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ABSTRACT A narrow bandwidth may lead to a large amount of redundant data, which further causes
the interruptions of the communication network. In order to address this problem, an optimized clustering
communication protocol based on intelligent computing (CCP-IC) is proposed in this paper. First, we adopt
the intelligent algorithm to perform the optimization of the clustering in the sensor network. The adaptation
function and the heuristic function are introduced to make a targeted choice on the cluster head for the
next hop of the nodes in the network. Second, the controllable threshold parameter and variation coefficient
are employed to optimize the shortest path chosen by the network routing. Therefore, the node energy
consumption is lowered when the minimum network delay is guaranteed and the transmission efficiency is
improved. Finally, it is verified via the simulation results and compared with other algorithms; the proposed
protocol reduces the network energy consumption by 15.3% and prolongs the network lifetime by 18.72%,
which proves the validity and effectiveness of the proposed protocol.

INDEX TERMS Internet of Things, clustering communication protocol, intelligent computing, network
lifetime.

I. INTRODUCTION
Internets of Things (IoT) underlying system are organized by
a large number of low-cost and small-scale sensor nodes in a
self-organized method. The main task of IoT is to monitor the
related objects in the network coverage area and transmit the
monitoring results from the Sink to the observer. IoT is widely
applied to a variety of engineering fields such as military
and national defense, anti-terrorism, national security, emer-
gency rescuing, space exploration, medical health, intelligent
agriculture, and the construction of smart cities [1]–[4]. The
importance of IoT has drawn much attention from different
fields.

In order to cope with the problems of failed nodes and
data sensing inaccuracy caused by the environment, sensor
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nodes of the sensor network are usually densely deployed
in the monitoring area [5], [6]. However, this also leads to
the heavy information redundancy within the network. If the
Sink directly collects all the original data, a large amount
of precious energy is wasted during the transmission of the
redundant data [7]–[9]. To address this problem, the data
aggregation technique employs different methods to pro-
cess the sensing data and further reduces the transmission
of redundant data within the network. Therefore, the data
aggregation technique is a very important technique to realize
the efficient data collection in IoT [10]. Data collection is
the major task of IoT and lays the foundation for all the
applications of IoT. The data collection of IoT can be cate-
gorized into three types: data-driven type, search-driven type
and event-driven type. For the data-driven data collection,
the sensor nodes periodically sense the environment and
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transmit the sensing data to the Sink at a fixed data rate
which is determined by a pre-scheduling strategy [11], [12].
This type of data collection is also termed the periodical data
collection and it is applicable to the applications where the
global monitoring is required, i.e., all the nodes in the network
transmits sensing data. For the search-driven data collection,
the Sink sends the data collection request according to the
requirement of the users. Only when the sensor nodes satisfy
the requests, will they transmit their sensing data. For the
event-driven data collection, an arbitrary node remains silent
until the target event happens and only when the node detects
the occurrence of the event, will it transmits the event-related
data to the Sink. These nodes are usually partial nodes and
the randomness of events causes the random distribution of
these nodes.

Data aggregation refers to the operation that the sensor
node performs aggregation on its sensing data or multiple
received data. The aim of data aggregation is reducing the
redundancy, enhancing the data accuracy, improving the data
collecting efficiency and saving energy. The data aggregation
can be divided into two types, complete data aggregation
and partial data aggregation. The complete data aggregation
means that the size of the transmitted aggregation data packet
is fixed no matter how much data is received by the sensor
node. The partial data aggregation equals to that the amount
of the aggregation data is smaller than the total amount
of the original data. If the correlation of the original data
is stronger and the data aggregation efficiency is higher,
the amount of the aggregation data will be smaller. To real-
ize the data aggregation within the wireless sensor network,
the original data must be aggregated in time and space during
the transmission. Therefore, we need to design an appro-
priate routing scheme so that the data transmission could
optimize the spatial and temporal aggregation. Then higher
data aggregation efficiency can be obtained as the amount
of transmitted data within the network is reduced. The data
aggregation-based routing technology in wireless IoT can be
divided into three types: structured, unstructured, and semi-
structured. The structured routing for data aggregation can be
further divided into chain structure, tree structure, and cluster
structure. The unstructured routing for data aggregation is
a network routing without maintaining any specific network
structure, where the proper neighbor nodes are immediately
chosen to transmit the message via the appropriate informa-
tion exchange. The semi-structured routing is a hybrid of the
other two types.

II. RELATED WORK
Chain-structure routing algorithm for data aggregation has
attracted much research interest and many efforts have been
made in this area. A typical example is paper [13].And in
this work, according to the location of the nodes; a greedy
algorithm was employed to generate a chain on which the
distance between the neighbor nodes is the shortest. The
responsibility of chain head is taken by every node in turn
and the chain head was responsible for transmitting the

aggregation data to the Sink. Paper [14] organized the nodes
in a two-level chain structure, which is composed of mul-
tiple low-level chains with fixed length and one high-level
chain composed of chain head nodes of the low-level chains.
The data was transmitted and aggregated from the low-level
chains to the high-level chains and finally received by the
Sink. Paper [15] introduced the distance threshold to avoid
the long chains and elect the nodes with more remaining
energy and closer to the Sink as the chain heads. There-
fore, the node energy consumption is balanced. Paper [16]
partitioned the network region into many rings, sharing the
same center while the nodes within each ring were generated
according to the PEGASIS algorithm. The data was first
transmitted to the chain head and then transmitted to the
Sink along the chain heads from outside to inside. Paper [17]
horizontally partitioned the monitoring area into many square
sub-areas with the same size. The routing chain was formed
via the greedy algorithm for the nodes within the same sub-
area. Similar to the ECR, Paper [18] first partitioned the
network into many square sub-areas. But this algorithm par-
titioned the network area vertically and the uniform gradient
algorithm was employed within each sub-area to form the
routing chain, instead of the greedy algorithm. The Beam-
Star technique was employed in Paper [19] to partition the
entire area into many sector areas. Then, a method similar
to PEGASIS was employed to establish the short chains and
all the chain heads composed the routing chain connected
to the Sink. Paper [20], [21] were proposed to calculate
the transmission cost based on the optimal power. When
a minimum-cost tree is established, the distributed depth-
first-search is employed to construct a routing chain starting
from the Sink. Paper [22] first employed Buttenfield’s Strip
Tree Geometry algorithm to obtain a hierarchy tree. Then,
based on this tree, the in-order-traversal search was utilized
to obtain a routing chain containing all the nodes. Papers [23]
proposed a minimum spanning tree (MST)-based construc-
tion algorithm for the routing chain. An undirected MST
was first constructed, then the node closest to the network
center was chosen as the root and the breadth-first-search
was employed to obtain a directed MST. Finally, the pre-
order traversal, in-order traversal, and post-order traversal
were employed to obtain a routing chain containing all the
nodes in the network. Paper [24] partitioned the whole area
by grids. The node with the most remaining energy in each
unit grid was elected as the head and all the heads formed a
routing chain where the head with the most remaining energy
served as the chain head. Paper [25] employed the locations
of the one-hop neighbors or the distance information to con-
struct the local MST and related neighbor graph. Then three
different schemes were used to choose the parent nodes and
further construct the data aggregation tree. For the wireless
sensor network with different initial node energy, paper [26]
investigated on the problem of finding a data aggregation tree
among the minimum-distance trees to maximize the network
lifetime. This problem was equivalent to finding a minimum
distance tree with a minimum load and it was solved by the
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transformation into the generalized semi-matching sub-
problem. A depth-first-search and breadth-first-search based
distributed algorithm was further proposed for the construc-
tion of the minimum-distance trees. Paper [27] put forward
a double-tree routing scheme which employed the reverse
chain, MST and SPT to construct two routing trees. For
wireless IoT with multiple mobile Sinks, paper [28] designed
a branch-defining algorithm and an analog backfire algorithm
to construct the minimum Wiener index spanning tree and
further obtain better energy efficiency and lower data delay.
The Sink was required to choose the root node according
to the energy and data aggregation type while the other
nodes employed their location information and the neighbors’
information to choose the parent node. Finally, a routing
tree with balanced energy consumption was constructed in
a distributed manner. For the probability network model,
paper [29] first used the linear slack and random round-off
technology to construct a maximum independent set with
balanced load. Based on that, a connected maximum inde-
pendent set was obtained. Then the assignment of the par-
ent nodes with balanced load was performed and finally a
direction was assigned to each chain so as to obtain a data
aggregation tree. Paper [30] constructed the tree level by level
from the Sink and guaranteed that the number of child nodes
for all the nodes remained the same. Then a routing tree
was established with globally balanced load. Based on an
established routing tree with shortest path, the load-balance-
based tree structure adaptation factor was performed itera-
tively from bottom to top. Iteration involved the grandparent
nodes, parent nodes and child nodes. Paper [31] considered
the transmission cost and the data aggregation cost. Based on
the routing tree constructed by the MFST algorithm, a data
aggregation routing tree was obtained with higher energy
efficiency. Meanwhile, the benefit brought by the data aggre-
gation was evaluated so that the data aggregation behavior of
the nodes could be adjusted adaptively. Paper [32] designed a
centralized algorithm with polynomial time complexity and a
distributed algorithm based on local information to customize
the optimal transmission strategy for a tree and assign related
slots for each node to perform transmission, which could opti-
mize the data aggregation. For duty-cycled wireless sensor
network, papers [33] were based on the connected support
set to construct the routing tree and proposed the centralized
greedy aggregation scheduling (GAS) and partitioned-based
distributed aggregation scheduling (PAS). Paper [34] divided
the network time into rounds, and the cluster heads were
chosen according to the round index and the formation of
the cluster. The other nodes were added into the clusters
where the cluster head has the strongest signal. Paper [35]
calculated the hybrid cost of the nodes according to the
remaining energy of the nodes and the other parameters, such
as the node degree. Then the nodes with more energy and
lower hybrid cost were periodically chosen as cluster heads.
Paper [36] classified the member nodes according to their
distances to the cluster head while the member nodes chose
the neighbor nodes with the least child nodes in the previous

class as their parent nodes. Finally, the data aggregation tree
within the cluster was established with the cluster head as
its root. Papers [37] were based on the node location, data
similarity and node remaining energy and employed the ana-
log backfire algorithm to establish the cluster structure. Then
the auto-regression prediction model was employed to obtain
the prediction data which determined the transmission of the
data.

Based on the work in paper [15], paper [19] and paper [27],
we propose an Optimized Clustering Communication Pro-
tocol Based on Intelligent Computing (CCP-IC), which is
a distributed algorithm that could tolerate the overhead and
achieve the distributed clustering of the nodes in the event
domain and establishment of the network hop tree. The adap-
tive function and heuristic function are introduced with the
help of intelligent algorithm, and as a result of which we
can choose the location of the next-hop cluster head more
accurately. By employing the controllable threshold and the
variation coefficient, the shortest path chosen by the network
routing is optimized, and then the node energy consumption
is reduced while the network delay is minimized. The exis-
tence of long paths is curbed by the updating strategy of the
global information element so that the node energy becomes
balanced and the network resource allocation scheme is opti-
mized. The proposed protocol can also effectively perform
the data aggregation within the cluster to reduce the transmis-
sion of the redundant network data. Therefore the network
routing structure is effectively maintained and the reliable
data transmission is guaranteed.

III. NETWORK MODELING AND ANALYSIS
A. ASSUMPTIONS
From the perspective of maximizing the degree of data aggre-
gation, the optimization problem of the network routing struc-
ture is equivalent to finding a Steiner tree connecting all
the nodes in the event domain. It is shown via research that
finding such a Steiner in a graph connecting the subsets is a
NP-hard problem and we can only employ the heuristic meth-
ods to find an approximate solution [38], [39]. A variety of
construction schemes close to the construction of the Steiner
tree have been proposed for IoT. However, these schemes
share the same problem of heavy control overhead. Actually,
for the multi-hop sensor network with fixed nodes, if the
complete data aggregation is not employed, then the load will
be heavy for the node transmitting aggregation data and this
node may suffer from early energy exhaustion. Therefore,
it requires more energy to maintain the network. In addition,
all the data within the network has to be transmitted to the
Sink through the one-hop neighbors of the Sink and the
lifetime of these one-hop neighbors determines the network
lifetime. However, since they have the heaviest load, their
early death caused by the energy exhaustion (hotspot prob-
lem) undermines the performance of the network.

For a better investigation on the clustering protocol for the
data aggregation, we consider the following 6 assumptions:
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(1) At the initialization period, all the nodes show the same
isomorphic shape and they remain the round shape.

(2) The sensing radius is far smaller than the edge of
the monitoring area, i.e., R(si) << l, and we neglect the
boundary effect.

(3) All the sensor nodes in the network share the same
priority and the location information can be acquired by the
nodes through the positioning algorithm.

(4) An arbitrary sensor node is uniquely identified by an
ID and all the nodes are synchronized in time.

(5) In the working period, the energy of the cluster head is
higher than that of the other nodes.

(6) The communication among the sensor nodes is per-
formed in a wireless method.

B. BASIC DEFINITIONS
Definition 1: The undirected graph G = (V ,E) is used

to describe the network topology, where V ∈ R2 is the set of
sensor nodes on a Euclidean plane. Each element si represents
a sensor node, and E ∈ V 2 is the set of edges while each
edge e = (si, sj) ∈ E , and {si, sj} ∈ V . R(si) is the trans-
mission radius of the node si while the Euclidean distance
d(si, sj) ≤ R(si).
Definition 2: In the graph G = (V ,E), if we find a subset

S ⊆ V with S 6= ϕ, then for ∀si ∈ V − S, S is neighboring to
at least one node in V − S. Then we define S as the dominant
set of graph G. The nodes in the dominant set are defined as
the dominant nodes while the nodes not in the dominant set
are defined as the dominated nodes.
Definition 3: That H is the set of the cluster heads, which

is called as the dominant set of the network, is assumed. The
cluster head as hi, hi ∈ H ,H ⊂ V is denoted. It is defined that
h(si) as the cluster head of node si,∀sj ∈ {V − H}, ∃hi ∈ H ,
which guarantees h(sj) = hi.
Definition 4: Define the Cluster Member (CM) set of hi as

M (hi),∪∀hi∈HM (hi) = V −H . For Sj ∈ {V −H}, if d(sj, hi)
is smaller than the distance from sj to the other cluster heads,
then sj ∈ M (hi).
Definition 5:DefineC(hi) = {hi,M (hi)} as the set of nodes

with cluster head hi, denoted as ∪∀hi∈HC (hi) = V .
Definition 6: The load balance among all the cluster heads,

i.e. {[(1/k) − δ] ≤ [C(hi)/n] ≤ [(1/k) + δ]}, where δ
is the unbalance factor which depends on the realistic load
capability. In order to balance the network load, set δ→ 0.
Definition 7:DefineC as the data aggregation rate, i.e., the

original data amount is n while the data amount after data
aggregation is m. Then C = m/n and a smaller C indicates
a higher data aggregation rate. The complete aggregation
indicates m = 1 and C = 1/n.

C. NETWORK MODEL
In the event-driven IoT, the distributed clustering, based on
the nodes in the event domain and the aggregation on the
data within the cluster, is one effective method to reduce the
data transmission amount. The degree of data aggregation is
related to the correlation among data. A higher correlation

means less data after aggregation. Merely from the perspec-
tive of data aggregation, the data aggregation should hap-
pen as soon as possible regardless of the data correlation.
If the data aggregation is the complete aggregation, then con-
structing an energy efficient routing structure is equivalent to
constructing an approximate Steiner tree based on the nodes
in the event domain. If the data aggregation is incomplete,
the approximate Steiner tree -based routing structure could
still make sure the data aggregations happen as early as
possible. But this can lead to the early death due to the heavy
load on partial nodes, which increase the energy consumption
to maintain the network and wastes the energy saved by the
data aggregation.

The main purpose of clustering is to realize the energy
balance among nodes, enhance the error tolerance of the
network, increase the connectivity and minimize the cluster
number, which could finally prolong the network lifetime.
According to the requirement of the system, the task of
clustering algorithms is to employ a certain rule to par-
tition the network into multiple clusters which can mutu-
ally communicate and cover all the nodes, and meanwhile
the cluster structure should be updated when the network
changes, so that the normal functioning of the network can
be guaranteed. The basic idea is to divide the geologically
neighboring nodes in the network into the adjacent areas so
the small-range manageable logic structure can be formed
within the network. The cluster structure in the IoT is illus-
trated in Fig. 1, where each divided area is defined as a cluster
and each cluster is normally governed by a cluster head and
composed of several cluster members. The cluster heads of
lower-level networks are the cluster members of higher-level
network while the cluster heads in the highest level are in
charge of the communication with the gateway. Under the
clustered topology management mechanism, nodes in the
network can be divided into cluster head nodes and cluster
member nodes. The cluster heads are elected according to
a certain clustering algorithm or rules, and they take charge

FIGURE 1. Clustering structure in IoT.
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of managing the cluster members and coordinating the work
of the cluster members. The cluster heads also perform data
collection within the cluster and data aggregation as well as
data relay between clusters. Apart from the cluster heads, all
the other nodes are termed cluster members while the cluster
nodes simultaneously belonging to two or more clusters are
termed gateway nodes. Nodes in different clusters but within
each other’s communication range are termed network bridge
nodes.

The CCP-IC problem is to find the optimal path in the
clustered network which starts from the source node and
connects all the other member nodes in the current cluster
and finally reaches the cluster head. This path should be the
shortest one, satisfying all the constraints.

D. BASIC DEFINITIONS
According to the assumptions above, at the initial time of
the network, all the nodes share the same energy and pri-
ority. Therefore, the information elements on each path are
the same. Assuming that τij = C , where C is a constant, and
the probability that k is transitioned on the path is:

Pkij =


ταij (t) · η

β
ij (t)∑

s∈Set1
ταis (t) · η

β
is (t)

0

(1)

where Set1 = {1,2,3. . .n}-Set2, indicating the next available
target node to be chosen by the current node k . Set2 is the
set of nodes currently chosen. Set1 and Set2 are dynamically
adjusted with time. When a network has been working for
1 period or N periods, the number of information elements
on the path is going to gradually reduce to 0 and the con-
secutively controllable parameter ρ is also going to decrease
where 1-ρ indicates the decreasing degree of information.
When one data transmission is accomplished from the source
node to the Sink node, the amount of information on different
paths should be adjusted as follows:

τij (t + n) = ρτij (t)+ (1− ρ)1τij (2)

1τij =

m∑
k=1

1τ kij (3)

where 1τ kij represents the amount of information left by
the k-th node on path (i, j),1τij is the increased amount of
information on path (i, j) in this iteration.
Assuming that R+ is the set of all the positive integers

while R+ is the set of all the non-negative integers, for an
arbitrary link e ∈ E , we define four metrics: delay function
Delay(e) : E → R+, where the network delay refers to the
average time required to transmit a data packet in the network;
the delay jitter function Delay-jit(e) : E → R+, where the
network jitter refers to the variation of transmission time for
a data packet. These two functions are two important factors
which might undermine the network transmission quality.
The bandwidth function Bandwidth(e) : E → R+, where

the network bandwidth is the decisive factor to reduce the
end-to-end delay for the network; the cost function Cost(e) :
E → R+, which reflects the energy consumption from the
network source node to the destination node. We also define
four metrics functions for an arbitrary network node n ∈ V ,
i.e., the delay function: Delay(n) : E → R+, the delay
jitter function Delay-jit(e) : E → R+, the cost function
cost(n) : E → R+ and the packet loss function: Loss-
packet(n) : V → R+. During the transmission, the data
packets might be lost or damaged and the data would be
highly incomplete if the packet loss rate is too high. For a
given source node s ∈ V , a set of destination nodes M ,
the following equations hold for the multi-cast tree T (s,M ),
composed of s and M .

delay (PT (s, u)) =
∑

e∈Pt (s,u)

delay (e)+
∑

n∈PT (s,u)

delay (n)

(4)

cost (T (s,M)) =
∑

e∈PT (s,u)

cost (e)+
∑

n∈PT (s,u)

cost (n)

(5)

bandwidth (PT (s, u)) = min {bandwidth (e) , n ∈ PT (s, u)}

(6)

delay-jit (PT (s, u)) =
∑

e∈Pt (s,u)

delay-jit (e)

+

∑
n∈PT (s,u)

delay-jit (n) (7)

loss-packet (Pt (s, u)) = 1−
∏

n∈PT (s,u)

(1− loss-packet (n))

(8)

where PT (s, u) is the routing path from source node s in the
upper layer of T (s,M ) to the destination u.

IV. ANALYSIS AND REALIZATION OF CCP-IC ALGORITHM
A. FORMATION OF CLUSTERS
The formation of clusters is divided into two phases. The first
one is the declaration phase of cluster heads while the sec-
ond one is the formation of clusters. In the first phase, at
the initialization time of the network, the number of all the
sensor nodes in the monitoring area is calculated and the
cluster heads are randomly chosen. Then one request frame is
broadcast in a flooding schedule from these cluster heads to
all the data collecting nodes. The request frame includes the
ID information and location information of the node, which
claims the identity as cluster heads. In the node, which is
claimed as the cluster head, there is a structured chain used to
record the nodes in the related topology of this node, such as
the ID information, location information, remaining energy,
sensing ability and distance information. The data collecting
nodes receive the claim of the cluster head and store it in
its topology structure chain. In the next period, the nodes
within the cluster compete for the position of cluster head
according to the weights and variation range of parameters.
The second period is the formation of the clusters when
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the other nodes calculate the distance to the cluster head
after receiving the claim of the cluster head. The distance
calculated is then compared with the distance stored in the
topology structure chain. If the calculated distance is shorter
than the distance in the topology structure chain, this node
replaces the original cluster head with itself. At the same
time, the node receives the request frame, and the number
of received frames is also recorded. When the number of
received frames is equal to the number of cluster heads in the
network, the node sends a confirmation frame to the cluster
heads, which includes its ID and location information, etc.
and stops receiving more request frames. After receiving the
confirmation frame, the cluster head lists the corresponding
node as its cluster member node and store the location and
ID information in the member list. After several periods,
the cluster head stops the broadcasting while each sensor
node is added into one cluster. The cluster head could directly
perform communication with a large transmission distance to
all the nodes within the cluster. But if the cluster head directly
communicates with all the nodes, the burden can be heavy
and the difference for the member nodes and the cluster head
may therefore exist, which further causes unbalanced links.
Therefore, in the formation of clusters, power control on
the cluster heads can help eliminate unbalanced links, which
achieves the bi-directional connectivity for the network.
Theorem 1: The deletion in the graph of asymmetric chains

will not affect the connectivity of the sub-graph G′.
Proof: Since G′ is a connected sub-graph of G,∀sj ∈

C(hi), hi→ sj, i.e., hi and sj are mutually connected. Assum-
ing that d(hi, sj) < R(hi) and d(hi, sj) > R(sj), then there is
a directed path l = sj → sl → . . . → sk → hi between sj
and hi. Due to the homogeneity among different nodes, there
is si → sj ⇔ sj → si., and thus sk → sl → . . . → sj. Since
R(hi) ≥ R(sk ), sk → hi ⇒ hi → sk . Therefore, we can get
hi → sk → sl → . . . → sj. Even if the directed edge (hi, sj)
is deleted, the bi-directional connectivity between hi and sj is
not affected. The proof is completed.
Theorem 2: At least one path exists where the probability

Pr(¬Bm) of the optimal path moving at m nodes is no smaller
than 1 − (1 − cm−1p)S, where C = (1 − ρ)L and p =
γ L
∏

(k,l)∈w∗ τkl .
Proof: When and only when assuming that the set of

edges from the source node to the destination node is (k, l)
while the finite routing path is u, then:

γ = min
{
[ηkl (u)]β | (k, l) ∈ w

∗

, u ∈ w
∗
}
> 0 (9)

Since 1τkl ≥ 0 and ρ > 0, for the set of edges from the
source nodes to the destination node, the value of τkl remains
the same in period m+ 1 and m. If the constant C > 0:

τkl (m+ 1) = (1− ρ) τkl (m)+ ρ1τkl (10)

1τkl =
1
C

S∑
s=1

1τ
(s)
kl (11)

According to equations (10) and (11):

τkl (m+ 1) ≥ (1− ρ) τkl (m) (12)

Since the value of τkl remains the same in period m +
1 and m, we can obtain equation (13) with the recursive
algorithm.

τkl (m) ≥ (1− ρ)m−1 τkl (1) (13)

Without losing any generality, assuming that the expec-
tation ηkl(u) can be normalized with the 0 = 1 method,
i.e., we perform the global optimization on the set of all the
routing paths (k, l). Then we can obtain that:

f (x) =

{
[ηkl (u)]β ≤ 1∑

τkl (m) = 1
(14)∑

r /∈u,(k,r)∈A

τkr (m) [ηkr (u)]β ≤
∑

r /∈u,(k,r)∈A

τkr (m) ≤ 1 (15)

According to the transition probability in equation (1),
we can obtain that when the node r /∈ u, the following
inequality holds:

pkl (m, u)=
τkl (m) [ηkl (u)]β∑

r /∈u,(k,l)∈A
τkr (m) [ηkl (u)]β

≥τkl (m) [ηkl (u)]β

(16)

According to equations (9), (13) and (16), we can further
obtain that:

Pr
(
E (s)m

)
=

L−1∏
i=0

pvivi+1 (m, (v0, v1 · · · vi))

≥ γ L
L−1∏
i=0

(1− ρ)m−1 τvivi+1 (1) = cm−1p (17)

Since the nodes are mutually independent, we can employ
the probability theory and obtain that:

Pr (Bm) ≤
(
1− cm−1p

)S
(18)

Pr (¬Bm) ≥ 1−
(
1− cm−1p

)S
(19)

The proof is completed.

B. ESTABLISHMENT AND MAINTENANCE
OF THE ROUTING HOP TREE
The CCP-IC employs the clustered routing algorithm to
obtain the routing in a centralized method. However, this
algorithm requires the normal death of the nodes so that the
mobile Sink can be informed of the routing update. If a node v
suffers from the unnatural death, like the damage caused by
natural causes, the mobile Sink cannot update the routing
on time. As a result, the node at the next hop cannot obtain
the correct routing data. In order to address this problem,
we adopt the following scheme: when the next-hop node of
one node is dead, it chooses the node geologically closest
to the Sink among all the neighbors as the next-hop node.
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FIGURE 2. The clustered routing constructed by the CCP-IC under normal
conditions.

But this scheme works poorly when there are obstacles in
the monitoring area. The routing structure constructed by the
CCP-IC algorithm is illustrated in Fig. 2 where there are no
dead nodes and this scenario is the normal clustered routing
status. In addition, inaccurate global information could lead
to wrong and inefficient routing, obtained by the centralized
routing construction algorithm. The CCP-IC employs a hop
tree construction and maintenance method exhibiting better
robustness. The hop tree in the network is established in a dis-
tributed method by the Hop Configuration Message (HCM)
sent from the Sink in a flooding schedule. If a node v is dead
unnaturally, the next-hop node of v is chosen with the least
number of hops to the Sink and the highest remaining energy.
It is not required towait for the Sink to update the routing. The
advantages for the hop tree establishment and maintenance
method of the CCP-IC are shown in Fig. 3.

FIGURE 3. The clustered routing constructed by the CCP-IC under
abnormal conditions.

The data transmission is divided into two major parts: the
intra-cluster transmission and the inter-cluster transmission.
The intra-cluster data is transmitted along the intra-cluster

hop tree to the cluster head. All the non-leaf nodes can
perform data aggregation while the cluster heads perform
the deep aggregation on the data within the cluster, which
greatly reduces the redundant data in the network. For the
inter-cluster transmission, the aggregated data is transmitted
to the Sink along the network hop tree. Since the aggregated
data is transmitted, the data loss is huge once a block packet
loss occurs [23]. Therefore, we adopt the message equiva-
lence mechanism so as to guarantee the reliability of the data
transmission.

With the running of the network, some nodes may be dead,
requiring the routingmaintenance. If a node is normally dead,
it will inform the neighbors. Otherwise, the neighbors will
detect its death via the periodical check. The nodes taking the
dead node as the next-hop node will choose another next-hop
nodewith the least hops andmost remaining energy among all
the neighbors. Additionally, at set intervals, the cluster head
calculates its cluster information as the event information,
which is included in the data message transmitted to the Sink.
For the included event information, it will be ignored by the
Sink if it is not recorded in the list. Otherwise, to facilitate the
quasi-optimal location calculation, the cluster head updates
the corresponding entry in the list for this event.

C. SHIFTING ALGORITHM FOR THE CLUSTER HEADS
Since the cluster head is in charge of the intra-cluster manage-
ment, the energy consumption is huge. If the cluster head is
fixed, its energy will run out quickly. Therefore, the shifting
for the cluster heads is necessary. During the shifting process,
the cluster head should be chosen according to the data trans-
mission round, the number of node hops and the remaining
energy; so that the responsibility as cluster head is balanced
and the energy consumption for cluster re-establishment can
be saved. When the optimal candidate node does not have
enough energy to finish the cluster re-establishment, the cur-
rent cluster head will send a location information message
to the Sink which urges the Sink to calculate the new quasi-
optimal location and update the network routing. As a result,
the data loss in the event field caused by the absence of cluster
heads can be reduced as much as possible.

V. SIMULATIONS
The CCP-IC is also compared with the following algo-
rithms: a Distributed and Morphological Operation-based
Data Collection Algorithm, DMOA [15] and the Multiple
Target Tracking Algorithm and MTTA [27]. DMOA is an
event-driven non-clustering algorithm in IoT while MTTA
is event-based coverage control algorithm which adopts the
dynamic clustering to achieve the tracking on the mobile
target. Both algorithms employ the fixed Sink. However,
the CCP-IC is a combination of clustering and controllable
parameter. Through comparison, the advantages created by
the clustering and controllable parameter can be illustrated.
For a more convenient comparison, we employ the energy
consumption model from paper [19]. The occurrence time,
duration and location of the events in the monitoring area are
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assumed to be randomly distributed. The data aggregation
is performed within the cluster for CCP-IC and MTTA and
different data aggregation rates are considered.

A. NETWORK LIFETIME
The network lifetime performances with different parameters
are shown from Fig. 4 to Fig. 11. According to Fig. 4 and
Fig. 5, when {α = 0.1, β = 1.0, ρ = 0.1}, {α = 0.3, β =
1.2, ρ = 0.2} and {α = 0.5, β = 1.5, ρ = 0.3}, {α =
0.7, β = 1.8, ρ = 0.5}, the proposed algorithm remarkably
outperforms the other two algorithms. With the increasing
number of the sensor nodes, the network lifetime is also
prolonged for all the three algorithms. Since the proposed
CCP-IC algorithm adjusts the network lifetime through the
dynamic configuration of the parameters, the initial period
the proposed algorithm shows much longer network lifetime.
When the number of sensor nodes is equal to 30, the net-
work lifetime of the proposed algorithm could reach 188s,

FIGURE 4. Network lifetime with 100× 100m2 monitoring area and
different {α, β, ρ} parameters.

FIGURE 5. Network lifetime with 100× 100m2 monitoring area and
different {α, β, ρ} parameters.

FIGURE 6. Network lifetime with 200× 200m2 monitoring area and
different {α, β, ρ} parameters.

231s, 230s, and 278s under different scenarios and it tends
to be in a balanced state. By contrast, when the number of
sensor nodes is equal to 30, the network lifetime is 102s,
161s, 135s, and 201s respectively for the DMOA and the
MTTA. Therefore, the CCP-IC algorithm could prolong the
network lifetime by 18.72% on average. Then main reason
behind this is that with the controllable parameter, the data
aggregation ability is enhanced for the proposed algorithm
and the cluster-based message report mechanism reduces the
number of control messages required to obtain the event
information. Meanwhile, the intra-cluster data aggregation
reduces the transmission of redundant data, which enables
more neighbors to have the chance to become the one-hop
neighbor of the Sink. Based on the number, location and
average power of nodes in the event field, obtaining the quasi-
optimal Sink location can reduce the data transmission dis-
tance and achieve a better energy balance. However, neither
DMOA nor MTTA is capable of adjusting the parameter.
Instead, the original tendency is remained. Therefore, with
the increasing number of sensor nodes, the network lifetime
of the proposed algorithm is longer than that of the other
two algorithms. For the monitoring area with size 200 ×
200m2, 300× 300m2 and 400∗400m2, similar results can be
observed.

B. NETWORK ENERGY
The network energy with different number of sensor nodes
and 300∗300m2 monitoring area is illustrated in Fig. 12 and
Fig. 13. The controllable parameter in Fig. 12 is {α =
0.1, β = 1.0, ρ = 0.1}, {α = 0.3, β = 1.2, ρ = 0.2}
while that for Fig. 13 is {α = 0.5, β = 1.5, ρ = 0.3}, {α =
0.7, β = 1.8, ρ = 0.5}. Take Fig. 12 as an example; with
the increasing number of sensor nodes, the network energy
also increases. Within the same time duration, the proposed
algorithm exhibits higher network energy than the other two
algorithms. The increasing rate gets slower with the increase
of sensor nodes for the DMOA algorithm. The main reason
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FIGURE 7. Network lifetime with 200× 200m2 monitoring area and
different {α, β, ρ} parameters.

FIGURE 8. Network lifetime with 300× 300m2 monitoring area and
different {α, β, ρ} parameters.

FIGURE 9. Network lifetime with 300× 300m2 monitoring area and
different {α, β, ρ} parameters.

behind is that the non-clustering algorithm is adopted by
the DMOA algorithm to aggregate the data, which achieves
the data collection and communication within the monitoring

FIGURE 10. Network lifetime with 400× 400m2 monitoring area and
different {α, β, ρ} parameters.

FIGURE 11. Network lifetime with 400× 400m2 monitoring area and
different {α, β, ρ} parameters.

FIGURE 12. Network energy with 300× 300m2 monitoring area and
different {α, β, ρ} parameters.

area at the cost of consuming the energy of the sensor node.
Although theMTTA algorithm is based on the clustered struc-
ture, the controllable parameter is not introduced to control
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FIGURE 13. Network energy with 300× 300m2 monitoring area and
different {α, β, ρ} parameters.

FIGURE 14. Network energy against running time with 300× 300m2

monitoring area and different {α, β, ρ} parameters.

the state switching for the nodes, which also leads to rapid
exhaustion of the node energy. By contrast, the proposed
algorithm employs the controllable parameter to control the
node state switching and further controls the aggregation of
the data. In terms of the path selection, the configuration can
be optimized by controlling the parameters. For the manage-
ment of the cluster members, the proposed CCP-IC employs
the chain to store the information of the nodes while the intel-
ligent ant colony algorithm is used to choose the optimal node
as the cluster head for the next hop so that the network energy
becomes balanced. The network energy with 300× 300m2

monitoring area is depicted with increasing running time
in Fig. 14 and Fig. 15. Take Fig. 14 as an example, with the
increasing time the network energy performances for three
algorithms decreasing, and comparedwith the other two algo-
rithms, the proposed algorithm shows the lowest decreasing
rate. The main reasons behind are the fast global update
strategy which employs the intelligent ant colony algo-
rithm and the update strategy for local information element.

FIGURE 15. Network energy against running time with 300× 300m2

monitoring area and different {α, β, ρ} parameters.

Therefore, the network energy can be effectively controlled.
Through the global update strategy, the nodes satisfying the
conditions in the chain are compared while the optimal node
is chosen as the cluster head in the next period. The node
with faster energy consumption is then switched into sleep
mode so as to save its energy. The optimal choice on the
routing is made according to the update strategy for the local
information element so that the optimal path can be found.
Consequently, the proposed algorithm could not only prolong
the network lifetime but also curb the rapid exhaustion of the
network energy.

VI. CONCLUSION
We mainly studied the dynamic hybrid routing scheme in
mobile IoT and proposed an Optimized Clustering Routing
Protocol Based on Data Aggregation Controllable Thresh-
old (CCP-IC). This protocol introduced the intelligent ant
colony which employs the controllable parameter to achieve
distributed clustering of the nodes in the event field.When the
event occurs or ends, the Sink calculates the quasi-optimal
location according to the obtained event information. The
data transmission distance is effectively reduced and the net-
work load is balanced. In order to obtain the new location
on time and reduce the unnecessary location calculation,
the proposed algorithm utilizes the parameter threshold to
determine the related performance information of the nodes
in the clustering structure chain. In addition, the CCP-IC
algorithm provides a mechanism to re-choose the optimal
path, which could guarantee that the cluster head could collect
the messages transmitted from the cluster members within a
short time and further avoid the data loss in the movement.
For the data transmitted in the network, the proposed protocol
could achieve the data aggregation within the cluster and
the aggregated data can be reliably transmitted. The routing
recovery can also be effectively and simply accomplished by
the CCP-IC when dead node exists.
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