
Received January 19, 2019, accepted January 27, 2019, date of publication January 30, 2019, date of current version February 20, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2896079

A Logic Petri Net-Based Model Repair Approach
by Constructing Choice Bridges
YUHUA XU, YUYUE DU , LIANG QI , (Member, IEEE),
WENJING LUAN , (Student Member, IEEE), AND LU WANG
College of Computer Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China

Corresponding author: Yuyue Du (yydu001@163.com)

This work was supported in part by the Taishan Scholar Construction Project of Shandong Province, in part by the Key Research and
Development Program of Shandong Province under Grant 2018GGX101011, and in part by the Natural Science Foundation of Shandong
Province under Grant ZR2018MF001.

ABSTRACT Process models can be discovered from event logs generated by the enterprise information
system. As business processes’ frequently changing, some activities in event logs may belong to different
choice branches, while the actual model can only replay activities on the same choice branch. Thus, themodel
needs to be repaired to describe the business process accurately. For activities occurring in a choice structure,
although the model repaired by the existing methods has good fitness, its structure may have changed a lot.
This paper proposes a new model repair method based on logic Petri nets. First, we define a new event
log type—choice deviation sub-log. Then, we find deviation positions according to the principle of token
replaying. Next, we add bridges among choice branches to repair the model. We conduct experiments on
some cases from cancer treatment processes in a hospital. The effectiveness and correctness of our method
can be illustrated. The model repaired by our method is similar to the original one, and it has a higher
precision compared with the existing model repair methods.

INDEX TERMS Logic Petri net, process mining, model repair, choice structures.

I. INTRODUCTION
In recent years, various enterprise organizations have started
to use information systems for business process manage-
ment. As a result, there are a large number of event logs
recorded in enterprise information systems. Process mining
can extract knowledge from event logs recorded in modern
information systems, and discover, detect, and improve the
actual business processes [1]. Process mining has mainly
three aspects: process discovery, consistency checking, and
process enhancement [2]–[4]. Process discovery takes event
logs as input data and then construct a model to describe
event logs. Consistency checking is an essential criterion for
evaluating the quality of models. It refers to comparing the
process model with the event logs, i.e., replaying a sequence
of events called a trace in the model to analyze the con-
sistency between model behaviors and log behaviors. Exist-
ing consistency checking methods include token replaying,
footprint comparison, alignment, etc. Process enhancement
improves or extends process models based on event logs.
Some studies repair or expand the model based on the devia-

The associate editor coordinating the review of this manuscript and
approving it for publication was Zhiwu Li.

tions between log behaviors and model behaviors. In other
studies, the unreasonable process model is repaired based
on three dimensions: structural distance, behavioral distance,
and scheme defects, which are minimized by a simulated
annealing algorithm.

The quality of a process model is measured from mainly
four metrics: fitness, precision, simplicity, and generaliza-
tion [4], [5]. Among them, fitness is the most important
indicator. If a model can replay all traces in event logs, then its
fitness value is high. Precision requires that a process model
should only replay the activities in event logs. Simplicity
requires that a processmodel which can replay event logs is as
simple as possible. Generalization means that a model should
allow activities to occur in the future.

With the growth of enterprises and organizations, the exist-
ing business processes are difficult to adapt to the devel-
opment of enterprises and organizations. When a current
model is inconsistent with the actual execution process, a new
process model can be obtained through some process dis-
covery technologies. Alpha algorithm [6] and its derivative
algorithms [7], [8] can mine a process model according to
the order relations between activities. The appearance of

VOLUME 7, 2019
2169-3536
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

18531

https://orcid.org/0000-0002-5586-109X
https://orcid.org/0000-0002-0762-5607
https://orcid.org/0000-0003-0315-2934

Y. Xu et al.: Logic Petri Net-Based Model Repair Approach by Constructing Choice Bridges

the derivative algorithms solve the problems that the Alpha
algorithm cannot effectively mining models, which include
repetitive activities, invisible transitions, and some specific
structures. For example, the method in [7] can mine non-
free choice structures, and invisible transitions can be solved
by [8]. Although these technologies can discover a new pro-
cess model, they are often difficult to ensure that the new
model is similar to the original one.

For a process model that cannot reproduce some activities
in event logs, a better approach is to repair the original
model [9], [10]. The repaired model can replay most of the
event logs and retain the advantages of the original model as
much as possible. For example, Fahland andAalst [9] propose
a model repair method. This method first finds the maximal
sequences of log moves according to the alignment between
event logs and the process model. Each maximal sequence
of log moves that occur at the same location is a non-fitting
sub-trace. These sub-traces which are at the same location
construct a non-fitting sub-log. Then a loop is discovered and
can replay the sub-log, or a corresponding sub-process can
be discovered and is then added to the original model as a
self-loop. For moves on model in the optimal alignment, we
can add invisible transitions to the original model. Goldratt’s
method [10] first identifies legal moves, which can contribute
to the cost of optimal alignment between an event log and a
model. Then an order pair set is produced according to the
cost function of these moves and constraints. Finally, it adds
a single transition as a self-loop or invisible transition to the
model. The model repaired by the above methods has high
fitness, andmost of the traces in event logs can be replayed by
the repaired model. In addition, other recently model repair
methods focus on repairing a particular structure. For exam-
ple, themethod proposed in [11] computes choice recognition
pairs at first. Next, the order relations between transitions
are used to find model repair positions in choice structures.
Finally, it repairs the model at these positions. The method
proposed in [12] can add new activities in choice structures.
It introduces a new deviation type— choice branch deviation.
If we find this deviation in a choice structure, we can add this
deviation as a branch to the original model.

When some activities in an event log belong to differ-
ent choice branches and the corresponding model can only
replay activities which belong to the same branch, we need to
repair the model. The existing methods repair the model by
adding invisible transitions or repetitive transitions as self-
loops. For cases where activities in an event log belong to
different choice branches, this paper proposes a new model
repair method. The new method is different from the one in
previous work [13], which can repair process models with
logic concurrent and casual relations according to extended
order relations. In a process model, the token is an intuitive
representation of the dynamic characteristics of a network
system. In this paper, our new model repair method is based
on the principle of token replaying. The new method can
add bridges among choice branches in the original model.
The model repaired by our method can replay activities

which belong to the same choice branch or different choice
branches. In the process of model repair, we can find that
some logic relations among activities. YAWL [14], workflow
language for Petri nets [15], and logic Petri net [16]–[21] can
accurately represent the relations among activities. As our
previous work, we adopt logic Petri nets to describe repaired
models. In this paper, the main contributions are as follows:

(1) We propose a new sub-log type named choice deviation
sub-log. The activities in a choice deviation sub-log belong to
a choice structure but belong to different choice branches.

(2) Combined with the principle of token replaying, we can
find deviation positions effectively by replaying traces in the
model. Then we repair choice structures in the original model
by adding bridges among branches. We repair the model in a
dynamic way, i.e., once the deviation position is identified,
we repair and update the model. Then we continue to find
deviation positions based on the new model.

(3) We conduct simulation experiments on cancer patients’
diagnosis and treatment processes. The experimental results
ensure the correctness and effectiveness of our method.

The rest of this paper is organized as follows. Section II
reviews some basic concepts. An approach to finding choice
deviation sub-logs is given in Section III. By determin-
ing whether a choice structure contain parallel structures,
Section IV designs two approaches to repair the process
model. Experiments are executed in Section V. Section VI
concludes this work.

II. PRELIMINARIES
Petri nets [22]–[34] have unique advantages in modeling and
analyzing discrete events systems. The model established by
Petri nets can describe not only the structure but also the
operation of the systems. This section briefly recalls some
related notions and concepts of Petri nets [36]–[49], logic
Petri nets [16]–[21], and process tree [35].
Definition 1 (Multiple Sets): Let S be a set. A multi-set

Z over S is a function Z : S → N+, where N+ represents
a positive integer set, i.e., N+ = {1, 2, · · · }. Notation B(S)
denotes the set of all multi-sets over S.
Definition 2 (Traces and Event Logs): Let A be the set of

all activities, and A ⊆ A. If σ ∈ A∗ is a sequence of activities,
and A∗ denotes a set of finite sequence on A, then σ is called
a trace. &(σ) denotes the set of all activities in σ . L ∈ B(A∗)
is a multi-set over traces called an event log.
Definition 3 (Element Position): Let v = (a1, a2, · · · , an)

be a tuple with n elements, where ai ∈ S, and 1 ≤ i ≤ n.
v[i] = ai denotes the i-th element of v.
For example, if v = (a, b), and a, b ∈ S, then v[1] = a and

v[2] = b.
Definition 4 (Pre-Set and Post-set): N = (P,T ;F) is a net

where P is a finite place set, T is a finite transition set, and F
is a set of arcs from a place to a transition or from a transition
to a place. For ∀x ∈ P ∪ T , we have
(1) •x = {y|y ∈ P∪T ∧ (y, x) ∈ F}, •x denotes the pre-set

of x; and

18532 VOLUME 7, 2019

Y. Xu et al.: Logic Petri Net-Based Model Repair Approach by Constructing Choice Bridges

(2) x• = {y|y ∈ P∪T∧ (x, y) ∈ F}, x• denotes the post-set
of x.
Definition 5 (Petri Net): PN = (P,T ; F,M) is a Petri net,

where
(1) N = (P,T ;F) is a net;
(2) M : P → N+ is a marking function, and for ∀p ∈

P,M (p) represents the number of tokens in p; and
(3) Transitions firing rules:
a) For t ∈ T , t is enabled at a marking M , denoted by

M [t > if ∀p ∈ •t: M (p) ≥ 1; and
b) If M [t >, t can be fired, and a new marking M ′ is

generated from M , represented by M [t > M ′, where

M ′(p) =

M (p)− 1, p ∈ •t − t•

M (p)+ 1, p ∈ •t − t•

M (p), else

R(M) denotes the set of all reachable markings.
Note that if the maximum capacity of each place is one,

then PN is safe. In this paper, we use PMk = {p|Mk (p) = 1}
to denote the set of places which contain one token at mark-
ing Mk .

A block-structured Petri net is a Petri net that can be
divided recursively into several parts, which contains four
basic Petri net-based structures, i.e., sequential, parallel,
choice, and loop structures [25].
Definition 6 (Process Model): NS = (PN , α,Mi,Mf) is a

process model, where
(1) PN = (P,T ; F,M) is a block-structured Petri net,

where it has a unique initial place pi ∈ P, i.e., •pi = Ø,
a unique final place po ∈ P, i.e., p•o = Ø, and ∀x ∈ P ∪ T is
on a path from pi to po;

(2) α: T → A ∪ {τ } is a mapping function for transitions
to activities, and τ denotes an invisible transition; and
(3) Mi is an initial marking, where Mi(pi) = 1, and others

are 0. Mf is a final marking, where Mf (po) = 1, and others
are 0;

(4) Transitions firing rules: M ′ is a new marking gener-
ated from M if a sequence ρ ∈ T ∗ satisfies M [ρ > M ′.
A sequence ρ ∈ T ∗ is a complete firing sequence if
Mi[ρ > Mf .
R(NS ,Mi) denotes the set of all reachable markings.
In Definition 6, a process model is represented by a block-

structured Petri net. Unless specifically indicated, only visi-
ble transitions can be marked as activities.

In this paper, we only consider block-structured Petri nets.
A block-structured Petri net NS1 is shown in Fig. 1.Mi1 is the
initial marking, where only Mi1(p1) = 1, i.e., PMi1 = {p1}.
Mf 1 is the final marking, where only Mi1(p9) = 1, i.e.,
PMf 1 = {p9}. ρ1 = <a, b, c, e, f , i> is a complete firing
sequence because Mi1[ρ1 > Mf 1.
A Process tree is an abstract representation of a block-

structured Petri net. We can determine the structures of a
block-structured Petri net according to the corresponding pro-
cess tree. The leaf nodes of a process tree represent activities

FIGURE 1. A block-structured Petri net NS1.

and other nodes represent operators which describe how their
children are to be combined. The definition is as follows [35].
Definition 7 (Process Tree): Let A be the set of all activ-

ities, and A ⊆ A. Notation ⊕ = {→,×,∧,	} denotes
an operator set, τ denotes an invisible transition, and we
recursively define a process tree as follows:

(1) a ∈ A ∪ {τ } is a process tree;
(2) If PT 1 − PT n are n process trees, then ⊕(PT 1,

PT 2, · · · ,PT n) is also a process tree, where
a)→ denotes the sequential relation among PT 1−PT n;
b) × denotes the choice relation among PT 1 − PT n;
c) ∧ denotes the parallel relation among PT 1 − PT n;
d)	 denotes the loop relation among PT 1−PT n, where

PT 1 denotes the loop body, PT 2−PT n denotes the loop path.
Definition 8 (Logic Petri Net): LPN = (P,T ; F, I ,O,M)

is called a logic Petri net, where
(1) P is a finite place set;
(2) T = TD∪TI ∪TO is a finite transition set with T ∩P =

Ø,T ∪ P 6= Ø, and ∀t ∈ TI ∩ TO: •t ∩ t• = Ø, where
a) TD represents a traditional transition set as defined in

Definition 5;
b) TI represents a logic input transition set, where for

∀t ∈ TI , the input places •t are restricted by a logic input
function fI (t);

c) TO represents a logic output transition set, where for
∀t ∈ TO, the output places t• are restricted by a logic output
function fO(t);
(3) F ⊆ (P× T) ∪ (T × P) is a finite set of arcs;
(4) I is a mapping from a logic input transition to a logic

input function, i.e., ∀t ∈ TI , I (t) = fI (t);
(5) O is a mapping from a logic output transition to a logic

output function, i.e., ∀t ∈ TO,O(t) = fO(t);
(6) M :P → {0, 1} is a marking function, and for ∀p ∈

P,M (p) represents the number of tokens in p; and
(7) Transition firing rules:
a) For ∀t ∈ TD, the firing rules of t are the same as Petri

nets;
b) ∀t ∈ TI can be fired only if fI (t)|M = •T•, i.e.,

the logic input function fI (t) of t is true. If M [t > M ′,
∀p ∈ •t: M ′(p) = 0, ∀p ∈ t•: M ′(p) = 1, and ∀p /∈ t• ∪ •t:
M ′(p) = M (p); and

c) ∀t ∈ TO can be fired only if fO(t)|M = •T•, i.e.,
the logic output function fO(t) of t is true. IfM [t > M ′, ∀p ∈
•t: M ′(p) = 0, ∀p ∈ t•: M ′ (p) =1, and ∀p /∈ t• ∪ •t: M ′

(p) = M (p);
(8) If p1−pn (n ≥ 2) are pre-set (or post-set) of logic input

(output) transition t:

VOLUME 7, 2019 18533

Y. Xu et al.: Logic Petri Net-Based Model Repair Approach by Constructing Choice Bridges

a) p1⊗p2 · · ·⊗pn denotes that t is enabled if only one of
p1−pn contains a token (or t is fired and a token is generated
in only one of p1 − pn);

b) p1 ∧ p2 · · · ∧ pn denotes that t is enabled if each of
p1−pn contains a token (or t is fired and a token is generated
in each of p1 − pn); and

c) p1 ∨ p2 · · · ∨ pn denotes that t is enabled if at least
one of p1 − pn contains a token (or t is fired and a token is
generated in at least one of p1 − pn).

Fig. 2 gives an example of a logic Petri net denoted by
LPN1. a is a traditional transition, b is a logic input transition,
c is a logic output transition, and d is a traditional transition.
I (b) = p3 ∧ (p2 ∨ p4) is the logic input function of b.
It represents when b is fired, there may be three cases: (1)
only p2 and p3 contain tokens; (2) only p3 and p4 contain
tokens; (3) p2, p3, and p4 all contain tokens. O(c) = p7 ⊗ p8
represents the logic output function of c, and after c is fired,
only one of p7 and p8 contains a token.

FIGURE 2. A logic Petri net model LPN1.

III. FINDING CHOICE DEVIATION SUBLOGS
In a real process, a trace may contain some activities which
belong to different choice branches, while the corresponding
model can only replay activities which belong to the same
choice branch. Therefore, we need to repair the choice struc-
tures of the model so that it can replay this type of trace.
In this paper, we assume that all deviations occur in choice
structures, and there is no new activity or repetitive activity
in any trace. When the event log is not consistent with the
original model, we repair the model according to the event
log.

A. FINDING ALL CHOICE STRUCTURES
To repair choice structures, we need to discover choice struc-
tures at first. In this paper, we assume that each process model
is a block-structured Petri net. Then each process model
has a unique process tree [35], and the process tree records
structures and transitions of a process model. Each operator
in a process tree has a straightforward formal translation to a
process model. For example, if there is a choice structure in
a process model, the corresponding process tree has a node
nt =‘‘×’’. By traversing subtrees of nt , we can find all leaf
nodes. For convenience, Li(nt) (1 ≤ i ≤ m), LL(nt), and
RL(nt) denote all leaf nodes of the i-th subtree, the first leaf
node of the left-most subtree, and the last leaf node of the
right-most subtree of nt , respectively. According to the four
basic structures of a block-structured Petri net, all choice

branches start from a place pi and end at a place po in a choice
structure.
Definition 9 (Choice Pre-Post Pair): Let NS =

(PN , α,Mi,Mf), and PT be the process tree of NS . cp =
(pi, po) is a choice pre-post pair, where
(1) ∃nt = ‘‘× ’’ ∈ PT ; and
(2) pi = • LL(nt) and po = RL(nt)•.
A choice pre-post pair records the unique pre-set and post-

set of a choice structure in a process model. The choice pre-
post pair set SCP contains all choice pre-post pairs, i.e., SCP =
{(pi, po)|pi = • LL(nt), po = RL(nt)•,∀nt = ‘‘× ’’ ∈ PT }.
The process tree PT1 of NS1 is shown in Fig. 3, and we can

get the choice pre-post pair set is SCP = {(p3, p5), (p6, p8)}.
Definition 10 (Choice Branch Tuple) Let NS = (PN ,

α,Mi,Mf), PT be the process tree of NS , and cp be a choice
pre-post pair. ct[cp] = (t1, t2, · · · , tn) is a choice branch
tuple, where

(1) ∃nt = ‘‘× ’’ ∈ PT ; and
(2) tk ∈ Li(nt), 1 ≤ k ≤ n, 1 ≤ i ≤ m;
CTS[cp] is a set containing all branch tuples in a choice

structure, i.e., CTS[cp] = {(t1, t2, · · · , tn)|tk ∈ Li(nt), 1 ≤
k ≤ n, 1 ≤ i ≤ m, and ∀nt = ‘‘ × ’’ ∈ PT }. And CTS =
{CTS[cp]|∀cp ∈ SCP} denotes all choice branch tuples in a
process model.

From Fig. 3, we can find the choice branch tuples
of PT1, i.e., CTS = CTS[(p3, p5)] ∪ CTS[(p6, p8)] =
{(c), (d), (f), (g, h)}.

PT 1 =→ (a,∧(b,×(c, d), e,×(f ,→ (g, h)), i)

FIGURE 3. The process tree PT1 of NS1.

B. FINDING ALL CHOICE SUBLOGS WITH DEVIATIONS
To repair choice structures, we also need to collect choice
sub-logs with deviations. In this paper, we only repair the
models containing choice structures, and the models can
only replay activities in the same choice branch. In this
sub-section, we preprocess event logs for repairing model
conveniently. Given an event log, a choice pre-post pair, and
a choice branch tuple set, we can judge whether there is a
choice sub-log with deviations. The formal definition is as
follows.

18534 VOLUME 7, 2019

Y. Xu et al.: Logic Petri Net-Based Model Repair Approach by Constructing Choice Bridges

Definition 11 (Projection): Let T be a set of all transitions,
and Ts ⊆ T . For ∀r ∈ Ts∗, r|Ts = {t|t ∈ Ts and t ∈ r} is
called a projection of r on Ts.
Definition 12 (Multi-Projection): Let T be a set of all

transitions, and Ts ⊆ T . For ∀R ∈ B(Ts∗),R ↓ Ts = {t|t ∈
Ts and t ∈ R[i], 1 ≤ i ≤ |R|} is called a multi-projection of
R on Ts.
For example, let L1 = {σ1, σ2} = {<b, d>,<c, e, f , g, h>}

and Ts = {a, b, c, d, e, f , g, h, i}, then we can get σ1|Ts =
{b, d} and L1 ↓ Ts = {b, d, c, e, f , g, h}.
Definition 13 (Choice Deviation Sub-Trace and Choice

Deviation Sub-Log): Let σ ∈ L, SCP be a choice pre-
post pair, and CTS be a choice branch tuple set. cl =
cl[1], cl[2], · · · , cl[|cl|] is called a choice deviation sub-
trace, where

(1) ∃CTS[cp] ∈ CTS, s.t. cl = σ |(CTS[cp] ↓ T) 6= Ø,
i.e., cl is a projection of σ on CTS[cp] ↓ T ;
(2) (•cl[1], cl[scl|]•) ∈ SCP, i.e., (•cl[1], cl[|cl|]•) is the

pre-post pair of a choice structure; and
(3) cl /∈ CTS[cp], i.e., cl contains activities on different

branches.
If there exist multiple sets of choice deviation sub-traces

CL ∈ B(A∗), then we call CL a choice deviation sub-log.
For example, let σ3 = <a, b, c, e, f , h, i> be a trace.

According to NS1 and PT 1, we can get CTS[(p3, p5)] ↓
T = {c, d} and CTS[(p6, p8)] ↓ T = {f , g, h}, then
we have cl1 = σ3|(CTS[(p3, p5)] ↓ T) = <c> and
cl2 = σ3|(CTS[(p6, p8)] ↓ T) = <f , h>. Because cl1 ∈
CTS[(p3, p5)], cl1 is not a choice deviation sub-trace. cl2
satisfies (•cl2[1], cl2[|cl|]•) ∈ SCP and cl2 /∈ CTS[(p3, p5)],
then cl2 is a choice deviation sub-trace.

According to the given definition, we can obtain a choice
deviation sub-log by the following algorithm.

Algorithm 1: Choice Deviation Sub-Log Computation
Input: An event log L, a choice pre-post pair set SCP, and a

choice branch tuple set CTS[cp]
Output: the choice deviation sub-log CL
1. CL ← Ø;
2. CT = CTS[cp] ↓ T ;
3. for (i = 1, σi ∈ L; i++; i ≤ |L|) do
4. σ ′i = σi|CT ;
5. if ((•σ ′i [1], σ

′
i [|σ

′
i |]
•) ∈ SCP), then

6. if (σ ′i /∈ CTS[cp]), then
7. cl = σ ′i ;
8. end if
9. else

10. cl = Ø;
11. CL ← CL ∪ cl;
12. end if
13. else
14. continue;
15. end for
16. return CL.

According to Algorithm 1, Step 1 initializes variable CL.
Step 2 uses CT to record the multi-projection of CTS[cp] on
T . We can find all transitions in a choice structure according
to Step 2. Steps 3-15 are used to find all choice deviation
sub-traces. For ∀σ ∈ L, we can get a choice sub-trace σ ′

according to Step 4, but σ ′ may not have deviations. Then
we need to filter the obtained choice sub-trace σ ′. According
to Definition 13, if the pair which consists of the pre-set of
σ ′i [1] and the post-set of σ ′i [|σ

′
i |] belongs to a choice pre-

post pair set SCP, and the transitions in σ ′i do not belong to
any choice branch, i.e., σ ′i /∈ CTS, then we can get a choice
deviation sub-trace cl. Otherwise, cl is empty. Finally, we can
get a choice deviation sub-log CL by Steps 11-16.

After collecting all choice deviation sub-logs, we next
repair the process model to replay these sub-logs.

IV. MODEL REPAIR CONTAINING CHOICE STRUCTURES
For a process model that contains a choice structure, any
branches in the choice structure can occur. In the actual pro-
cess, the following situation may exist: after some activities
in one choice branch are executed, the activities in another
branch are executed. At this time, we can find that the choice
activities contained in a trace do not belong to the same
choice branch tuple, i.e., a trace contains activities in different
choice branches. However, the original process model cannot
reproduce this type of trace. In this section, we repair the
process models containing choice structures according to
choice deviation sub-logs. To clearly express logic relations
among transitions, the repaired models are denoted by logic
Petri nets. We find deviation positions by comparing the pre-
set (post-set) of transitions with PMk (cf. Definition 5). If a
choice structure contains parallel elements, the pre-set (post-
set) of a transition may be multiple. Therefore, we need to
classify sub-logs by finding parallel elements at first.
Definition 14 (Parallel Recognition Pair): Let NS =

(PN , α,Mi,Mf), and PT be the process tree of NS . rt =
(ti, to) is a parallel recognition pair, where
(1) ∃nt = ‘‘ ∧ ’’ ∈ PT ; and
(2) ti = •(•LL(nt)), to = (RL(nt)•)•.
The parallel recognition pair set SRT contains all parallel

pre-post pairs, i.e., SRT = {(ti, to)|ti = •(•LL(nt)), to =
(RL(nt)•)•,∀nt = ‘‘ ∧ ’’ ∈ PT}.
Definition 15 (Parallel Transition Pair): Let NS =

(PN , α,Mi,Mf), and PT be the process tree of NS . pt =
(t1, t2) is a parallel transition pair, where
(1) ∃nt = ‘‘ ∧ ’’ ∈ PT ; and
(2) t1 ∈ Li(nt), t2 ∈ Lj(nt), and i 6= j.
SPT is a set containing all parallel transition pairs, i.e.,

SPT = {(t1, t2,) |t1 ∈ Li(nt), t2 ∈ Lj(nt), i 6= j and ∀nt =
‘‘ ∧ ’’ ∈ PT }.
In this paper, we use SRT ↓ T ∪ SPT ↓ T to denote all

parallel elements in a process model.
The concepts are used to judge whether a choice deviation

sub-log contains parallel elements. If cl|(SRT ↓ T ∪ SPT ↓
T) = Ø, that means no parallel activities in cl. Otherwise, cl
contains parallel activities.

VOLUME 7, 2019 18535

Y. Xu et al.: Logic Petri Net-Based Model Repair Approach by Constructing Choice Bridges

A. MODEL REPAIR WITHOUT PARALLEL STRUCTURES
In this sub-section, according to choice deviation sub-logs,
we repair the process model containing choice structures, and
there are no parallel structures in choice structures. We find
deviations according to the principle of token replaying. Once
the deviation position is found, then we repair the model,
rather than repair the model after all deviation positions are
found.
Theorem 1: Let cl be a choice deviation sub-trace. There

exists a deviation if cl|(SRT ↓ T ∪SPT ↓ T) = Ø and •cl[k] /∈
PMk−1 .

Proof: According to given definitions, SRT ↓ T ∪ SPT ↓
T is a set which contains all parallel elements in a model.
cl|(SRT ↓ T ∪ SPT ↓ T) = Ø denotes no parallel element in
cl. According to cl[1] and cl[|cl|], we can determine a choice
structure which cl belongs to, and the choice structure does
not contain a parallel structure. After cl[k−1] is fired, PMk−1

denotes a set of places containing one token at markingMk−1.
If •cl[k] /∈ PMk−1 , it means that there is no token in the pre-
set of cl[k]. Then cl[k] cannot be fired in the model. Here,
a deviation exists. �
According to Theorem 1, we give the following algorithm

to repair the choice structures without parallel structures.
Algorithm 2 first finds choice deviation sub-traces which

do not contain parallel elements (cf. Steps 2-3). Then we fire
transitions sequentially according to the ordering of events
in the trace. According to Definition 13, a choice deviation
sub-trace contains at least one first transition of a choice
branch. Then we can fire cl [1], and get PM1 (a set of places
which contain one token at M1 after cl [1] is fired). Next,
we compare the pre-sets of other activities in cl with PMk to
identify deviation positions, and determine which transitions
need to be modified as logic transitions. For activities in cl,
we deal with them in the following two cases: (1) If the pre-
set of cl[k] does not belong to PMk−1 , i.e., •cl[k] /∈ PMk−1 ,
then cl[k] is regarded as a logic input transition (cf. Step
6). Notation OPl represents the pre-set of cl[k], and NPl
represents the set of places containing one token after cl[k-1]
is fired (cf. Steps 7-8). Then we add arcs from NPl to cl[k],
and obtain the input function of cl[k]: I ′ (cl[k]) = OPl⊗NPl
according to [20] (cf. Steps 9-10). Then we can fire cl[k]
according to PMk−1 and I ′ (cl[k]), and update PMk (cf. Steps
11-14). (2) If the activities in cl do not belong to the above
case, then we execute Steps 15-18 directly. According to
Steps 15-18, cl[k] can be fired according to PMk−1 . We have
PM

′
k = cl[k]•, and then we update the PMk , i.e., PMk =

PM
′
k . Finally, we can obtain the repaired logic Petri net-based

model when all activities in cl are fired.
Now, we use an example to illustrate the steps of Algo-

rithm 2. Assuming that L2 = {σ4} = {<a, d, f , i, j, l>}, a
process model Ns2 (Mi2(p1) = 1) is shown in Fig. 4. Accord-
ing to the above definitions and Algorithm 1, we can see that
(p2, p9) is one of choice pre-post pairs, and cl3 = (d, f , i, j)
is a choice deviation sub-trace. Choice activities d, f , i, and
j belong to different choice branches in NS2. According to
Algorithm 2, d is the first activity of cl. According to the

Algorithm 2 : Model Repair Algorithm Without Parallel
Structures
Input: An event log L, and a process model NS = (PN ,

α,Mi,Mf)
Output: The repaired model denoted by a logic Petri net

LPN ′ = (P′,T ′;F ′,M ′, I ′,O′)
1. LPN ′← NS ;
2. Invoking Algorithm 1, and getting CL;
3. if (∃cl ∈ CL and cl|(SRT ↓ T ∪ SPT ↓ T) = Ø), then
4. M [cl[1] > M ′, and we can get PM1 ;
5. for (k = 2; k ++; k ≤ |cl|) do
6. if (•cl[k] /∈ PMk−1), then
7. OPl = •cl[k];
8. NPl = PMk−1 ;
9. F ′← F ′ ∪ {NPl → cl[k]};
10. I ′(cl[k]) = OPl ⊗ NPl ;
11. Mk [cl[k] > M ′k ;
12. PM

′
k = cl[k]•;

13. PMk = PM
′
k ;

14. end if
15. else
16. Mk [cl[k] > M ′k ;
17. PM

′
k = cl[k]•;

18. PMk = PM
′
k ;

19. end for
20. end if
21. return LPN′.

FIGURE 4. A process model NS2.

principle of token replaying, after a is fired, we can get
Mi2(p2) = 1, i.e., PMi2 = {p2}. Then d can be fired, and
we can find PM1 = {p5}. Next, we compare the pre-sets of
other activities in cl3 with PMk to find deviation positions.
Comparing •f and PM1 , we can find •f = {p4} /∈ PM1 . Then
f should be regarded as a logical input transition. We make
OPl = •f = {p4} and NPl = PM1 = {p5}. At this time, we
should add an arc from p5 to f . According to [20], places p4
and p5 cannot contain tokens at the same time, so we have
the logic input function I ′(f) = p4 ⊗ p5. Then transition f
is fired, and we update PM2 = f • = {p6}. The pre-set of i is
•i = {p6}∈ PM2 , so i can be fired, and we update PM3 = {p8}.
Then we compare •j and PM3 . Because •j = {p7} /∈ PM3 ,
transition j should be modified as a logic input transition.
OPl denotes the pre-set of j, i.e., OPl = •j = {p7}. NPl
denotes PM3 . An arc is added from p8 to j, and we can get
the logic input function of j: I ′(j) = p7 ⊗ p8. Then we can
fire transition j according to PM3 and I ′ (j). Finally, we get
the repaired model as shown in Fig. 5.

18536 VOLUME 7, 2019

Y. Xu et al.: Logic Petri Net-Based Model Repair Approach by Constructing Choice Bridges

FIGURE 5. The repaired model of NS2 by our approach.

FIGURE 6. The repaired model of NS2 by Fahland’s approach.

FIGURE 7. The repaired model of NS2 by Goldratt’s approach.

From Fig. 6, we can see the model repaired by Fahland’s
method. This method first finds deviations according to the
optimal alignment between σ4 and Ns2. Then it adds two
invisible transitions, two repetitive transitions, and eight arcs
to replay σ4. Fig. 7 shows the model repaired by Goldratt’s
method. An invisible transition, two self-loops, and six arcs
are added to the original model.

B. MODEL REPAIR WITH PARALLEL STRUCTURES
A choice deviation sub-trace cl contains activities in different
choice branches. If a choice structure contains a parallel
structure, then cl might contain parallel elements. Similar
to Algorithm 2, we repair the original model once we find
a deviation. Here we need to determine when a deviation
appears.
Theorem 2: Let cl be a choice deviation sub-trace. There

exists a deviation if cl|(SRT ↓ T ∪SPT ↓ T) 6= Ø and •cl[k+
1] /∈ (PMk−1 ∪ cl[k]•).

Proof: According to given definitions, cl|(SRT ↓ T ∪
SPT ↓ T) 6= Ø denotes that cl contains parallel elements.
According to cl [1] and cl[|cl|], we can determine a choice
structure which cl belongs to, and the choice structure con-
tains a parallel structure. For ∀t ∈ T , if (cl[k], t)∪(t, cl[k]) /∈
SPT , then PMk = cl[k]• after cl[k] is fired. Otherwise, PMk =

(PMk−1 −
•cl[k]) ∪ cl[k]•. Therefore, a deviation exists if

•cl[k + 1] /∈ PMk . Here, because of PMk ∈ (PMk−1 ∪ cl[k]•),
if •cl[k+1] /∈ PMk−1∪cl[k]•), then a deviation exists between
a trace and a process model. �
ForNS3 in Fig. 8, we assume that c(g) is the first (last) activ-

ity of a parallel structure, and there may exist the following

cases: (1) cl contains all activities in a parallel structure, e.g.,
cl4 = (b, c, e, f , g, h); (2) cl only contains the last activity
in a parallel structure, e.g., cl5 = (b, g, h); (3) cl contains all
activities on a parallel branch and the last activity, e.g., cl6 =
(b, e, g, d); (4) cl contains activities on all parallel branches
and the last activity, e.g., cl7 = (b, e, f , g, d). According to
Theorem 2, the following algorithm repairs process models
to replay these cases.

Algorithm 3 works as follows. Step 1 initializes LPN′′ to
NS , and we can get a choice deviation sub-log by Step 2.
By Step 3, we can obtain sub-traces containing parallel

Algorithm 3: Model Repair Algorithm With Parallel Struc-
tures
Input: An event log L, SRT , SPT , and a process model NS =

(PN , α,Mi,Mf)
Output: The repaired model denoted by a logic Petri net

LPN ′′ = (P′′, T ′′; F ′′, M ′′, I ′′, O′′)
1. LPN ′′← NS ;
2. Invoking Algorithm 1, and getting CL;
3. if (∃cl ∈ CL and cl|(SRT ↓ T ∪ SPT ↓ T) 6= Ø), then
4. PM0 =

•cl[1];
5. for (k = 1; k ++; k ≤ |cl|) do
6. if (•cl[k + 1] /∈ (PMk−1 ∪ cl[k]•)), then
7. if ((cl[k + 1], t) ∪ (t , cl[k + 1]) /∈ SPT and
t ∈ T), then

8. Mk [cl[k] > M ′k , P
Mk = PM

′
k ;

9. OPl = •cl[k + 1]− PMk ;
10. NPl = cl[k]•;
11. F ′′← F ′′ ∪ {NPl → cl[k + 1]};
12. I ′′(cl[k + 1]) = OPl ⊗ NPl ;
13. end if
14. else if((cl[k+1], t)∪ (t , cl[k+1]) ∈ SPT and

t ∈ cl), then
15. OPl = cl[k]•;
16. NPl = •cl[k + 1] ∪ •t;
17. F ′′ = F ′′ ∪ {cl[k]→ NPl};
18. O′′(cl[k]) = OPl ⊗ NPl ;
19. Mk [cl[k] > M ′k , P

Mk = PM
′
k ;

20. end if
21. else if((cl[k + 1], t) ∪ (t, cl[k + 1]) ∈ SPT and

t /∈ cl), then
22. OPl = cl[k]•;
23. NPl = •cl[k + 1];
24. F ′′← F ′′ ∪ {cl[k]→ NPl};
25. O′′(cl[k]) = OPl ⊗ NPl ;
26. Mk [cl[k] > M ′k , P

Mk = PM
′
k ;

27. end if
28. end if
29. else if(•cl[k+1] ∈ (PMk−1∪cl[k]•) or @cl[k+1])
30. Mk [cl[k] > M ′k , P

Mk = PM
′
k ;

31. end for
32. end if
33. return LPN′′.

VOLUME 7, 2019 18537

Y. Xu et al.: Logic Petri Net-Based Model Repair Approach by Constructing Choice Bridges

elements. Step 4 assigns PM0 to the pre-set of cl [1]. Next,
we fire transitions sequentially according to the ordering of
events in the trace. We find deviation positions and repair the
model by comparing the pre-set of transitions, the post-set
of transitions and PMk . While traversing a sub-trace cl, if the
pre-set of cl [k + 1] does not belong to PMk−1 ∪ cl[k]•, then a
deviation appears, and cl[k] or cl[k + 1] should be regarded
as a logic transition (cf. Step 6). There are three cases for
cl[k] or cl[k + 1]: (1) If cl[k + 1] does not have a parallel
relation with any transitions, then cl[k + 1] is regarded as
a logic input transition. According to the principle of token
replaying, cl[k] can be fired according to PMk−1 , and we can
get PMk . Then we use OPl to denote •cl[k + 1] − PMk , and
NPl to denote the post-set of cl[k]. Then we add arcs from
NPl to cl[k + 1], and the logic input function of cl[k + 1] is
I ′′(cl[k + 1]) = OPl ⊗ NPl (cf. Steps 7-13); (2) If cl[k + 1]
have a parallel relation with transition t ∈ cl, which means
that cl contains some activities which belong to different
parallel branches. At this time, cl[k] should be regarded as
a logic output transition. OPl denotes the post-set of cl[k],
and NPl denotes the pre-sets of cl[k + 1] and t . Then we add
arcs from cl[k] to NPl , and compute the logic output function
of cl[k]: O′′(cl[k]) = OPl ⊗ NPl . According to O′′(cl[k])
and PMk−1 , we can fire cl[k] and update PMk (cf. Steps 14-
20); (3) If cl[k + 1] have a parallel relation with transition
t /∈ cl, which means that some activities in cl belong to
a same parallel branch. At this time, cl[k] is modified as a
logic output transition. We make OPl = cl[k]• and NPl =
•cl[k+1]. Directed arcs are added from cl[k] to NPl , and the
logic output function of cl[k] isO′′(cl[k]) = OPl⊗NPl . Then
cl[k] can be fired, and PMk can be got (cf. Steps 21-27). If the
pre-set of cl[k + 1] belongs to PMk−1 ∪ cl[k]• or @cl[k + 1],
we can fire cl[k] and update PMk according to the principle
of token replaying (cf. Steps 29-30). Finally, we can get the
repaired model denoted by logic Petri net LPN′′.
Now, we use an example to illustrate the steps of Algo-

rithm 3. Assuming that L3 = {σ5} = {<a, b, e, f , g, d, i>},
a processmodelNS3 (Mi1(p1) = 1, i.e.,PMi3 = {p1}) is shown
in Fig. 8. According to Algorithm 1, cl8 = (b, e, f , g, d) is
a choice deviation sub-trace. Choice activities b, e, f , g and
d belong to different choice branches in NS3. According to
Algorithm 3, b is the first activity of cl8, and we assume that
PM0 =

•b = {p2}. Next, we traverse cl8 to find the deviation
position. First, we compare the pre-set of e, the post-set of
b and PM0 . We can find that •e = {p4} is different from
PM0 ∪ b• = {p2, p3}, i.e., •e /∈ (PM0 ∪ b•), and then b or e
is regarded as a logic transition. Because of (e, f) ∈ SPT
and f ∈ cl, we determine that b is a logic output transition.
We make OPl = b• = {p3} and NPl = •e ∪ •f = {p4, p5}.
Then we add two arcs from b to p4 and p5, and compute the
logic output function of b. According to [20], if p3 contains a
token, p4 and p5 do not contain tokens at a certain marking.
Then we can obtain O′′(b) = p3 ⊗ (p4 ∧ p5). At this time,
b is fired, and we update PM1 = {p4, p5} according to O′′(b)
and PM0 . Next, we compare •f with PM1 ∪ e•, and we can
find •f = {p5} ∈ (PM1 ∪ e•). Then e can be fired according

to PM1 , and we can get PM2 = {p5, p6}. Comparing •g
with PM2 ∪ f •, we can get •g = {p6, p7} ∈ (PM2 ∪ f •).
Transition f is fired according to PM2 , and PM3 = {p6, p7}.
Then we judge whether •d belongs to PM3 ∪ g•. We can get
•d = {p3} /∈ (PM3 ∪ g•), and g or d is regarded as a logic
transition. For ∀t ∈ T , we have (d, t) ∪ (t, d) /∈ SPT , and
then d is regarded as a logic input transition. At this time,
transition g can be fired according to PM3 , and we can get
PM4 = {p8}. Then we make OPl = •d − PM4 = {p3}, and
NPl = g• = {p8}. We add an arc from p8 to d . And the
logic output function of d is I ′′(d) = p3 ⊗ p8. d is the last
activity of cl3, and we can fire d according to PM4 and I ′′ (d).
Finally, we get the repaired model denoted by a logic Petri
net as shown in Fig. 9.

The model repaired by Fahland’s method is shown
in Fig. 10. From the figure, we can find that four invisible
transitions and a repetitive transition are added to the model.
The model repaired by Goldratt’s method is shown in Fig. 11.
From this figure, we can find that three repetitive transitions
as self-loops are added to the model. All models repaired by
these three methods can replay the event log L3.

FIGURE 8. A block-structured Petri net NS3.

FIGURE 9. The repaired model of NS3 by our approach.

FIGURE 10. The repaired model of NS3 by Fahland’s approach.

V. SIMULATION EXPERIMENTS
We carry out simulation experiments and comparative analy-
sis in this section. Themost recent model repair methods have
good results for some particular structures (e.g., [11], [12]).
The structures they repaired are different from this paper,
and there is no comparability among them. Other recently
model repair methods are based on different process mod-
els (e.g., BPMN) from Petri nets. Therefore, we select two
most representative model repair methods for comparison.

18538 VOLUME 7, 2019

Y. Xu et al.: Logic Petri Net-Based Model Repair Approach by Constructing Choice Bridges

TABLE 1. Twenty groups of detailed event log information.

FIGURE 11. The repaired model of NS3 by Goldratt’s approach.

The two methods used for comparison are Fahland’s method
[9] and Goldratt’s method [10]. The former is implemented
in the Process Mining Toolkit ProM6.6, available from
http://www.promtools.org/prom6/, and the latter is imple-
mented in the DOS window.

A. MODEL AND EXPERIMENT DATA
The model used in experiments is from a hospital in Tsingtao.
Taking the diagnosis and treatment process of cancer patients
as an example, we can get a model by mining original event
logs, as shown in Fig. 12. Patients can reserve a doctor by
the network in advance, and get a reservation number. On the
other hand, they can register at the outpatient clinic when they
go to the hospital. Then, the hospital should call their number
by order. Next, patients could make an inquiry to a doctor.
After that, the doctor decides which kind of examination
to do according to the patients’ condition. There are three
types of examinations for patients to choose: (1) they can do
ordinary CT and ESR; (2) they can do biochemical full set
after enhanced CT is complete; or (3) they can do PET-CT,
blood routine, and blood gas analysis in turn. After diagnosis,
the patient needs to consult with the doctor to develop a cor-
responding treatment plan. If the patient’s condition is mild,

he (or she) can be treated in the outpatient clinic. They need
to inject drugs, take medicines, and do laboratory testing.
Patients with the severe disease need to do chemotherapy, and
they are required routine observation according to the con-
dition of chemotherapy. If the patient’s condition is severe,
he (or she) needs to have surgery. Some examinations are
performed before the surgery. After a period of treatment and
detection, the patient can leave the hospital.

All traces in event logs can be replayed at first. However,
as the actual medical treatment process changes, there are
some activities belonging to different choice branches con-
tained in event logs, and the original model cannot replay
these activities. For example, we can find that patients may
choose ordinary CT and biochemical full set for examina-
tion, or blood routine and blood gas analysis may be per-
formed after doing enhanced CT. Besides, patients may also
need to take medicines, inject drugs and undergo laboratory
testing during chemotherapy.

We obtain 20 event logs (L1 − L20) from a hospital
system, and all the changes mentioned above are recorded
in these logs. First of all, we manually removed the
event logs which deviate from the original model seri-
ously. The number of traces contained in logs ranges
from 113 to 3002, and the event logs can be accessible
at https://pan.baidu.com/s/1tQoA1NtzpLI3I8vppl1aNw. The
number of traces, events, activities, and length range of traces
are shown in Table 1.

B. MODEL REPAIRED EXPERIMENTS BASED ON LOGIC
PETRI NETS
In this sub-section, we use Fahland’s method, Goldratt’s
method, and our method to repair the original model as shown
in Fig. 12. The event log L20 in Table 1 contains the most

VOLUME 7, 2019 18539

Y. Xu et al.: Logic Petri Net-Based Model Repair Approach by Constructing Choice Bridges

FIGURE 12. The process model for the treatment of cancer patients.

traces, and it may have the most comprehensive activities.
Here, we use L20 as an experiment data for model repair.

FIGURE 13. The repaired model by Fahland’s approach.

Figs. 13-15 show the repaired models by three methods,
respectively.

18540 VOLUME 7, 2019

Y. Xu et al.: Logic Petri Net-Based Model Repair Approach by Constructing Choice Bridges

FIGURE 14. The repaired model by Goldratt’s approach. FIGURE 15. The repaired model by our approach.

VOLUME 7, 2019 18541

Y. Xu et al.: Logic Petri Net-Based Model Repair Approach by Constructing Choice Bridges

Fig. 13 shows the model repaired by Fahland’s method.
This method obtains the deviations based on the optimal
alignments between the given event logs and the original
model. We can collect sub-logs according to the moves on
log in optimal alignments. Then we mine the corresponding
sub-process and add it in the form of a self-loop to the
original model to complete the model repair. For activities
belonging to different choice branches in event logs, this
method can find deviations according to alignments. Then
it adds invisible transitions and sub-processes to repair the
original model. Comparing the repaired model with the orig-
inal one, the changes are as follows: five invisible transitions
are added to the model; a repetitive transition is added to
a choice branch; two self-loops are added to a place. The
model repaired by Fahland’s method can replay all event
logs.

The model repaired by Goldratt’s method is shown
in Fig. 14. This method adds a single transition as a self-
loop or invisible transition to the model according to some
constraints. For event logs that contain activities on different
choice branches, this method inserts invisible transitions and
self-loops in the original model to replay these event logs.
From Fig, 14, we can find that compared with the original
model, the repaired model obtained by Goldratt’s method
adds three invisible transitions and three repetitive transitions
as self-loops.

When we repair the original model by our method, we can
get a choice pre-post pair set CPS = {(p5, p10), (p12, p19)},
a choice branch tuple set CTS = {(t6, t9, t12), (t7, t10),
(t8, t11)}, (t15, t18), (t16, t19), (t17, t20, t21, t22)}, and a parallel
transition pair set SPT = {(t20, t21)}. Then we can get a
choice deviation sub-log CL = {cl9, cl10, cl11, cl12} =
{<t8, t10>,<t7, t9, t12>,<t16, t20, t21, t22>,<t16, t21, t20, t22>}
by Algorithm 1. We can find that there are two choice
structures in the original model. The choice structure with
(p5, p10) as the choice pre-post pair does not contain a
parallel structure. Another choice structure contains a parallel
structure.

Now, we use Algorithms 2 and 3 to repair the two choice
structures respectively according to the choice deviation sub-
log CL. We use choice deviation sub-traces cl9 and cl10
to repair the choice structure without a parallel structure.
According to Algorithm 2, the first activity t8 in cl9 is fired
at first, and we can get PM1 = {p8}. Then we find deviation
position by comparing the pre-set of cl9[2] and PM1 . The pre-
set of cl9[2] is •cl9[2] = •t10 = {p7}, which is different
from PM1 . At this time, cl9[2] = t10 is regarded as a logic
input transition. We use OPl to denote the pre-set of t10,
i.e., OPl = •t10 = {p7}, and NPl = PM1 = {p8}. We add
an arc from p8 to t10. Places p7 and p8 cannot contain a
token at the same time, and the logic input function of t10
is I ′ (t10) = p7 ⊗ p8. Then t10 can be fired according to
PM1 and I ′(t10). When we repair the original model with cl10,
it is similar to cl9. We can find that t9 is also a logic input
transition, and OPl = •t9 = {p6}, NPl = {p7}. Only one of
p6 and p7 contains a token at the same time, and then we can

get the logical input function of t9: I ′ (t9) = p6⊗ p7. And the
rest of activities in cl10 can be fired.
Choice deviation sub-traces cl11 and cl12 are used to repair

the choice structure containing a parallel structure. By Algo-
rithm 3, we have PM0 =

•cl11[1] = •t16 = {p12}. Next,
we traverse cl11 to find the deviation position. The pre-set
of cl11[2] is •cl11[2] = •t20 = {p15}, and the post-set of
cl11[1]• = t•16 = {p14}. By comparing •cl11[2], cl11[1]•

and PM0 , we can find that •t20 /∈ (PM0 ∪ t•16), and then
t16 or t20 needs to be regarded as a logic transition. Because
(t20, t21) ∈ SPT and t21 ∈ cl11, we can determine that t16 is a
logic output transition. Then we use OPl to denote the post-
set of t16, i.e., OPl = t•16 = {p14}, and NPl =

•t20 ∪ •t21 =
{p15, p16}. Two arcs are added from t16 to NPl . According to
[20], only p14 (or p15 and p16) can contain a token at some
marking, and we can get O′′ (t16) = p14 ⊗ (p15 ∧ p16).
At this time, cl11[1] = t16 can be fired, and we can update
PM1 = {p15, p16} according to PM0 and O′′(t16). Then we
compare •cl3[3] with PM1 ∪ cl11[2]•. Because •cl11[3] =
•t21 = {p16} ∈ (PM1 ∪ cl11[2]•), t20 can be fired and we can
get PM2 = {p16, p17}. Similarly, we can fire t21 according
to PM2 and get PM3 = {p17, p18}. t22 is the last activity of
cl3, so we fire t22 according to PM3 , and PM4 = {p19}. When
we repair the original model with cl12, it is similar to cl11.
Finally, we get the repaired model denoted by a logic Petri net
as shown in Fig. 15. Comparing the original model, there are
four arcs added to the repaired model. No repetitive activities
exist in the repaired model, and the model repaired by our
method preserves the structure of the original model.

The method proposed in this paper focuses on adding
bridges among choice branches. We assume that all devia-
tions occur in choice structures and there are no new activi-
ties or repetitive activities in event logs. The repaired model
denoted by a logic Petri net does not have the corresponding
process tree, and it cannot be repeatedly repaired directly.
However, the actual process may change at any time. If the
repaired model cannot replay new event logs, we need to
repair the model again. At this time, we can find choice
structures and new choice deviation sub-logs based on the
process tree of the original model. Then we conduct repeated
repair on the repaired model according to the new choice
deviation sub-logs.

C. MODEL EVALUATION
Taking 20 event logs L1 − L20 in Table 1 as an example,
we compare our method with two methods, i.e., Fahland’s
method and Goldratt’s method. The three approaches are
compared from the aspects of fitness, precision, and sim-
plicity in this sub-section. Note that, logic Petri nets are the
extension of Petri nets, and they have good applications in
studying the theoretical properties of nets because of their
logic expressions [16]–[18]. The equivalence between logic
Petri nets and the safe inhibition Petri nets is proved in [19].
Therefore, we compute the fitness and precision between

18542 VOLUME 7, 2019

Y. Xu et al.: Logic Petri Net-Based Model Repair Approach by Constructing Choice Bridges

FIGURE 16. The comparison results of fitness between our method and other methods.

FIGURE 17. The comparison results of precision between our method and other methods.

TABLE 2. The comparison of simplicity for the original model in Fig. 12.

event logs and the repaired model according to the formulas
provided in [5].

Fig. 16 shows the comparison results of fitness among our
method, Fahland’s method, and Goldratt’s method. Fitness is
the most important metric to evaluate the quality of a process
model. If amodel can replay activities in event logs, themodel
has a better fitness. If amodel can reproduce all traces in event
logs, then the fitness of the model is 1. From Fig. 16, we can
find that the fitness of Fahland’s method, Goldratt’s method
and our method are all 1 under different numbers of event
logs. That is, the model repaired by these three methods can
replay all traces in event logs.

The comparison results of precision among the three meth-
ods are shown in Fig. 17. Precision means that the activities
which cannot be observed in event logs are not allowed to
happen in a process model. From Fig. 17, we can find that
the precision value does not change much with the increasing
number of traces in event logs. Our method has a higher
precision value than that of other two methods in different
amounts of event logs. Repetitive transitions or self-loops
may reduce the precision of the repaired model.

Simplicity means that the repaired model should be as
simple as possible. To compare three methods’ simplicity,
the main criteria we focus on are the number of added places,

VOLUME 7, 2019 18543

Y. Xu et al.: Logic Petri Net-Based Model Repair Approach by Constructing Choice Bridges

transitions, invisible transitions, and arcs. Compared with the
original model in Fig. 12, Table 2 shows the number of added
places, transitions, invisible transitions, and arcs in repaired
models by three methods, respectively. For two choice struc-
tures of the original model, Fahland’s method adds some
invisible transitions and sub-processes to guarantee choice
branches can be replayed. Thus, the number of added places,
transitions, invisible transitions, and arcs are respectively 1,
3, 5, and 17. Goldratt’s method adds repetitive transitions
as self-loops and invisible transitions to the original model.
Then, the number of added transitions, invisible transitions
and arcs are respectively 3, 3 and 13. Our method can repair
choice structures by adding four arcs.

For models with choice structures, Petri net-based repair
methods do not add bridges among choice branches, and the
repaired model has some invisible transitions and repetitive
transitions. Logic Petri net-based methods can solve such
problems by adding bridges among choice branches. They not
only simplify net structures, but also improve the precision
of the model by using logic expressions instead of repeti-
tive transitions. What’s more, logic Petri net-based models
have been applied to modeling and analysis of workflow, e-
commerce, medical treatment and other fields.

VI. CONCLUSIONS
In this paper, we propose a model repair method based on
logic Petri nets. By adding bridges among choice branches,
the model repaired by our method can replay activities in
different branches. Combining with process tree, we can
find the pre-post pair of a choice structure. Thus, we can
find choice deviation sub-logs. By comparing pre-sets (post-
sets) of transitions with a set of places containing one token
at marking Mk , we can find the deviation positions, and
repair the model in two different ways. The repaired model
can correctly describe the actual process. The structure of
the repaired model is similar to the original one. Through
simulation experiments, we compare our method with other
benchmark methods. The precision of our method is higher
than other methods. Also, the repaired model denoted by
logic Petri net has good simplicity. The method in this paper
focuses on repairing a choice structure to make the model
replay activities in different branches. In the future, we will
propose some methods to repair other complex structures
based on logic Petri nets, and propose new model repair
methods based on other models [14], [15] which has logic
expressions and can be directly repaired again.

REFERENCES
[1] W. M. P. van der Aalst, Process Mining: Data Science in Action. Berlin,

Germany: Springer, 2016, pp. 2–49.
[2] W. M. P. van der Aalst and B. F. van Dongen, ‘‘Discovering Petri nets

from event logs,’’ in Transactions on Petri Nets and Other Models of
Concurrency VII, vol. 7. Berlin, Germany: Springer, 2013, pp. 372–422.

[3] W. M. P. van der Aalst, A. Adriansyah, and B. F. van Dongen, ‘‘Replay-
ing history on process models for conformance checking and perfor-
mance analysis,’’ WIREs Data Mining Knowl. Discovery, vol. 2, no. 2,
pp. 182–192, 2012.

[4] W. M. P. van der Aalst, Process Mining: Discovery, Conformance and
Enhancement of Business Processes. Berlin, Germany: Springer, 2011,
pp. 23–146.

[5] A. Adriansyah, ‘‘Aligning observed and modeled behavior,’’
Ph.D. dissertation, Dept. Math. Comput. Sci., Eindhoven Univ. Technol.,
Eindhoven, The Netherlands, 2014.

[6] W. M. P. van der Aalst, T. Weijters, and L. Maruster, ‘‘Workflow mining:
Discovering process models from event logs,’’ IEEE Trans. Knowl. Data
Eng., vol. 16, no. 9, pp. 1128–1142, Sep. 2004.

[7] L. Wen, W. M. P. van der Aalst, J. Wang, and J. Sun, ‘‘Mining process
models with non-free-choice constructs,’’ Data Mining Knowl. Discovery,
vol. 15, no. 2, pp. 145–180, 2007.

[8] L. Wen, J. Wang, W. M. P. van der Aalst, B. Huang, and J. Sun, ‘‘Mining
process models with prime invisible tasks,’’ Data Knowl. Eng., vol. 69,
no. 10, pp. 999–1021, Oct. 2010.

[9] D. Fahland and W. M. P. van der Aalst, ‘‘Model repair—Aligning process
models to reality,’’ Inf. Syst., vol. 47, no. 1, pp. 220–243, 2015.

[10] A. Polyvyanyy, W. M. P. van der Aalst, A. H. M. ter Hofstede, and
M. T. Wynn, ‘‘Impact-driven process model repair,’’ ACM Trans. Softw.
Eng. Methodol., vol. 25, no. 4, p. 28, 2016.

[11] X. Zhang, Y. Du, L. Qi, and H. Sun, ‘‘Repairing process models con-
taining choice structures via logic Petri nets,’’ IEEE Access, vol. 6,
pp. 53796–53810, 2018.

[12] H. Qi, Y. Du, L. Qi, and L. Wang, ‘‘An approach to repair Petri net-
based process models with choice structures,’’ Enterprise Inf. Syst., vol. 12,
nos. 8–9, pp. 1149–1179, 2018.

[13] Y. H. Xu, Y. Y. Du, W. J. Luan, L. Qi, and H. C. Sun, ‘‘Repairing process
models with logical concurrent and casual relations via logical Petri nets,’’
IEEE Access, vol. 6, pp. 56340–56355, 2018.

[14] W. M. P. van der Aalst and A. H. M. ter Hofstede, ‘‘YAWL: Yet another
workflow language,’’ Inf. Syst., vol. 30, no. 4, pp. 245–275, 2004.

[15] W. M. P. van der Aalst, ‘‘The application of Petri nets to workflow man-
agement,’’ J. Circuits, Syst. Comput., vol. 8, no. 1, pp. 21–66, 1998.

[16] Y. Du, L. Qi, and M. Zhou, ‘‘Analysis and application of logical Petri nets
to e-commerce systems,’’ IEEE Trans. Syst., Man, Cybern., Syst., vol. 44,
no. 4, pp. 468–481, Apr. 2014.

[17] Y. Du, L. Qi, and M. Zhou, ‘‘A vector matching method for analysing logic
Petri nets,’’ Enterprise Inf. Syst., vol. 5, no. 4, pp. 468–481, 2011.

[18] W. Luan, L. Qi, and Y. Du, ‘‘Composition of logical Petri nets and com-
patibility analysis,’’ IEEE Access, vol. 5, pp. 9152–9162, 2017.

[19] Y. Y. Du and B. Q. Guo, ‘‘Logic Petri nets and equivalency,’’ Inf. Technol.
J., vol. 8, no. 1, pp. 95–100, 2009.

[20] Y. Y. Du et al., ‘‘An approach of process mining based on logic Petri nets,’’
Acta Electron. Sinica, vol. 44, no. 11, pp. 2742–2751, 2016.

[21] W. Liu et al., ‘‘Soundness analytics of composed logical workflow nets,’’
Int. J. Parallel Program., pp. 1–16, Oct. 2017, doi: 10.1007/s10766-017-
0536-8.

[22] L. Qi, M. Zhou, and W. Luan, ‘‘Emergency traffic-light control system
design for intersections subject to accidents,’’ IEEE Trans. Intell. Transp.
Syst., vol. 17, no. 1, pp. 170–183, Jan. 2016.

[23] L. Qi, M. Zhou, and W. Luan, ‘‘A two-level traffic light control strategy
for preventing incident-based urban traffic congestion,’’ IEEE Trans. Intell.
Transp. Syst., vol. 19, no. 1, pp. 13–24, Jan. 2018.

[24] C. Liu, ‘‘Automatic discovery of behavioral models from software execu-
tion data,’’ IEEE Trans. Autom. Sci. Eng., vol. 15, no. 4, pp. 1897–1908,
Oct. 2018.

[25] S. J. J. Leemans, D. Fahland, and W. M. P. van der Aalst, ‘‘Scalable
process discovery with guarantees,’’ in Enterprise, Business-Process and
Information Systems Modeling (Lecture Notes in Business Information
Processing), vol. 214. Cham, Switzerland: Springer, 2015, pp. 85–101.

[26] N. Q. Wu and M. Zhou, ‘‘Modeling, analysis and control of dual-arm
cluster tools with residency time constraint and activity time variation
based on Petri nets,’’ IEEE Trans. Autom. Sci. Eng., vol. 9, no. 2,
pp. 446–454, Apr. 2012.

[27] N. Wu and M. Zhou, ‘‘Schedulability analysis and optimal scheduling of
dual-arm cluster tools with residency time constraint and activity time
variation,’’ IEEE Trans. Autom. Sci. Eng., vol. 9, no. 1, pp. 203–209,
Jan. 2012.

[28] N. Wu, F. Chu, C. Chu, and M. Zhou, ‘‘Petri net modeling and cycle-time
analysis of dual-arm cluster tools with wafer revisiting,’’ IEEE Trans. Syst.,
Man, Cybern., Syst., vol. 43, no. 1, pp. 196–207, Jan. 2013.

[29] N. Wu, M. Zhou, and Z. Li, ‘‘Short-term scheduling of crude-oil opera-
tions: Enhancement of crude-oil operations scheduling using a Petri net-
based control-theoretic approach,’’ IEEE Robot. Autom. Mag., vol. 22,
no. 2, pp. 64–76, Jun. 2015.

[30] N. Wu, M. Zhou, L. Bai, and Z. Li, ‘‘Short-term scheduling of crude oil
operations in refinery with high-fusion-point oil and two transportation
pipelines,’’ Enterprise Inf. Syst., vol. 10, no. 6, pp. 581–610, May 2016.

18544 VOLUME 7, 2019

http://dx.doi.org/10.1007/s10766-017-0536-8
http://dx.doi.org/10.1007/s10766-017-0536-8

Y. Xu et al.: Logic Petri Net-Based Model Repair Approach by Constructing Choice Bridges

[31] L. Bai, N. Wu, Z. Li, and M. Zhou, ‘‘Optimal one-wafer cyclic schedul-
ing and buffer space configuration for single-arm multicluster tools with
linear topology,’’ IEEE Trans. Syst., Man, Cybern., Syst., vol. 46, no. 10,
pp. 1456–1467, Oct. 2016.

[32] F. Yang, N. Wu, Y. Qiao, M. Zhou, and Z. Li, ‘‘Scheduling of single-
arm cluster tools for an atomic layer deposition process with residency
time constraints,’’ IEEE Trans. Syst., Man, Cybern., Syst., vol. 47, no. 3,
pp. 502–516, Mar. 2017.

[33] Q. Zhu, M. Zhou, Y. Qiao, and N. Wu, ‘‘Petri net modeling and scheduling
of a close-down process for time-constrained single-arm cluster tools,’’
IEEE Trans. Syst., Man, Cybern., Syst., vol. 48, no. 3, pp. 389–400,
Mar. 2018.

[34] Y. Qiao, N. Wu, F. Yang, M. Zhou, and Q. Zhu, ‘‘Wafer sojourn time
fluctuation analysis of time-constrained dual-arm cluster tools with wafer
revisiting and activity time variation,’’ IEEE Trans. Syst., Man, Cybern.,
Syst., vol. 48, no. 4, pp. 622–636, Apr. 2018.

[35] J. C. A. M. Buijs, B. F. van Dongen, andW.M. P. van der Aalst, ‘‘A genetic
algorithm for discovering process trees,’’ in Proc. IEEE Congr. Evol.
Comput. (CEC), Jun. 2012, pp. 1–8.

[36] Z. Ma, Z. Li, and A. Giua, ‘‘Characterization of admissible marking sets
in Petri nets with conflicts and synchronizations,’’ IEEE Trans. Autom.
Control, vol. 62, no. 3, pp. 1329–1341, Mar. 2017.

[37] Z. Jiang, Z. Li, N. Wu, and M. Zhou, ‘‘A Petri net approach to
fault diagnosis and restoration for power transmission systems to avoid
the output interruption of substations,’’ IEEE Syst. J., vol. 12, no. 3,
pp. 2566–2576, Sep. 2017.

[38] F. Yang, N. Q. Wu, Y. Qiao, and R. Su, ‘‘Polynomial approach to optimal
one-wafer cyclic scheduling of treelike hybrid multi-cluster tools via Petri
nets,’’ IEEE/CAA J. Autom. Sinica, vol. 5, no. 1, pp. 270–280, Jan. 2018.

[39] N. Q. Wu, M. Zhou, and L. P. Bai, ‘‘Control-theoretic and model-based
scheduling of crude oil transportation for refinery industry,’’ in Proc. IEEE
Int. Conf. Robot. Automat., Hong Kong, May/Jun. 2014, pp. 3273–3278.

[40] S. Zhang, N. Wu, Z. Li, T. Qu, and C. Li, ‘‘Petri net-based approach to
short-term scheduling of crude oil operations with less tank requirement,’’
Inf. Sci., vol. 417, pp. 247–261, Nov. 2017.

[41] S. Wang, D. You, and C. Seatzu, ‘‘A novel approach for constraint trans-
formation in Petri nets with uncontrollable transitions,’’ IEEE Trans. Syst.,
Man, Cybern., Syst., vol. 48, no. 8, pp. 1403–1410, Aug. 2018.

[42] D. You, S. Wang, and M. Zhou, ‘‘Computation of strict minimal siphons
in a class of Petri nets based on problem decomposition,’’ Inf. Sci.,
vols. 409–410, pp. 87–100, Oct. 2017.

[43] S. Wang, M. Gan, M. Zhou, and D. You, ‘‘A reduced reachability tree for
a class of unbounded Petri nets,’’ IEEE J. Autom. Sinica, vol. 2, no. 4,
pp. 345–352, Oct. 2015.

[44] D. Xiang, G. Liu, C. Yan, and C. Jiang, ‘‘Detecting data-flow errors based
on Petri nets with data operations,’’ IEEE/CAA J. Autom. Sinica, vol. 5,
no. 1, pp. 251–260, Jan. 2018.

[45] G. Liu and C. Jiang, ‘‘Petri net based model checking for the collaborative-
ness of multiple processes systems,’’ in Proc. IEEE 13th Int. Conf. Netw.,
Sens., Control (ICNSC), Würzburg, Germany, Apr. 2016, pp. 1–6.

[46] H. Qi, Y. Du, and W. Liu, ‘‘Process model repairing method based on
reachable markings,’’ J. Shandong Univ. Sci. Technol., Nature Sci., vol. 36,
no. 1, pp. 118–124, Feb. 2017.

[47] G. J. Liu and C. J. Jiang, ‘‘Net-structure-based conditions to decide
compatibility and weak compatibility for a class of inter-organizational
workflow nets,’’ Sci. China Inf. Sci., vol. 58, no. 7, pp. 1–16, 2015.

[48] Y. Teng, Y. Du, L. Qi, and W. Luan, ‘‘A logic Petri net-based method for
repairing process models with concurrent blocks,’’ IEEE Access, vol. 7,
pp. 8266–8282, 2018, doi: 10.1109/ACCESS.2018.2890070.

[49] C. Gu, Z. W. Li, N. Q. Wu, M. Khalgui, T. Qu, and A. Al-Ahmari,
‘‘Improved multi-step look-ahead control policies for automated manufac-
turing systems,’’ IEEE Access, vol. 6, no. 1, pp. 68824–68838, 2018.

YUHUA XU received the B.S. degree from the
Shandong University of Science and Technology,
Qingdao, China, in 2017, where she is currently
pursuing the M.S. degree with the College of
Computer Science and Engineering. Her current
research interests include process mining, Petri
nets, and workflow.

YUYUE DU received the B.S. degree from Shan-
dong University, Jinan, China, in 1982, the M.S.
degree from the Nanjing University of Aeronautics
and Astronautics, Nanjing, China, in 1991, and
the Ph.D. degree in computer application from
Tongji University, Shanghai, China, in 2003. He is
currently a Professor with the College of Informa-
tion Science and Engineering, Shandong Univer-
sity of Science and Technology, Qingdao, China.
He has taken in over ten projects supported by

the National Nature Science Foundation, the National Key Basic Research
Developing Program, and other important and key projects at provincial
levels. He has published over 140 papers in domestic and international
academic publications, and they are embodied over 80 times by SCI and EI
and cited over 270 times by others. His research interests include formal
engineering, Petri nets, real-time systems, Web services, and workflows.
He is a member of the Professional Committee of Petri Nets of the China
Computer Federation.

LIANG QI (S’16–M’18) received the B.S. degree
in information and computing science and theM.S.
degree in computer software and theory from the
Shandong University of Science and Technology,
Qingdao, China, in 2009 and 2012, respectively,
and the Ph.D. degree in computer software and
theory from Tongji University, Shanghai, China,
in 2017. From 2015 to 2017, he was a Visiting
Student with the Department of Electrical and
Computer Engineering, New Jersey Institute of

Technology, Newark, NJ, USA. He is currently a Lecturer of com-
puter science and technology with the Shandong University of Science
and Technology. He has authored over 25 technical papers in journals
and conference proceedings, including the IEEE TRANSACTIONS ON SYSTEM,
MAN AND CYBERNETICS: SYSTEMS, the IEEE TRANSACTIONS ON INTELLIGENT
TRANSPORTATION SYSTEMS, and the IEEE/CAA JOURNAL OF AUTOMATICA SINICA.
His current research interests include Petri nets, discrete event systems,
process mining, and optimization algorithms. He received the Best Student
Paper Award-Finalist in the 15th IEEE International Conference onNetwork-
ing, Sensing and Control, in 2018.

WENJING LUAN (S’16) received the B.S. and
M.S. degrees from the ShandongUniversity of Sci-
ence and Technology, Qingdao, China, in 2009 and
2012, respectively, and the Ph.D. degree in com-
puter software and theory from Tongji University,
Shanghai, China, in 2018. In 2017, she was a Visit-
ing Student with the Department of Electrical and
Computer Engineering, New Jersey Institute of
Technology, Newark, NJ, USA. She is currently a
Lecturer of computer science and technology with

the Shandong University of Science and Technology. Her current research
interests include location-based social networks, data mining, recommender
systems, and intelligent transportation systems. She received the Best Stu-
dent Paper Award-Finalist in the 13th IEEE International Conference on
Networking, Sensing and Control, in 2016.

LU WANG received the B.S. and Ph.D. degrees
from the Shandong University of Science and
Technology, Qingdao, China, in 2013 and 2018,
respectively. She is currently a Lecturer of com-
puter science and technology with the Shandong
University of Science and Technology. Her current
research interests include process mining, work-
flow, and Petri nets.

VOLUME 7, 2019 18545

http://dx.doi.org/10.1109/ACCESS.2018.2890070

	INTRODUCTION
	PRELIMINARIES
	FINDING CHOICE DEVIATION SUBLOGS
	FINDING ALL CHOICE STRUCTURES
	FINDING ALL CHOICE SUBLOGS WITH DEVIATIONS

	MODEL REPAIR CONTAINING CHOICE STRUCTURES
	MODEL REPAIR WITHOUT PARALLEL STRUCTURES
	MODEL REPAIR WITH PARALLEL STRUCTURES

	SIMULATION EXPERIMENTS
	MODEL AND EXPERIMENT DATA
	MODEL REPAIRED EXPERIMENTS BASED ON LOGIC PETRI NETS
	MODEL EVALUATION

	CONCLUSIONS
	REFERENCES
	Biographies
	YUHUA XU
	YUYUE DU
	LIANG QI
	WENJING LUAN
	LU WANG

