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ABSTRACT Accurately estimating the user’s gaze is important in many applications, such as human–
computer interaction. Due to great convenience, appearance-based methods for gaze estimation have been a
popular subject of research for many years. However, the greatest challenges in the appearance-based gaze
estimation in a desktop environment are how to simplify the calibration process and deal with other issues
such as image noise and low resolution. To address the problems, we adopt a mapping relationship between
the high-dimensional eye image features space and the low-dimensional gaze positions and propose a robust
and accurate method for gaze estimation with a webcam. First, we utilize Kullback–Leibler divergence
to reduce feature dimension and keep similarity between the feature space and the gaze space. Then,
we construct the objective function using the maximum correntropy criterion instead of mean squared error,
which can enhance the anti-noise ability, especially for outliers or pixel corruption. A regularization term
is adopted to adaptively select the sparse training samples for gaze estimation. We conducted extensive
experiments in a desktop environment, which verified that the proposed method was robust and efficient in
dealing with sparse training samples, pixel corruption, and low-resolution problems in gaze estimation.

INDEX TERMS Appearance-based method, human computer interaction, gaze estimation, maximum
correntropy criterion.

I. INTRODUCTION
Gaze estimation is the process of detecting the location
where a person is fixating on or estimating the direction of
the 3D visual axis of the eye. Much work can be accom-
plished by knowing the gaze of the eye. For instance,
[1] by utilizing gaze to select a target, people with disabil-
ities are able to type by looking at an on-screen keyboard.
Paravati and Gatteschi [2] summarized the potential applica-
tions in developing smart environments.

To avoid the inconvenience of intrusive gaze trackers, non-
intrusive gaze estimationmethods have been developed based
on computer vision technology. As surveyed in [3], these
kinds of methods can be mainly divided into two categories:
model-based methods and appearance-based methods.

Model-based methods utilize the geometric relationship
of the eye model and the environment to estimate the 3D
visual axis of the subjects. However, to achieve a high accu-
racy, stereo camera pairs, infrared light sources, and other
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hardware [4]–[7] are needed for the accurate extraction of
the 3D eye features to determine the eye model and the gaze
direction. The most common 3D eye features include the
pupil center and corneal infrared [5]–[8]. After obtaining the
visual axis from the 3D eye features, the gaze point on the
screen can be obtained by intersecting the visual axis with the
screen [9]. However, the process is complicated and difficult
to calibrate.

Unlike model-based methods, appearance-based methods
are simple (using only the eye image as a high dimensional
input feature to map onto the gaze coordinates), and a single
web camera is sufficient to set up the experiment. The latest
methods, such as the saliency [10], human gaze patterns [11],
and Convolutional Neural Network [12], [13], are proposed.
However, these methods need many training samples to learn
the model and they also cannot handle outliers or noise in
the data. Our method assumes a fixed head pose like most
appearance-based methods, which is based on the appearance
manifold interpolation for gaze estimation. Tan et al. [14]
used local linearity based on the appearance-manifold to
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interpolate the unknown gaze points using 252 training sam-
ples. Although this method could obtain an accurate esti-
mation, a large amount of training samples were needed,
and this method did not take into consideration image noise.
Williams et al. [15] introduced sparsity, and learned the map-
ping from a few semi-supervised training sets through a semi-
supervised Gaussian Process. This method achieved a better
result by using a few training samples, but this method did not
consider noise or low-resolution problems. Lu et al. [16], [17]
used adaptive-linear regression for gaze estimation by using
fewer training samples. This method was based on Mean
Squared Error (MSE), and they only needed about 33 samples
to obtain excellent accuracy results considering that the noise
was light and it was a Gaussian distribution. When the noise
was heavy and a non-Gaussian distribution was used, this
method could ensure high accuracy.

Appearance manifold interpolation mainly assumes that
the appearance on the manifold can be approximated by
linear combinations of neighbor samples. This idea is often
used to estimate the gaze positions. However, these methods
have many challenges, such as the assumption of similarity
between human eye image manifold and the gaze feature
space, and the need ofmany training samples and some distur-
bance problems. To deal with above challenges, in this paper
we propose an accurate and robust gaze estimation method
based on correntropy. It utilizes eye appearance features to
predict the gaze position. After extracting and aligning eye
images, a Kullback-Leibler divergence (KLD) -based feature
dimension reduction is used to effectively improve the simi-
larity of the human eye image manifold and the gaze feature
space. For the reconstruction of the test samples, this paper
proposes a gaze estimation method based on the correntropy
algorithm due to the large number of training samples and
image corrosion problems. This method can select the sparse
and local training samples to represent the new eye feature
and enhance the anti-noise performance. In the experiment,
we tested the effectiveness of the proposed method by using
sparse training samples. The main contributions of the paper
can be summarized as follows:

1) In this paper, we firstly introduce theMCC into appear-
ance based gaze estimation field. Comparing with the
existing methods, which utilize MSE as optimization
objective, the proposed gaze estimation method can
efficiently cope with noisy and low resolution images.

2) For the purpose of improving the accuracy of gaze
estimation, we also introduce a local linear constrain
to make the selected samples close to the input image.
Meanwhile, a KLD-based feature dimension reduction
is used to improve the similarity between human eye
image feature manifold and gaze space.

II. THE OVERVIEW OF PROPOSED ALGORITHM
A. EYE APPEARANCE MANIFOLD INTERPOLATION FOR
GAZE ESTIMATION
Consider the features of N samples in eye images, and
E = {e1, e2 . . . , eN } ∈ Rm×N constitutes a manifold in the

m-D space. Let G = {g1, g2, . . . , gN } ∈ R2×N denote the
set of gaze positions on the screen, corresponding with eye
images in E . The goal is to learn the mapping between the
eye appearance features and the gaze positions.

The eye appearance feature manifold is assumed to be
continuous and smooth, and one of the features can be inter-
polated by using some of its neighbors in the manifold.
In [18], a spline interpolation-based construction approach
was proposed for reconstructing the new sample by utilizing
its neighbors. In this paper, we assumed a linear relationship.
Therefore, given a new eye image, we estimate its feature ê
by combining the training features in E as follows:

ê =
∑
i

wiei (1)

where wi is the weight corresponding with the ith sample.
In the literature, several works have assumed a similar

structure between eye appearance feature manifold and gaze
position space [14], [17], [19]. Thus, we can obtain the new
corresponding gaze position by training gaze positions using
the same weights in the feature manifold. That is, a new gaze
position ĝ can be constructed as:

ĝ =
∑
i

wigi (2)

As mentioned in [16], the above assumption is valid by
assuming locality. In this paper, we also handle this with the
idea of sparse training samples.

B. THE FRAMEWORK OF PROPOSED ALGORITHM
The proposed algorithm is based on the principle introduced
in Section II-A. However, we improve the accuracy and the
robustness of it in two different aspects. Firstly, we introduce
a Kullback-Leibler divergence based optimization algorithm
to learn a transformation. This can reduce feature dimension
while enhancing the similarity between the feature projection
space and gaze space. Secondly, we adopt a maximum cor-
rentropy criterion induced cost function, which can greatly
improve the robustness and accuracy.

The entire process of the proposed algorithm is shown
in Figure 1. Firstly, We use the AdaBoost algorithm along
with Haar-Like features to detect the subject’s face. This
algorithm is very efficient and has high detection accuracy.
Of course, it is also possible to use the other popular face
detectionmethods. Secondly, the facial landmarks are located
utilizing a constrained local model framework [20]. After
locating the eye corner position, we segment the eye region
with a fixed aspect ratio. Thirdly, in the feature extraction and
reduction step, the eye image is divided into several small
cells. We obtain a 1-D histogram of gradient orientations
for each cell. By stacking the vectors of all cells into a
column vector, we can obtain a vector as the eye appearance
feature. To enhance the similarity and reduce computation
cost, we introduce a KLD-based method which can improve
the similarity efficiently between human eye feature space
and gaze space via mapping human eye feature space to a
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FIGURE 1. The framework of proposed algorithm.

feature projection space. The experiment results indicate that
the KLD-based method can not only increase the accuracy of
the result of experiment, but also can improve the estimation
efficiency greatly. And then, we design a novel objective
function based onMCC to obtain an accurate gaze estimation.
Compared with the traditional MSE based method, MCC
greatly increases the robustness of the overall algorithm due
to its reliability in processing abnormal data, so that it can
accurately and stably estimate the fixation position. Finally,
in the stage of gaze coordinate estimation, we adopted the
weight sharing framework in II-A, and finally reconstructed
the gaze position through the training samples to complete
the whole process of gaze estimation.

III. HUMAN EYE FEATURE DIMENSION REDUCTION
BASED ON KL DIVERGENCE
The estimation accuracy and the similarity between the eye
feature space and the gaze space are related because we
use the method of weight sharing to estimate the gaze posi-
tion. In order to improve the accuracy of estimation and
reduce the estimation time, the proposed algorithm intro-
duces feature space dimension reduction, which improves
the similarity between feature space and gaze point space,
which greatly reduces the computation time and improves
the accuracy of the estimation algorithm. Compared with
the traditional dimensionality reduction algorithm Principal
Component Analysis (PCA) [21], we introduce a KLD-based
dimensionality reduction method, which reduces the feature
space dimension and ensures the similarity with the gaze
space to improve the estimation accuracy. As shown in the
Figure 2, the KDL-based feature space reduction results
are significantly better than the PCA-based dimensionality
reduction results. As we know, KLD as a distance measure is
usually used to measure the distance between two probability
distributions and some optimize process. In a certain range,
KLD minimum value represents corresponding parameters
are optimal. Compared with KLD, other distance measures,
such as the Total variation distance and Bhattacharyya dis-
tance, have some problems. Such as the Total variation dis-
tance is mainly used to remove noise, which will change

small gradient regions to constant. Bhattacharyya distance
is mainly used to measure the separability between clus-
ters, while the high dimension calculation of the cost would
be larger. Therefore, this paper adopts KLD-based feature
space dimension reduction, which can improve the accuracy
of estimation while ensuring the efficiency of calculation.
It is assumed that variable X = {x1, x2, . . . , xn} has the
projection transformation function f (x) in the feature space,
the distance of X between any two variables x1, x2 ∈ X
in feature space is d[x1, x2], and the distance between any
two variables is d[f (x1), f (x2)] in projection feature space.
Assuming the projection transformation function f (x) of
x ∈ X is linear, this means f (x) = Cx, where C is the pro-
jection conversion matrix. Therefore, the Euclidean distance
between the features f (x1) and f (x2) in projection feature
space is ||f (x1) − f (x2)||2 = (x1 − x2)TA(x1 − x2), where
A = CTCA = CTC is positive semidefinite matrices, also
known as distance matrices.

After extracting the HoG features from the eye images,
let �,9,0 represent the eye feature space, the gaze point
space, and the eye feature projection space, respectively. The
function D(·, ·) represents the distance between two points
in each spaces, while the measurement criterion between eye
feature projection space and gaze space are assumed to be
similar. That is: D(Cei,Cej) ≈ D(xi, xj), where C is the
projection transformationmatrix of the eye images. Then, one
can establish the objective function between the dimension-
ality reduced space and the gaze space based on the distance
measure criterion. The formula is as follows:

min
C

F(�,9,0;C) (3)

The main purpose of (3) is to obtain projection space 0
by performing the projection transformation matrix C on the
human eye feature space �, so that the feature projection
space 0 and the gaze space 9 have a more similar structure.

In this paper, the Euclidean distance is used to represent
the distance measurement of space, that is:D(i, j) = ||i− j||2.
The distance of the three spaces of the human eye feature
space, the feature projection space, and the gaze space are
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respectively represented as follows:

D�(i, j) = (ei − ej)T (ei − ej) (4)

D0(i, j) = (Cei − Cej)T (Cei − Cej) (5)

D9 (i, j) = (xi − xj)T (xi − xj) (6)

Moreover, the distance in feature projection space can be
converted into the following expression:

D0(i, j) = (Cei − Cej)T (Cei − Cej)

= (ei − ej)TCTC(ei − ej)

= (ei − ej)TA(ei − ej) (7)

where A = CTC is positive semidefinite matrix (PSD).
Common distance measurement learning algorithms, such

as Principal Component Analysis (PCA) [21] and Linear
Discriminant Analysis (LDA) [22], make use of the global
covariance structure and cannot guarantee the local similarity
of the structure between features projection space 0 and
gaze space 9. Therefore, to guarantee the accuracy of the
distance measurement, this paper uses the KLD based learn-
ing method. To guarantee the similarity of spatial structure
between feature projection space and gaze space, this method
learns the metric matrix based on the structure of the target
space to obtain the distance matrix A.

A. KULLBACK-LEIBLER DIVERGENCE
In information theory and probability theory, the KLD [23]
is an asymmetric metric formula for two probability distribu-
tions P and Q. It is mainly used to describe the difference
between two distributions. Therefore, the KLD expression
from probability distributionQ to probability distribution P is
DKL(P||Q), and the KL divergence expression is as follows:

DKL(P||Q) = 6P(i)log
P(i)
Q(i)

(8)

DKL(P||Q) means P on the KL divergence of Q, where
P is real probability distribution and Q is the approximate
probability distribution of P. When the value of DKL(P||Q) is
smaller, the function shows that the probability distribution P
is more similar to the approximate probability distribution Q.
On the contrary, when the value is larger, there is a greater
difference between them.

B. OBJECTIVE FUNCTION AND OPTIMIZATION
For the eye image feature space and the gaze space structure,
the purpose of dimension reduction of the human eye feature
space is projected so that the projected space 0 and the gaze
space 9 are more similar. To learn the measurement better,
the conditional distribution between the training samples is
defined as follows:

P(j|i) =


e−D(i,j)∑
k 6=i e

−D(i,k) j 6= i

0 j = i
(9)

Therefore, the conditional distributions of the human eye
projection space and the gaze space are:

P0(j|i) =


e−D0(i,j)∑
k 6=i e−D0(i,j)

j 6= i

0 j = i
(10)

P9 (j|i) =


e−D9 (i,j)∑
k 6=i e

−D9 (i,j)
j 6= i

0 j = i
(11)

The purpose of human eye dimension reduction is to make
P0(j|i) as close as possible to P9 (j|i) by finding a positive
semi-definite matrix A. Moreover, by using KLD, the objec-
tive function can be written as:

min
A
f (A) = DKL(P9 (j|i)||P0(j|i))

s.t. A ∈ PSD (12)

The function has a minimum value since the objective
function (12) is a convex function. It can be solved using the
mutual iteration method, by applying gradient descent and
projection to the PSD cone method of the main function. The
gradient expression of the objective function is as follows:

h
f (A) =

∑
i,j

(P9 (j|i)− P0(j|i))(ei − ej)T (ei − ej) (13)

For the tth iteration, adjust A by step ζ , and the operation
is as follows:

At+1 = At − ζ
h

f (A) (14)

To ensure that Matrix A is a positive semi-definite matrix,
the solution process is performed by projectingMatrix A onto
the PSD cone. The operation process is as follows:

First, the eigenvalue solution operation of matrix A is as
follows:

At+1 =
∑
k

λkukuTk (15)

where λk is eigenvalue of A, uk is the corresponding
eigenvector of λk .

Through the elimination of negative eigenvalue operation,
we obtain

At+1 =
∑
k

max(λk , 0)ukuTk (16)

Themutual iterationmethod is used to perform the gradient
operation and the projection operation on the above process
until A converges.
Figure 2 provides a visualization of the eye image feature

space �, gaze space 9, and the projected feature space 0.
Here, we use 36 points for calibration. Figure 2a shows the
structure of the eye image feature space. We can see that its
structure is chaotic and distributed in a disorderly manner.
Figure 2b is the gaze space structure, and the image shows a
good regularity. Figure 2c shows the structure of the projected
feature space based on KLD, and Figure 2d shows the struc-
ture of the projected feature space based on PCA. It can be
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FIGURE 2. Three space structure diagram. In the figure, the abscissa and
ordinate represent the number of points, and the right ordinate
represents the distance between points. (a) Human eye feature space
structure. (b) Gaze space structure. (c) Projection space based on KLD.
(d) Projection space based on PCA.

clearly seen that after the linear projection of the eye image
feature space � into the space 0, the structure of the space 0

shows obvious periodicity and is noticeably similar to the
structure of gaze space9. And we can see obviously that the
results of two dimension reduction methods from Figure 2c
and Figure 2d. It sames that the method based on KLD is
better than PCA.

IV. HUMAN EYES GAZE ESTIMATION BASED
ON CORRENTROPY
A. CORRENTROPY
Correntropy was proposed in Information Theoretic Learning
(ITL) [24] as a generalized similarity measurement [25]. It is
always used to measure the similarity of the feature vectors.
It can effectively deal with non-Gaussian noise [26]–[29].
For two arbitrary random variables X = {x1, x2, . . . , xN } and
Y = {y1, y2, . . . , yN }, their correlation is defined as follows:

V (X ,Y ) = E [kσ (X ,Y )]

=

∫∫
k(x, y)pXY (x, y)dxdy (17)

where pXY (x, y) is the joint PDF and k(x, y) is any continu-
ous, non-negative definite kernel which satisfies the Mercer
theory [30]. If the kernel is a translation invariant kernel, such
as Gaussian, then (17) becomes the correntropy.

In practice, if the joint PDF of pXY (x, y) is unknown
and there are only a finite number of data points
{(xi, yi)}ni=1, we can obtain the following simple estimate of
correntropy:

V (X ,Y ) =
1
N

N∑
i=1

kσ (xi, yi) (18)

where kσ (xi, yi) = exp
(
−

(xi−yi)2

2σ 2

)
B. GAZE ESTIMATION BASED ON CORRENTROPY
We propose a gaze estimation method based on correntropy
to further improve the accuracy and enhance the robustness
of the gaze estimation. Compared to previous works, such
as [14], [16], and [19], which are mainly based on MSE,
our proposed method can enhance anti-noise performance
and achievemore accurate estimation.Moreover, some recent
papers have utilized l1-Regularization to reconstruct the test
sample by sparse representation. However, such methods
cannot guarantee the locality of the selected training samples
and this can introduce additional errors.

J = max
w

1
m

m∑
j=1

exp

−
∥∥∥∥ N∑
i=1

wiei − ê
∥∥∥∥2

2σ 2


− λ

∥∥∥dTw∥∥∥2
s.t.

N∑
i=1

wi = 1 (19)

Here, E ∈ Rm×N is the training sample set of human eye
features, ê is the test sample, δ is the bandwidth of Gaussian
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kernel, w is the weight of training samples, and d denotes
the distance between the test sample ê and the ith training
samples in E , which can be calculated as di = exp( ‖ê−ei‖

2

ρ
).

The second term in (19) is a constraint, which can reduce
the weights of further samples. That means the constraint can
stay away from selecting samples far from the testing sample,
which breaks the local smooth assumption. Form (19) we can
get the algorithm complexity of the algorithm we proposed
is O(mN).

In this paper, we use a half-quadratic technique to solve
the regularized entropy maximization problem, such as
[31] and [32]. According to the property of convex conjugate
function [33], we have:

For G(x, σ ) = exp(− ‖x‖
2

2σ 2
), there exists a convex conju-

gated function called ψ , so we can obtain:

G(x, σ ) max
p

(
p
‖x‖2

σ 2 − ψ(p)
)

(20)

where p = {p1, p2, . . . , pm} are the auxiliary variables in half-
quadratic optimization.

For a fixed x, the maximum is reached at p =

−G(x, σ ) [33]. By substituting (20) into the (19), we can
obtain the augmented function:

Ĵ (w, p) = max
w,p

[
1
m

m∑
j=1

(
pj

(
−

∥∥∥∥ N∑
i=1

wiei − ê
∥∥∥∥2

2δ2

)

−ψ(pj)
)
− λ

∥∥∥dTw∥∥∥2 ]
s.t.

N∑
i=1

wi = 1 (21)

For a fixed w, we can obtain the following equation:

J (w) max
p
Ĵ (w, p) (22)

which is the same to this equation:

max J (w) = max
w,p

Ĵ (w, p) (23)

To solve (21), alternative maximization can be utilized as
follows:

pτ+1 = −G

(
N∑
i=1

wiei − ê

)
(24)

wτ+1 = argmax
w

[ (
ê− Ew

)T diag(p) (ê− Ew)
− λ

∥∥∥dTw∥∥∥2 ]
s.t.

N∑
i=1

wi = 1 (25)

From the definition, we can learn that p ≤ 0. By replacing p
with −p, we can obtain the equivalent minimal problem

in (25), as follows:

wτ+1 = argmin
w

[
1
2
wT ẼT Ẽw−

(
ẼT ẽ

)T
w

−
1
2
λ

∥∥∥dTw∥∥∥2 ]
s.t.

N∑
i=1

wi = 1 (26)

where, Ẽ = Ediag
(√
−pτ+1

)
and ẽ = Ediag

(
−pτ+1

)
ê.

Equation (26) is a l2-norm regularization problem, the ana-
lytic solution can be obtained as below:

w =
(
ẼT − Ẽ − λdiag(d)2

)−1
ẼT ẽ (27)

The entire procedure is summarized in Algorithm 1.

Algorithm 1 The Procedure of Gaze Estimation Based on
Correntropy
Require:

The training eye features, E ;
The testing eye feature, ê;
The training gaze positions, G;

Ensure:
Gaze position, ĝ;

1: Initialize the weight vector w = ET ê;
2: Update the weight vectorw and the auxiliary variables p;

3: for τ = 1 to n do
4: Update the auxiliary variables p by ((24));
5: Update the weight vector by ((27));
6: if

∣∣J τ+1 − J τ ∣∣ ≤ ε then
7: break;
8: end if
9: end for
10: Calculate the gaze positions by ĝ =

∑
i
wigi.

V. EXPERIMENT RESULTS
In this section, we verify the effectiveness of our algorithm
compared with other classical algorithms. We set different
calibration modes and the number of calibration points were
9, 16, 25, and 36. We will begin by introducing the way
we collected the experimental data. Then, the experimental
process can be divided into three separate parts: a comparison
of algorithms under different calibration patterns, a com-
parison of different algorithms under pixel corrosion, and
a comparison of different algorithms under low-resolution
conditions.

A. DATASET COLLECTION
As shown in the Figure 3 , during the data collection process,
the distance between the tester and the screen was nearly
70 cm and the screen size was 52cm(H)×29cm(V).
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FIGURE 3. The experiment setup.

To analyse the effect of the number of calibration points,
four calibration data sets were collected, respectively. The
number of calibration points were 9, 16, 25, and 36, and
the calibration patterns were as shown in Figure 4. The head
images and corresponding gaze coordinate information were
saved in the collection process.

FIGURE 4. Human eye image of random corrosion.

For testing the dataset under the condition of a fixed head
posture, the data was collected by a standard camera. During
the collection process, a single bright spot was randomly
displayed on the screen once, and the corresponding face
image was captured. A total of 200 samples were collected.

For the experimental data of the pixel corrupted human
eye image, a pixel corrosion operation was performed on
each test image in the process of designing the dataset. The
pixel value of each test human eye image was determined
by a value belonging to a uniform distribution and the value
was between [0 - 255], where the value and position of
the replaced pixel were both random. The percentage of
corrosion was set from between10% to 50% to verify the
effectiveness of the proposed method during the experiment,

as shown in Figure 5. Figure 5a shows the original image;
Figure 5b shows the image at 10% corrosion; Figure 5c shows
the image at 30% corrosion; and Figure 5d shows the image
at 50% corrosion.

FIGURE 5. Human eye image of random corrosion.

During the experiment, the pixel scaling operation was
performed on each test image using the same method to
collect data in the case of low resolution. For each eye image
being tested, the magnification was reduced to 1

k , and then
magnified to the original size. All the samples underwent the
same treatment, so that could obtain low-resolution images.
The scale value 1

k was in the range of [1 - 5], and the results
are shown in Figure 6. Figure 6a shows the original image;
Figure 6b shows the human eye image with 10% zoom;
Figure 6c shows the human eye image with 30% zoom;
and Figure 6d shows the human eye image with 50% zoom.

FIGURE 6. Human eye images at different scales.

During the experiment, we compared our method with sev-
eral classic algorithms. These were Adaptive Linear Regres-
sion (ALR) proposed by Lu et al. [17], the local region
method (Local Region) proposed by Tan et al. [14], Support
Vector Regression (SVR) based on multi-scale HoG feature
extraction (SVR+HoG) [34], the Local Linear Constraint
method (LLC) proposed by Wang et al. [35], and Synthesis-
based Low-cost gaze analyse (SLC) algorithm proposed by
Chang et al. [36].

B. EXPERIMENTAL RESULTS AND ANALYSIS UNDER
DIFFERENT CALIBRATION PATTERNS
We conducted the following comparative experiments on the
feature dimension reduction problem. As shown in Table 1.
In different calibration modes, adding KLD-based feature
dimensionality reduction algorithm is significantly better
than that without KLD. Therefore, in the process of gaze
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TABLE 1. Comparison of the results of algorithms with KLD or not under
different calibration modes.

point estimation, it is necessary to introduce the dimension
reduction based on KLD features.

We tested the accuracy of gaze estimation with differ-
ent calibration patterns. The four patterns used are shown
in Figure 4. We compared the experimental results between
the proposed method and five other methods (LLC, ALR,
Local Region, SVR and SLC) using the same dataset. Table 2
gives the estimation error of different people and the overall
average error.

In Figure 7a, the histogram shows more vividly a com-
parison of the results of the different methods. In this paper,
the proposedmethod achieved the best estimation accuracy in
all comparison methods. The estimation error was less than
0.1 degrees. The estimation errors for the other methods were
all greater than 0.2 degrees. For the proposed method, as the
data collected contained noise pollution, the samples were
selected to be similar to the training samples in the process
of reconstruction by using the correntropy advantage and the
locality of the enhancing data, as shown in Figure 7b. When
the distance between the test image and the training sam-
ple was large, the weight became correspondingly smaller.
In practice, the weight was reset to zero if the weight was
less than a certain value, as shown in Figure 7c, and the
noise in the image under the correntropy framework could be
effectively solved. Although the LLC method also uses the
locality of the data, the Gaussian kernel function was used
in this method, which can give a high-dimensional projection
of the data. Under noisy conditions, the proposed method in
this paper had better recognition ability. Although ALR uses
the coefficient regularization term and could achieve good
estimation accuracy under the condition of fewer training
samples, the experimental effect was obviously lower than
the algorithm in this paper due to the data collection being
contaminated by noise. The Local Region method used all
the training samples, which resulted in long consumption
time and it ignored the differences in the data. In summary,
the proposed method could select different training samples
to reconstruct the test images. It could achieve good experi-
mental accuracy by using the locality between the enhancing
data.

We also compared the computational time of all the
algorithms. The codes were written in MatLab on a
3.60GHz Core i7 CPU with Windows 10 system machine.
Table 2 shows the computational times of different algorithms
in different calibration modes. We can see that although the
computational time of the algorithm we proposed is slightly
larger than some comparison algorithms in some calibration
modes, it can be regarded as a higher operation rate also.
If we combine Table 2 and Table 2, we can see that the

FIGURE 7. Graphical illustration of result of different calibration pattern
experiment. (a) Comparison between different algorithm. (b) The selected
samples by the proposed algorithm. (c) Sample weights obtained by the
proposed algorithm.

algorithm we proposed have the best performance, and it can
greatly improve the estimation accuracy under the condition
of ensuring the operation speed.
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TABLE 2. Comparison of the results of different algorithms under different calibration modes.

TABLE 3. Comparison of the time of different algorithms under different calibration modes.

TABLE 4. Comparison of the results of different algorithms under different corrosion rates.

C. EXPERIMENTAL RESULTS AND ANALYSIS UNDER
NOISY ENVIRONMENT
These experiments of human eye gaze estimation focuses on
the pixel corrosion of the human eye image and compared
with the results obtained by other methods. Two experiments
were conducted. The first was a comparison of the results
of different methods under different noise corrosion rates.
The second was a comparison of the effectiveness of the
proposed method under different training samples. The HoG
feature was no longer used for the noise image feature. In this
paper, all the images in the noise-containing human eye test
sample were adjusted to a 15 × 30 pixel size, and the pixel
value was directly extracted as the image feature and normal-
ized, simultaneously. Finally, we obtained the characteristics

of each image, which were the 450-dimensional
eigenvectors.

The results of different methods under 36 training samples
and under different noise erosion rates are shown in Table 3.
Figure 8a is a comparison chart of the corresponding results
in Table 3. The experimental results of the proposed algorithm
with LLC, ALR, Local Region, HoG + SVR and SLC at the
different corrosion rates are also shown in Figure 8a. From
the results, we can see that the proposed algorithm and SLC
have higher noise immunity than the other algorithms. Since
the random forest itself has high noise immunity, the SLC has
higher estimation accuracy under noise conditions. Under the
framework of correntropy, we can see that the noise could
be effectively processed as well as SLC. Compared with
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TABLE 5. Comparison of the results of different calibration patterns under different corrosion rates.

FIGURE 8. Graphical illustration of results of noise experiment.
(a) Comparison between different algorithm. (b) Comparison between
different calibration patterns using the proposed algorithm.

LLC, ALR, and Local Region algorithms, these algorithms
were based on the MSE criterion to reconstruct the test
samples, and the proposed algorithm had strong anti-noise
performance.

Table 4 shows a comparison of the results with different
pixel corrosion rates under different calibration mode condi-
tions. Figure 8b is a comparison chart of the corresponding
results in Table 4. As shown, the proposed method performed
well at estimating the gaze position with a small number of
training samples.

FIGURE 9. Graphical illustration of results of resolution experiment.
(a) Comparison between different algorithm. (b) Comparison between
different calibration patterns using the proposed algorithm.

D. EXPERIMENTAL RESULTS AND ANALYSIS AT
LOW RESOLUTION
The results of the different methods for one of the testers
under 36 normal training samples at different scales are
shown in Table 5. It can be seen from the table that each
algorithm could effectively evaluate the gaze point at a low
resolution, and that the low-resolution image belongs to the
fuzzy image relative to the standard data. The proposed
method had the best precision and showed the stability of the
gaze estimation algorithm, as shown in Figure 9a.
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TABLE 6. Comparison of the results of different algorithms at different scales.

TABLE 7. Comparison of the results of different calibration modes at different scales.

Table 6 shows a comparison of the results of different
scales under different calibration mode conditions. Under the
condition of a small number of training samples, the proposed
method could also estimate the fixation point. In addition,
as the amount of training increased, the experimental preci-
sion was higher, as shown in Figure 9b.

VI. CONCLUSION
This paper introduces gaze estimation under the correntropy
algorithm. The implementation process optimizes the prob-
lems that existed in the process of gaze estimation such as
the sub-pixel extraction and alignment of the human eye
image, the dimension reduction of the human eye feature
space, excessive training samples, and noise interference.
Improvement of the local neighborhood constraint of the
objective function was based on the relevant entropy algo-
rithm. Our improved method can effectively ensure that
the calibration function can obtain good accuracy, even
with a small number of calibration points. Finally, the per-
formance of this algorithm was verified through multiple
experiments.
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