MUs). However, the dose distribution of
the fluence map is degraded after the sequencing step [9].
The sequencing step is avoided in DAO by direct opti-
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mization of the aperture shape and intensity [9]. It involves
two steps: aperture shape optimization (ASO) and aperture
weight optimization (AWO) [10]. In ASO, the deliverable
aperture that provides the largest potential improvement in
the objective function is identified and added to the treatment
plan. In AWO, gradient-based optimization methods are
typically used to optimize the aperture weights [9]. In DAO,
the physical constraints of the multileaf collimator (MLC)
(e.g., the leaf interdigitation limitation) [10] are incorporated
into the optimization [7]. Thus, compared to the two-step
approach, the IMRT plan quality is considerably improved
with DAO [11].

In general, to achieve DAO, each beam is modeled as a
collection of hundreds of small beamlets. The intensity of
each beamlet is considered to be independently controllable.
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The gradients of all beamlets, calculated by the objective
function, constitute a gradient map, which is used to search
for a deliverable aperture shape. A change in leaf position
that satisfies any of the constraints imposed by the MLC is
accepted if the objective function decreases. Such a change
indicates the opening or closing of the rays irradiated to
the beamlets. When the summation of the gradients of the
beamlets involved in such a change is negative, the objective
function decreases when these beamlets are added to the
aperture. Hence, the corresponding rays should be opened.
On the other hand, when the summation of the gradients is
positive, the rays corresponding to the beamlets should be
closed. Thus, the gradients of the beamlets are important
parameters for generating the aperture shape. Existing DAO
methods [12]–[18] are categorized into the following types.

1) Stochastic search methods: In these methods, small
changes in the leaf position are stochastic. A change in the
leaf position that improves the objective function is accepted.
Otherwise, the current modification is accepted with a prob-
ability of skipping the local optimum. This method was
first proposed by Shepard et al. [12], who used the simu-
lated annealing method to solve the optimization problem.
Subsequently, this method was improved by Earl et al. [19].
The optimization problem was solved by Li et al. [20] and
Cotrutz and Xing [21] using a genetic algorithm.

2) Local gradient-based methods: In these methods,
the leaf position is used as the optimization variable. The rela-
tionship between the objective function and the leaf position
is established, and the first derivative is given. Such algo-
rithms have been applied to various commercial therapeutic
systems, including the direct machine parameter optimization
model used in Pinnacle and RayStation systems [22].

3) Column generation methods: In these methods, the ini-
tial apertures are not set at the beginning of an iteration;
instead, deliverable apertures with iteration are produced. The
deliverable apertures are individually added to the treatment
plan. The iteration process involves two steps. First, the pric-
ing problem is solved to generate the deliverable aperture
that can provide the largest improvement in the objective
function, and this aperture is added to the treatment plan.
Then, the weights of the new set of apertures are reoptimized
in the master problem. Several researchers have studied this
method [23]–[29]. The column generation method applied
to mixed photon–electron planning can efficiently generate
treatment plans, as demonstrated by Renaud et al. [30].
Stochastic search methods and gradient-based methods

start with an initial set of apertures. By contrast, new suitable
apertures are added to the treatment plan by the column
generation method instead of modifying existing apertures.
However, because a network flow is directly adopted by the
generic column generation algorithm to solve the pricing
problem in order to obtain the deliverable apertures, its com-
putational cost is extremely high.

Furthermore, for the generic column generation algorithm,
there is a complex relationship between the aperture shape
and the gradients of the beamlets. Direct determination of the

leaf position using the gradients may result in a suboptimal
aperture shape [27]. For example, a positive value in the
gradient map may be canceled by the surrounding negative
values. Therefore, a beamlet with this positive gradient value
may be grouped into the newly generated aperture shape.
The addition of this aperture shape into the treatment plan
may degrade the plan quality. Thus, in order to overcome this
problem, beamlets with large positive gradient values should
be excluded from the aperture shape, and beamlets with small
negative gradient values should be included in the aperture
shape as much as possible.

Therefore, to reduce the excessive computation due to the
direct use of the network flow in the column generation
algorithm and to improve the quality of the plan, a novel col-
umn generation approach based on region growth is proposed
herein. In an iteration of the proposed method, the gradient
map of the aperture is first obtained. Then, the gradients are
nonlinearly transformed to improve the plan quality. Next, for
each row of gradients in the gradient map, the positions of
the continuous negative gradients are obtained and preserved
by region growth. Further, the adjacent negative gradients of
each row are integrated into a single element in the gradient
map, with the corresponding gradient value being the sum of
the gradients of the beamlets in that element. The excessive
computation is effectively reduced by these two steps. Then,
the network flow is formulated by a gradient map after region
growth and merging, and the pricing problem is solved to
obtain the deliverable aperture. Finally, the master problem
is solved, and this iteration is completed.

The proposed method aims to reduce the number of com-
putations required to solve the pricing problem of column
generation and improve the quality of the plan; that is, this
work focuses on solving the pricing problem and evaluating
the plan quality. The remainder of this paper is organized as
follows. The theory of the proposed method is introduced in
Section II. In Section III, the experimental settings and exper-
imental results are presented. In Section IV, the experimental
results are analyzed and discussed. Finally, the conclusions
are summarized in Section V.

II. EXPERIMENTAL THEORY AND METHODS
In this section, a new mathematical model for solving the
pricing problem is described. The dose is formulated as a
function of the leaf positions in Section II.A. In Section II.B,
the solution process of the algorithm is described, and the
new column generation algorithm based on region growth is
discussed Section II.C.

A. DOSE CALCULATIONS
The structures of a phantom include both targets and critical
structures. They are irradiated using a predetermined set of
beams. Each beam is decomposed into a rectangular grid of
beamlets B comprising m rows and n columns. In this study,
the size of a typical beamlet is 0.5 cm × 0.5 cm. The set
of deliverable apertures is denoted by K , and the weights
corresponding to these apertures are denoted by yk (k ∈ K ).
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Let Ak denote the set of beamlets that are exposed in the
aperture k , and let Sdenote the total number of structures.
Each structure is discretized into a finite number of voxels
vs. The dose received by voxel j (j = 1, · · · , vs) in structure s
(s = 1, · · · , S) from beamlet i of aperture Akat unit intensity
is denoted byWijs, i.e., the deposition coefficient. Therefore,
the dose Djs received by voxel j in structure s is given by

Djs =
∑
k∈K

∑
i∈Ak

Wijs

yk , j = 1, · · · , vs, s = 1, · · · , S.

(1)

B. SOLUTION PROCESS
For step-and-shoot IMRT, the plan optimization problem is
formulated as

minmize F(Ds) = minmize
S∑
s=1

Ns∑
j=1

Fjs(Ds) , (2)

where F(Ds) is the objective function, Fjs(Ds) is the jth
subobjective function applied to structure s, andDs is the dose
distribution of structure s. To control the dose distribution
delivered to a structure, Nssubobjective functions are applied
to this structure. A column generation algorithm is imple-
mented to solve this optimization problem and generate the
deliverable treatment plan. The column generation algorithm
includes the solution of the pricing problem and master prob-
lem. Fig. 1 shows the solution process of the generic column
generation algorithm.

FIGURE 1. Flowchart of the generic column generation algorithm.

As shown in Fig. 1, the solution process consists of two
main steps. In the first stage of the loop, a new deliverable
aperture shape is generated and added to the treatment plan
by solving the pricing problem. Next, the weights of the
new set of apertures are optimized using the limited-memory
Broyden–Fletcher–Goldfarb–Shanno algorithm for bound
constrained optimization (L-BFGS-B) [31]–[33] to solve the

master problem. L-BFGS-B is a quasi-Newton algorithm.
L-BFGS-B is an advanced version of the limited-memory
Broyden–Fletcher–Goldfarb–Shanno algorithm (L-BFGS).
If the planner is satisfied with the plan or if the maxi-
mum number of loops is reached, the solution process is
terminated. Otherwise, the next loop is entered.

1) PRICING PROBLEM
In the process of solving the pricing problem with the generic
column generation algorithm, the beam is first decomposed
into a rectangular grid of beamlets. Then, the gradient infor-
mation of each beamlet at the current dose is calculated, and
the negative gradient map is created according to the locations
of the beamlets. Finally, because the new aperture is required
to minimize the objective function, the sum of the gradient
components corresponding to the beamlets contained in the
new aperture should be as small as possible. The new aperture
that is added to the plan is the smallest sum of the gradient
components. Thus, the pricing problem is formulated as a
network flow, which is solved as a shortest-path problem.
Furthermore, when generating a new aperture, themechanical
constraints of the MLC, such as the connectivity, interdigita-
tion, and minimum gap, are considered.

As IMRT planning optimization is a large-scale optimiza-
tion problem with constraints, it can be solved using the
Karush–Kuhn–Tucker (KKT)-conditions for optimality. The
Lagrange function is constructed using the objective function
and constraint conditions of the optimization problem as
follows:

L(Djs, yk , πjs, ρk )

=

S∑
s=1

vs∑
j=1

Fjs(Djs)+
K∑
k=1

ρk (−yk )

+

S∑
s=1

vs∑
j=1

πjs

∑
k∈K

∑
i∈Ak

Wijs

yk − Djs
, (3)

where ρk and πjs are the KKT multipliers. The following five
conditions must be satisfied:

∇Djs,ykL
(
Djs, yk , πjs, ρk

)
= 0, (4)

−yk ≤ 0, k = 1, · · · ,K , (5)∑
k∈K

∑
i∈Ak

Wijs

yk − Djs = 0,

j = 1, · · · , vs, s = 1, · · · , S, (6)

ρk ≥ 0, k = 1, · · · ,K , (7)

−ρkyk = 0, k = 1, · · · ,K . (8)

Thus, the following results can be obtained:

πjs =
∂Fjs(Djs)
∂Djs

, (9)

ρk =

S∑
s=1

vs∑
j=1

∑
i∈Ak

Wijs

πjs. (10)
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From (7) and (10),

S∑
s=1

vs∑
j=1

∑
i∈Ak

Wijs

πjs ≥ 0, (11)

which is equivalent to

min
k∈K

∑
i∈Ak

 S∑
s=1

vs∑
j=1

Wijsπjs

 ≥ 0. (12)

When (12) is satisfied, the current solution is already the
optimal solution, and the generated aperture should not be
added to the plan. Therefore, in the process of generating a
new aperture, the pricing of this aperture should be calculated.
The pricing problem of column generation is

min
k∈K

∑
i∈Ak

 S∑
s=1

vs∑
j=1

Wijsπjs

. (13)

2) NETWORK FLOW
Because the mechanical constraints of the MLC system
involved in this study do not allow interdigitation, a network
flow is used to solve the pricing problem, i.e., to generate
a new aperture conforming to (12). As mentioned earlier,
the beam is decomposed into a rectangular grid of beam-
lets comprising m rows and n columns. For a given beam
l ∈ B, the beamlet row is denoted by r(r = 1, · · · , m),
c1(c1 = 0, · · · , n) denotes the last beamlet blocked by the
left leaf in row r , and c2(c2 = 1, · · · , n+1) denotes the first
beamlet blocked by the right leaf in row r . According to (13),
the price of leaf position combination (r, c1, c2) is given by

c2−1∑
c=c1+1

S∑
s=1

vs∑
j=1

W(l, r, c)jsπjs. (14)

By substituting (1), (2), and (9) into (14), the following is
obtained:

c2−1∑
c=c1+1

S∑
s=1

vs∑
j=1

W(l, r, c)jsπjs=

c2−1∑
c=c1+1

S∑
s=1

vs∑
j=1

∂Fjs (yk)
∂yk

.

(15)

Thus, the price of each leaf position combination (r, c1, c2)
is a linear sum of the gradient components of the nonoccluded
beamlets in the gradient map.

A network flow is used to optimize the aperture shape.
First, the current aperture shape network must be established
by setting the source and root nodes. Each leaf position com-
bination of each line represents the nodes from (r1, c11, c12)
to (r2, c21, c22); if this combination satisfies the mechanical
constraints of the MLC, a path is formed. The path length
is the price of node (r1, c11, c12). From the source node to
the root node, all possible combinations of leaf positions in
the aperture comprise a network; that is, all combinations that
satisfy the constraints are enumerated. Then, the shortest-path
algorithm is used to solve the pricing problem and obtain

the deliverable aperture that can minimize the objective func-
tion and satisfy the MLC mechanical constraints of the leaf
position combinations. Finally, according to the nodes in the
shortest path, the leaf positions are set up, the nonobscured
beamlets are opened to form a new deliverable aperture, and
this aperture shape is added to the treatment plan. The enu-
meration of all possible combinations in the aperture involves
a massive number of computations, and direct determination
of the leaf position by the gradients may result in a decline in
the plan quality. Therefore, the number of enumerations must
be reasonably reduced in order to reduce the computational
cost of column generation. In addition, beamlets with large
positive gradient values should be excluded from the aper-
ture shape, and beamlets with small negative gradient values
should be included in the aperture shape as much as possible
to improve the plan quality.

C. COLUMN GENERATION APPROACH BASED ON REGION
GROWTH
In this section, to improve the plan quality and reduce the
computational cost, the gradients of the beamlets are first
transformed by nonlinear transformation; then, the continu-
ous negative gradient regions in the gradient map are seg-
mented. Generally, in the pricing problem, the gradient map
of a aperture is considered as an image. In image processing,
gray level transformation can selectively highlight the char-
acteristics of interest or suppress the unnecessary features in
the image. In order to achieve this goal, a logarithmic function
is often used in gray level transformation; that is, nonlinear
gray scale transformation. Furthermore, region growth is the
process of grouping pixels or regions into larger regions.
Starting from the collection of seed points, region growth
from these points involves incorporation into the region of
adjacent pixels having similar properties for each seed point,
such as intensity, gray level, texture, and color. This concept is
incorporated into column generation in order to easily obtain
the shape of a deliverable aperture.

1) NONLINEAR TRANSFORMATION
The gradients corresponding to a row of beamlets are shown
in Fig. 2(a). Direct determination of the leaf position by
the gradients may cause the positive values (shown in red
and green in Fig. 2(a)) to be canceled by the surrounding
negative values, and the beamlets corresponding to these
two positive gradients are then added to the aperture shape.

FIGURE 2. Nonlinear transformation of gradients: (a) gradients before
transformation and (b) results after transformation.
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The beamlet with the large positive gradient value marked
in red is added to the aperture, which may affect the plan
quality because a beamlet with a large gradient value may
play a more prominent role in calculating the leaf positions
than the sum of the surrounding beamlets with small gra-
dient values. In image processing, in order to selectively
enhance or suppress the gray scale, nonlinear transformation
is used. Therefore, a nonlinear transformation of the gradi-
ents of the gradient map can also be performed so that the
gradients with larger values are not easily canceled during
the calculation of the leaf positions. The following form is
generally used for nonlinear transformation:

g̃ = α · gβ , (16)

where α and β are constants and can be chosen according to
actual experimental conditions, g is the original gradient, and
g̃ is the gradient after nonlinear transformation. Equation (16)
is only a form of nonlinear transformation. For example, let
α = 1 and β = 3 for the nonlinear transformation of the
gradients shown in Fig. 2(a). The result after transformation
is shown in Fig. 2(b).

According to Fig. 2(b), after nonlinear transformation,
the positive gradient value marked in red increases, and the
positive gradient value marked in green decreases. Thus, it is
ensured by the nonlinear transformation that the larger value
of the positive gradient cannot be easily canceled by the
surrounding negative gradients, which greatly reduces the
possibility that the corresponding beamlet is added to the
aperture shape. Therefore, the quality of the plan is improved.

2) OBTAINING THE INITIAL SHAPE BY REGION GROWTH
After nonlinear transformation, for each row of the generated
aperture, the gradients of the beamlets from left to right in the
row of the corresponding gradient map can be calculated. In a
row, the beamlet position of the first negative gradient is used
as the seed for region growth, and all beamlets of negative
gradients associated with this seed are added to the region of
this seed. During the region growth process, when a beamlet
with a positive gradient is encountered, the growth process
of the seed is terminated. In order to start another region
growth process, the search for another seed is continued with
the remaining beamlets in this row. If a new seed is present,
then region growth is performed using this seed. Otherwise,
we move to the next step. In addition, all start and stop
positions of the regions are determined by the seeds in the
region growth process. It is known that the gradient map has
m rows and n columns. The gradient values of the gradient
map are stored in the array grad [m] [n]. The ith (0 ≤ i < m)
row data are taken for segmentation by region growth. Here,
count represents the number of regions segregated by region
growth. The start and end positions of the continuous neg-
ative gradient regions are stored in Begin [i] [count] and
End [i] [count], respectively, and the sums of the negative
gradients in each region are stored in Sum [i] [count]. The
process described above is summarized in Algorithm 1.

Algorithm 1 Segmentation by Region Growth
Input: grad [i] [n]
Output: Begin [i] [count], End [i] [count],

Sum [i] [count], count
1 flag← 0, len← 0, begin← 0

end ← 0, count ← 0, sum← 0
2 For j = 0 : n− 1
3 if grad [i] [j] ≤ 0 then
4 flag← 1, len← len+ 1
5 // Find a seed and perform region growth

if flag = len then
6 begin← j, end ← j
7 End
8 end ← j, count ← count + 1,

sum← sum+ grad [i] [j]
9 else
10 // End the region growth of the seed

if flag = 1 then
11 Begin [i] [count]← begin,

End [i] [count]← end ,
Sum [i] [count]← sum

12 count ← count + 1, flag← 0,
len← 0,begin← 0,
end ← 0, sum← 0

13 End
14 End
15 next j
16 if flag = 1 then // End the region growth of the seed
17 Begin [i] [count]← begin,

End [i] [count]← end ,
Sum [i] [count]← sum

18 count ← count + 1
19 End

At this point, the region growth operation of the row has
been completed. It is obvious that the region of negative
gradients obtained by region growth will have two cases,
as shown in Figs. 3(a) and 3(b). The former shows only one
region, and the latter shows multiple regions. On this basis,
a network flow is used to solve the pricing problem.

FIGURE 3. Results after region growth: (a) only one region and
(b) multiple regions.

3) MERGING AND SOLVING THE PRICING PROBLEM
In this section, the 6 × 6 aperture after nonlinear transfor-
mation shown in Fig. 4(a) is used as an example to explain
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FIGURE 4. Gradient maps used as an example: gradient maps (a) without
any operation and (b) after region growth.

the proposed method. Region growth (Section II.C.2) is per-
formed on the gradient map, and the processed gradient map
shown in Fig. 4(b) is obtained. Next, a merging operation
is performed on the processed gradient map. If there is
only one continuous negative gradient region in the ith row,
as shown in Fig. 3(a), the start and end positions of this
region are Begin [i] [0] and End [i] [0], respectively. Then, all
of the beamlets corresponding to this region are merged into
a new beamlet, and the gradient value of this new beam-
let is the sum of the continuous negative gradients in this
segment. The position of this new beamlet in the gradient
map is denoted by (i,Begin [i] [0] ,End [i] [0]), as shown in
Fig. 5(a). Conversely, if the ith row has count continuously
negative gradient regions, as shown in Fig. 3(b), the starting
and ending positions of these regions are Begin [i] [count]
and End [i] [count], respectively. Each region is successively
merged, and finally, count new beamlets are obtained. The
gradients of these new beamlets are still the sums of the

FIGURE 5. Performance of the merge operation: (a) only one region and
(b) multiple regions.

corresponding regions, as shown in Fig. 5(b), and the position
of the jth new beamlet in the gradient map is denoted by
(i,Begin [i] [j] ,End [i] [j]). After merging the aperture gradi-
ent map shown in Fig. 4(b), a new gradient map is obtained,
as shown in Fig. 6.

FIGURE 6. Gradient map after the merging operation.

If the aperture gradient map shown in Fig. 4(b) is directly
used to build the network flow, then the total number of nodes
in this network is 168. However, as the aperture gradient map
shown in Fig. 6 is used to build the network, the total number
of nodes is 91. Thus, the number of nodes is reduced by
45.8%, which reduces the number of calculations for solving
the pricing problem. In particular, a greater reduction in the
number of computations is achieved when the shape of the
region is simpler. The specific flow for solving the pricing
problem is shown in Fig. 7.

As mentioned earlier, solving the pricing problem is a pro-
cess of generating and adding new aperture to the treatment
plan such that the improvement in the objective function is
maximized. For the aperture to improve the objective function
to the greatest extent, the maximum possible corresponding
rays of beamlets with negative gradients need to be opened
and the minimum possible beamlets with positive gradients
to be introduced. If the region growth operation is performed
on positive gradients in the gradient map, the resulting region
will contain at least one positive gradient. After merging all
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FIGURE 7. Specific flow for the solving the pricing problem.

positive gradients in a region, a new beamlet is no longer a
single beamlet in the original gradient map. Then, when the
merged gradient map is used to solve the pricing problem,
if the beamlet with the positive gradient is introduced into
the aperture, the introduced beamlet is equivalent to multiple
beamlets with positive gradients of the corresponding region
in the original gradient map. Thus, the quality of the plan will
be affected. Therefore, region growth and merging operations
are performed only on the negative gradients in a gradient
map.

III. EXPERIMENTS AND RESULTS
In this section, five cases of head and neck cancer and
five cases of prostate cancer are considered to verify the
effectiveness and feasibility of the proposed method. Two
column generation algorithms are compared. The proposed
column generation algorithm, which is based on region
growth, is denoted by ‘‘RG.’’ The generic column gener-
ation algorithm is denoted by ‘‘Original.’’ The L-BFGS-B
algorithm is used by both column generation algorithms to
solve the restrictedmaster problem. Themaximum number of
apertures in the prostate cancer cases is 60, and the maximum
number of apertures in the head and neck cancer cases is 100.

In this study, the dose deposition matrix W was cal-
culated using the classical pencil beam algorithm [34] in
the Computational Environment for Radiological Research
(CERR) open-source software [35]. The total function was
obtained by a weighted linear combination of the subobjec-
tive functions [36]:

f (D (x)) =
L∑
l=1

ξl fl (D (x)), (17)

where the dose distribution D (x) = Wx; that is, the dose
distribution is a linear function ofW and the fluence matrix x.

Further, fl (D (x)) is the lth subobjective function, ξl is the
weight coefficient representing the importance of the cor-
responding subobjective function, and L is the number of
subobjective functions.

The proposed method and generic column generation were
implemented in VC++ (v. VS2012) on a computer equipped
with an Intel R© CoreTMi7-6700K CPU (3.40 GHz) running
Windows 7 (64 bit).

A. STUDY OF HEAD AND NECK CANCER CASES
The effectiveness and feasibility of the proposedmethodwere
verified with cases of head and neck cancer. Nine 6-MeV
coirradiated photon fields were used to irradiate the target,
and the radioactive sources were spaced 40◦ apart. For the
head and neck cancer cases (as shown in Fig. 8), the parotids,
spinal cord, and brain stem were selected as the organs at
risk (OARs) according to [37]. Further, according to the
guidelines for clinical practice [38], for head and neck cancer
cases, the dose distributions of the spinal cord and brain stem
were restricted by the maximum dose subobjective function,
which required that the maximum doses for the spinal cord
and brain stem should not exceed 50 and 54 Gy (the gray (Gy)
is a derived unit in the International System of Units, which
represents a standard unit of energy absorption dose of ion-
izing radiation), respectively. In addition, the dose-volume
histogram (DVH) subobjective function [42] was used to
constrain the dose for the parotid gland, requiring that the
mean dose does not exceed 25 Gy. On this basis, three plan-
ning target volumes (PTVs) were considered (PTV 70 Gy,
PTV 63 Gy, and PTV 56 Gy), and the dose was restricted
using the minimum dose and mean dose subobjective func-
tions. The ‘‘Tissue’’ organization was the tissue in the patient,
except for the PTVs and OARs. The dose restriction for
‘‘Tissue’’ was controlled by the maximum dose subobjective
function. The total volumes (cubic centimeters) of the organs
for five cases of head and neck cancer are listed in Table 1.

FIGURE 8. Structural distribution of various organs in the head and neck
cancer case.

1) EVALUATION CRITERIA
To evaluate the quality of the plan, the following criteria are
considered. First, dose restriction and plan evaluation for the
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TABLE 1. Total volumes (cubic centimeters) of organs for five cases of head and neck cancer.

OARs and targets were performed according to [38] and [39]
(see Table 2). These criteria are mainly used to evaluate
the DVH of the result. VxGy is the volume of the organ
receiving ≥ x Gy. Dmax is the maximum radiation dose, and
the Dmean is the mean radiation dose.

TABLE 2. Dose-Volume (DV) constraint conditions of organs.

Second, the generalized equivalent uniform dose (gEUD)
and normal tissue complication probability (NTCP) were
calculated to evaluate the performance of the algorithm
for protecting the OARs. Since the evaluation standard of
biological criteria such as the gEUD and NTCP have not
been established internationally, we can only require that
a smaller gEUD and NTCP results in better protection of
the OARs. The conformity number (CN) proposed by van’t
Riet et al. [40] was used to measure the dose conformity of
the target:

CN =
TVri
TV
×
TVri
Vri

, (18)

where TV represents the total volume of the target, TVri
represents the target volume enclosed within the 95% isodose
line, and Vri represents the total volume of tissues enclosed
within the 95% isodose line. In addition, the homogeneity
index (HI) [41] was used to evaluate the target dose homo-
geneity:

HI =
D5%

D95%
, (19)

where D5% and D95% denote the radiation doses of 5% and
95% of the PTV volume, respectively. Better conformability
is obtained when the CN is closer to 1, and better uniformity
is obtained when the HI is closer to 1. Then, the dose distribu-
tion of the plan was also evaluated. Finally, the running time
of the plan and the number of apertures were considered to
evaluate the effectiveness and feasibility of the method.

2) RESULTS OF THE HEAD AND NECK CANCER CASES
In the analysis of the optimization results of head and neck
cancer cases, the dose distribution for the parotid gland was
constrained by the DVH subobjective function, and the eval-
uation standard required that the mean dose for the parotid
gland should not exceed 25 Gy. The mean dose should be
an evaluation of the overall dose, and the mean dose for
the parotid gland should be reduced as much as possible.
However, because the maximum dose subobjective function
was used to restrict the dose distribution of the spinal cord
and brain stem, and the maximum dose subobjective function
was used to penalize the dose exceeding the threshold. The
thresholds of the maximum dose subobjective function of the
spinal cord and brain stem were set at 50 and 54 Gy, respec-
tively; thus, when the maximum dose for the spinal cord and
brain stem was not beyond the corresponding threshold, the
maximum dose subobjective function has no penalty effect.
That is, the maximum doses for the spinal cord and brain
stem were required to not exceed the thresholds, and there
was no penalty when the maximum dose did not exceed the
threshold. With this premise, the optimization results of the
five head and neck cancer cases were analyzed.

The detailed optimization results of one head and neck
cancer case are as follows. When analyzing the performance
of the two methods, the curves of the target in the DVH
obtained by the two methods should be consistent as much
as possible. Of course, the curves of the targets obtained by
the new method can be slightly better than the comparison
method. On this basis, the curves of the OARs in the DVH
were observed. Although it is better when the curves of the
OARs in the DVH is lower, the optimized results of the
OARs should also be analyzed in combination with clinical
guidelines [38], [39]. As shown in Fig. 9(b), the curves of
the three targets obtained by ‘‘RG’’ are slightly better than
those obtained by ‘‘Original.’’ On this basis, the curves of the
OARs in the DVH are analyzed. For the ipsilateral parotid
gland, although the curve of ‘‘RG’’ is slightly higher in the
high-dose part than that of ‘‘Original,’’ it is much lower
than the ‘‘Original’’ result in the low-dose part. Similarly,
for the contralateral parotid gland, the curve of ‘‘RG’’ is
slightly higher in the low-dose part than the results obtained
by ‘‘Original’’ but significantly lower in the high-dose part
than that of ‘‘Original.’’ On this basis, according to the dose-
volume (DV) constraints in Table 2, the mean dose is used
to evaluate the dose distribution on the parotid gland, and
the DV constraints are satisfied by the mean dose of the
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FIGURE 9. Contrast optimization results of generic column generation
and column generation based on region growth: DVH for the (a) OARs
and (b) targets.

two methods of the parotid gland. Furthermore, according to
the data in Table 3, compared with ‘‘Original,’’ the mean dose
of the ipsilateral parotid gland obtained by ‘‘RG’’ decreased
by 1.01 Gy, and the mean dose of the contralateral parotid
gland obtained by ‘‘RG’’ decreased by 2.16 Gy. Although the

TABLE 3. Optimized information of case 1.

curves of the spinal cord in Fig. 9(a) are very close or even
cross each other and the curve of the brain stem obtained
by ‘‘RG’’ is significantly higher than that obtained by
‘‘Original,’’ the maximum dose is used to evaluate the dose
distribution for the spinal cord and brain stem according to
Table 2. Therefore, the requirements in Table 2 are satis-
fied by the maximum doses for the spinal cord and brain
stem obtained by the two methods in Table 3. As shown
in Fig. 10, the dose distribution obtained by the proposed
method, especially the dose distribution of the contralateral
parotid gland, is significantly better than that obtained by
generic column generation. The other optimization infor-
mation of these two methods is summarized in Table 3.
According to the data of the CN and HI for the targets,
the dose distributions for the targets obtained by the two
methods are essentially identical; even the dose distributions
of ‘‘RG’’ for the targets are slightly better. Furthermore,
the gEUD of the ipsilateral parotid gland decreased by
1.01 Gy, and the NTCP decreased by 2.24%. The gEUD of
the contralateral parotid gland decreased by 2.16 Gy, and the
NTCP decreased by 3.37%.

The optimization results of the four other head and neck
cancer cases are presented in Table 4 and Fig. 11. It can
be seen from Table 4 that in the second case, although the

FIGURE 10. Dose distribution maps of the two methods for the head and neck cancer case: dose
distribution maps obtained by (a) generic column generation and (b) column generation based on region
growth.
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TABLE 4. Optimized information of the four other head and neck cancer cases.

maximum dose of the spinal cord exceeds the threshold
of 50 Gy, it is penalized by the maximum dose criterion.
Nevertheless, the maximum dose obtained by the proposed
method is less than that obtained by generic column gen-
eration. In addition, the maximum dose for the rest of the
spinal cord and brain stem did not exceed the thresholds,
and the maximum dose criterion has no penalty effect.
Furthermore, according to the information related to themean
dose, the gEUD and NTCP for the parotid gland in Table 4,
the parotid gland is better protected with the proposedmethod
than generic column generation. However, it is noted that the
requirements in some cases in Table 4 are not satisfied by the
mean dose for the parotid gland because there is too much
overlap between the targets and the OARs in these cases,
as shown in the dosemaps in Fig. 11. According to the CN and
HI, there are no obvious differences between two methods.

On the basis of previous results, the running time and the
number of apertures used to optimize the five cases for the
two methods were studied (see Table 5). From Table 5, com-
pared with generic column generation, the proposed method
has a shorter running time and requires fewer apertures for
optimization.

TABLE 5. Running times of the plan and the numbers of apertures for the
five head and neck cancer cases.

B. STUDY OF PROSTATE CANCER CASES
The effectiveness and feasibility of the proposedmethodwere
verified for five cases of prostate cancer. First, the targets

and OARs in a patient’s computed tomography (CT) data
were selected, as shown in Fig. 12. The main target was
the prostate without regard for the pelvic lymph nodes. The
PTV was expanded by 5 mm in the backward direction and
by 10 mm in the other direction on the basis of the clinical
target volume (CTV). The bladder and rectum were chosen
as the OARs. The rectal and bladder walls were obtained by
manual delineation, and the rectal and bladder contours were
expanded by 5 mm. The ‘‘Tissue’’ organization was the tissue
in the patient, except for the PTV expansion beyond 5 cm.
The total volumes (cubic centimeters) of the organs for the
five prostate cancer cases are listed in Table 6. Five 6-MeV
coirradiated photon fields were used to irradiate the target.
The angles of the frame were 36◦, 100◦, 180◦, 260◦, and
324◦. The prescribed dose of the target was 78 Gy, and the
prescription of complications of the bladder and rectum was
set to zero to reduce the dose received by the normal tissues as
much as possible. In the experiment, the objective functions
for the twomethods were the same as that of normal tissue via
the subobjective function proposed by Wu and Mohan [42].
The dose distribution of the bladder was controlled by two
DVH equivalent convex rules, and four weighted DVH sub-
objective functions were applied to the rectum. The target had
one minimum dose objective subfunction and one mean dose
subobjective function to control the dose distribution. Thus,
the total objective function of the experiment was obtained.

TABLE 6. Total volumes (cubic centimeters) of the organs for five cases of
prostate cancer.

1) EVALUATION CRITERIA
To evaluate the quality of the plan, the clinical practice guide-
lines proposed by Marks et al. [38] were first considered to
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FIGURE 11. Comparison of the dose distributions of the two methods for the four other head and neck cancer
cases. (a), (c), (e), and (g) show the dose distribution maps obtained by generic column generation for the four
cases. (b), (d), (f), and (h) show the corresponding dose distribution maps obtained by column generation based
on region growth for the four cases.

evaluate the DVH results of the optimized plan (see Table 7).
Then, as with the evaluation of the head and neck cancer
cases, the dose distribution, the HI, the CN, the gEUD,

the NTCP, the running time, and the number of apertures
were used to evaluate the effectiveness and feasibility of the
proposed method.
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FIGURE 12. Structural distribution of various organs in a patient for the
cases of prostate cancer.

TABLE 7. DV constraint conditions of the organs.

2) RESULTS OF THE PROSTATE CANCER CASES
First, a prostate cancer case is analyzed in detail. As shown in
Fig. 13, the curves of the target basically coincide. In addition,
the coverage of the prescribed dose (74 Gy) in the target
obtained by both methods reached more than 95%. On this
basis, the DV constraints in Table 7 are satisfied by all of the
curves of the OARs obtained by the two methods. For the
rectum, although the partial low-dose distribution (< 50 Gy)
is increased by the proposed method, the effect of the low-
dose distribution on the NTCP from radiotherapy is limited.
In the clinical practice guidance given by Marks et al. [38],

FIGURE 13. Contrast optimization results of generic column generation
and column generation based on region growth.

the DV evaluation standard with a dose lower than 50 Gy
is not given. Although the curve obtained by the proposed
method at 50 Gy is slightly higher than that of generic column
generation, it still satisfies the DV constraints in Table 7.
On this basis, since the curve in the DVH obtained by the
proposed method is significantly lower than that obtained
by generic column generation in the high-dose part of the
rectum (> 56 Gy), the proposed method is more conducive
for the protection of the rectum. For the bladder, in the
clinical practice guidance given by Marks et al. [38], the DV
evaluation standard with a dose lower than 65 Gy is not given.
Therefore, it is evident from Fig. 13 that the curves of the
OARs marked as ‘‘RG’’ are significantly lower compared
to those of ‘‘Original.’’ Furthermore, the dose distribution
obtained by the proposed method is slightly better than that
obtained by generic column generation, as shown in Fig. 14.

FIGURE 14. Dose distribution maps of the two methods for the prostate
cancer cases obtained by (a) generic column generation and (b) column
generation based on region growth.

The optimization information of these twomethods is sum-
marized in Table 8. It was ensured that all of the curves of all
OARs in the DVH satisfied the DV constraints. The gEUD of
the bladder decreased by 0.65 Gy, and the NTCP decreased
by 0.48%. The gEUD of the rectum decreased by 0.54 Gy,
and the NTCP decreased by 0.72%. Thus, it can be seen
from the HI and CN of the target that the uniformities of

TABLE 8. Optimized information of prostate cancer case 1.
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TABLE 9. Optimized information of the four other prostate cancer cases.

FIGURE 15. Comparison of the dose distributions of the two methods in the four other prostate cancer cases. (a), (c), (e), and (g)
show the dose distribution maps obtained by generic column generation for the four cases. (b), (d), (f), and (h) show the
corresponding dose distribution maps obtained by column generation based on region growth for the four cases.

the target for the two methods do not significantly differ, but
the conformability of the target with the proposed method is
significantly better than that with generic column generation.

The optimization results of the four other prostate cancer
cases are presented in Table 9 and Fig. 15. According to
Table 9, the gEUDs and NTCPs of the OARs obtained by the
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proposed method in these four cases decreased to different
values compared with those obtained by generic column gen-
eration. Since an evaluation standard for biological criteria
such as the gEUD and NTCP has not been established inter-
nationally, we can only require that their values be as small
as possible. Furthermore, the CN of the target obtained by
the proposed method is better than that obtained by generic
column generation. This conclusion can also be drawn from
the results in Fig. 15.

The optimization time and the number of apertures of the
two methods used to optimize the five prostate cancer cases
are summarized in Table 10. From Table 10, the numbers of
apertures used by the two methods are nearly the same, but
the running time of the proposed method is less than that of
generic column generation.

TABLE 10. Running times of the plan and the numbers of apertures of
the five prostate cancer cases.

C. STATISTICAL ANALYSIS OF THE EXPERIMENTAL
RESULTS
To compare the results of all of the above experiments,
the optimization results of all ten cases will be statistically
analyzed.

As shown in Table 11, with 10 cases, there are no signifi-
cant differences in the dose distributions between ‘‘Original’’
and ‘‘RG’’ according to the P-values. On this basis, for the
head and neck cancer cases, the running times for ‘‘RG’’ and
‘‘Original’’ are significantly different (P = 0.002). On the
basis of no statistical difference in the quality of the plan, it is
shown that the proposed method can effectively reduce the
running time compared with the generic column generation.
However, for prostate cancer cases, there is no significant
difference in the running time between the two methods
(P = 0.626). There are two reasons for this conclusion.
First, the number of apertures required for prostate cancer
cases is small, which is not sufficient to reflect a significant
difference. Second, as shown in Figs. 14 and 15, with the
five cases of prostate cancer selected in this study, the overlap
between the OARs and the target is large; thus, the negative
gradients in the aperture gradient map are more dispersed.
This will affect the acceleration rate of the proposed method.
Therefore, the acceleration rate of the proposed algorithm in
prostate cancer cases is not as obvious as that in head and
neck cancer cases.

IV. DISCUSSION
Obviously, the relationship between the leaf positions and
the gradients of the beamlets is not a simple linear rela-
tionship. The generic column generation algorithm directly
determines the leaf positions by the gradients of the beam-
lets. The cancellation of positive gradients with large values,
which play an important role in the process of calculating the
leaf positions, by the surrounding negative values can easily
occur. Thus, if beamlets with these positive gradient values
are grouped into the new generated aperture shape, a decline
in the plan quality is likely. Moreover, it is well-known that
the aperture shape is determined by enumerating all possible
combinations with the generic column generation method,
which results in excessive computation. Column generation
method needs to be studied and improved to reduce the num-
ber of computations and improve the plan quality. Therefore,
column generation based on region growth is proposed in
this study. A reduction in the number of computations and
an improvement in the plan quality can be achieved by the
proposedmethod compared to the generic column generation.

Furthermore, the number of calculations reduced by the
proposed method depends on the number of negative gra-
dients and the degree of dispersion in the distribution of
negative gradients in the aperture gradient map. A larger
number of negative gradients and a smaller degree of dis-
persion in the distribution of negative gradients will result
in a larger reduction in the number of computations. For the
two types of cases used in this study, the average acceleration
rates are 4.72% and 15.06%, respectively, and the maximum
acceleration rate is 20.44%.

Another advantage of the proposed method is that the
OARs can be effectively protected while ensuring the con-
formability and uniformity of the target compared with
generic column generation. This conclusion can be drawn
from the figures and tables presented in Section III. Thus,
the feasibility and applicability of the proposed method have
been verified.

In this study, the nonlinear transformation results were
obtained by adjusting α and β according to actual experimen-
tal conditions. These parameters were manually obtained in
a trial-and-error manner. For the same type of cancer case,
the optimization results are not sensitive to these parameters,
and they only need to be determined once for one type of
cancer case [27]. α = 1 and β = 3 for the nonlinear
transformation of the gradients for 10 cases in this paper.

In particular, the effectiveness and feasibility of the pro-
posed method were verified for head and neck cancer cases
as well as prostate cancer cases. The following conclusion
can be drawn: compared with generic column generation,
the number of computations can be reduced, the conforma-
bility of the target can be ensured, and the OARs can be
effectively protected when using the proposed method. In the
future, additional image processing concepts will be intro-
duced to column generation to further reduce the number of
computations and improve the plan quality, thus improving
the algorithm performance.
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TABLE 11. Statistical analysis of the optimization results.

The number of generated apertures is not obviously
reduced by the proposed method. In addition, the uniformity
of the target has not been improved, especially in the case of
multiple targets. In the future, the solution of these problems
will be our focus.

V. CONCLUSION
The column generation method based on region growth
consists of four steps. First, a nonlinear transformation of the
gradient of the beamlets was carried out. Second, the initial
shape was obtained by region growth. Third, the adjacent
negative gradients were integrated. Finally, the pricing prob-
lem and master problem were solved. From the experimental
results, compared with generic column generation for IMRT
treatment planning, the computation and planning times are
reduced, the conformability of the target is improved, and
the OARs are effectively protected by column generation
based on region growth. Specifically, the NTCP of the pro-
posed method is reduced by up to 3.37%, and the maximum

acceleration rate is 20.44%. The effectiveness and feasibility
of the proposed method were verified for different cancer
cases. In conclusion, column generation based on region
growth for IMRT treatment planning should be introduced
into routine clinical practice for the radiotherapy of head and
neck cancer as well as prostate cancer.
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