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ABSTRACT Data imbalance issue generally exists in most medical image analysis problems and maybe
getting important with the popularization of data-hungry deep learning paradigms. We explore the cutting-
edge Wasserstein generative adversarial networks (WGANs) to address the data imbalance problem with
oversampling on the minority classes. The WGAN can estimate the underlying distribution of a minority
class to synthesize more plausible and helpful samples for the classification model. In this paper, theWGAN-
based over-sampling technique is applied to augment the data to balance for the fine-grained classification of
seven semantic attributes of lung nodules in computed tomography images. The fine-grained classification
is carried out with a normal convolutional neural network (CNN). To further illustrate the efficacy of
the WGAN-based over-sampling technique, the conventional data augmentation method commonly used
in many deep learning works, the generative adversarial networks (GANs), and the deep convolutional
generative adversarial networks (DCGANs) are implemented for comparison. The whole schemes of the
minority oversampling and fine-grained classification are tested with the public lung imaging database
consortium dataset. The experimental results suggest that the WGAN-based oversampling technique can
synthesize helpful samples for the minority classes to assist the training of the CNN model and to boost the
fine-grained classification performance better than the conventional data augmentation method and the two
schemes of the GAN and DCGAN techniques do. It may thus suggest that the WGAN technique offers an
alternative methodological option for the further deep learning on imbalanced classification studies.

INDEX TERMS Computer-aided diagnosis (CAD), lung nodule, computed tomography (CT), synthetic
minority over-sampling, deep learning, data imbalance, adversarial neural networks.

I. INTRODUCTION
Recent advance of deep learning techniques has been shown
to effectively address many medical image analysis problems
like segmentation [1]–[5], lesion detection [6]–[8], differ-
ential diagnosis [9]–[13], quality assessment [14], refer-
ence plane retrieval [15], etc., with perceivable performance
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improvement. The deep learning techniques are equipped
with the advantages of automatic feature learning, end-to-
end training, etc., and thus the steps of explicit feature
engineering as well as other inter-mediate processing in the
conventional pattern recognition framework can be circum-
vented. Therefore, the performance tuning of the deep learn-
ing techniques can be relatively simple and easy. In particular,
the powerful discriminative capability of the deep learning
techniques may also shed a light on fine-grained medical
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FIGURE 1. Subordinate classes distributions over all semantic attributes of nodules in LIDC dataset. ‘‘lob’’, ‘‘sphe’’, ‘‘spic’’, ‘‘sub’’, ‘‘text’’, ‘‘mar’’,
‘‘mal’’, ‘‘is’’, and ‘‘cal’’ are the abbreviations of ‘‘lobulation’’, ‘‘sphericity’’, ‘‘spiculation’’, ‘‘subtlety’’, ‘‘texture’’, ‘‘margin’’, ‘‘malignancy’’, ‘‘internal
structure’’ and ‘‘calcification’’, respectively.

image analysis to attain more precise diagnosis, progno-
sis and prediction [16], [17]. For example, the fine-grained
medical image analysis may help to achieve more accurate
computerized retrieval of relevant cases [18], lesion subtype
categorization [19], etc.

The main purpose of the fine-grained classification is to
differentiate subordinate categories of the same base classes.
The subordinate categories share very similar properties of
the same base class, whereas the differences in-between the
subordinate categories can be subtle. Therefore, the task
of the fine-grained classification can be very challenging.
The fine-grained classification is particular of help for the
applications like online shopping recommendation system,
etc. In the medical context, the fine-grained image analysis
problem has been less explored. The exploration of the fine-
grained medical image analysis is limited by the available
data and annotation. In particular, the data annotation requires
professional knowledge and the annotation cost can be very
expensive. Meanwhile, the data of the different subordinate
categories can also be very imbalanced and thus impose more
difficulty on the fine-grained medical image analysis.

In recent years, there are few studies elaborating on
the computerized fine-grained analysis for medical images.
Zhang et al. [18] developed a template matching framework
to perform the fine-grained differentiation of the two types of
lung cancers, i.e., adenocarcinoma and squamous carcinoma,
in histological images. The work [18] requires large scale
segmented cancer cells as templates to achieve promising
performance. For the lung nodule analysis in CT images,
Chen et al. [20], [21] recently leverage the deep learning
techniques of the convolutional neural network (CNN) and
stacked denoising autoencoder (SDAE) and multi-task learn-
ing technique to attain fine-grained semantic attributing of
pulmonary nodules. Specifically, a pulmonary nodule can
be profiled with 9 semantic medical descriptive terms like
spiculation, lobulation, subtlety, etc. For each semantic term,
there are around 5 to 6 subordinate scoring classes to sug-
gest the degree or instantiation of the corresponding term.

The main idea of the works [20], [21] lies to use deep learning
techniques for the learning of useful features and employs
multi-task learning to explore sharable and term-specific fea-
tures to attain satisfactory fine-grained semantic attributing
performance on the public Lung Image Database Consortium
(LIDC) dataset [22], which contains at least 1010 CT scans
from 1010 patients. However, since the distributions of the
subordinate classes of each semantic term can be very skewed
as shown in Fig. 1, the performance of the deep features
learning and multi-task framework was limited by the data
imbalance issue.

By and large, the data imbalance issue generally exists in
most medical image analysis problems. It is because that the
number of cases with diseases is relatively smaller than the
number of normal cases. Meanwhile, the case distribution
subordinate types of one specific disease can be very skewed
due to the factors of race, gender, disease rarity, and so
on. For example, Fig. 1 illustrates the distributions of the
subordinate classes of the 9 semantic terms for nodules in
the LIDC dataset. In Fig. 1, ‘‘lob’’, ‘‘sphe’’, ‘‘spic’’, ‘‘sub’’,
‘‘text’’, ‘‘mar’’, ‘‘mal’’, ‘‘is’’, and ‘‘cal’’ are the abbrevia-
tions of the terms ‘‘lobulation’’, ‘‘sphericity’’, ‘‘spiculation’’,
‘‘subtlety’’, ‘‘texture’’, ‘‘margin’’, ‘‘malignancy’’, ‘‘internal
structure’’ and ‘‘calcification’’, respectively. These semantic
terms can be commonly found in the radiology reports to
describe the semantic characteristics of the nodules for the
diagnostic reference. The terms ‘‘subtlety’’ and ‘‘sphericity’’
suggest if the nodule is easy to identify and the roundness of
nodule shape, respectively. The term ‘‘margin’’ describes how
well-defined of nodule margin is, whereas the ‘‘lobulation’’
and ‘‘spiculation’’ terms suggest if the nodule has lobula-
tion or spiculation in shape, respectively. The term ‘‘texture’’
indicates if the nodule appears solid in the image, while the
term ‘‘malignancy’’ is the subjective assessment of the malig-
nancy likeliness by the radiology. The term ‘‘internal struc-
ture’’ specifies the nodule internal can be soft tissue, fluid,
fat or air. The term ‘‘calcification’’ stands for the calcification
pattern of the nodules. More details can be found in [23].
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Referring to Fig. 1, it can be observed that the distributions of
all subordinate classes for all 9 semantic terms are extremely
imbalanced. For some subordinate classes, the sample num-
bers are significantly less than the sample numbers of some
other subordinate classes. In some cases, the sample number
of the majority subordinate class is nearly 20 times greater
than the sample numbers of the minority subordinate classes.
Consequently, the data imbalance issue in the fine-grained
subordinate classes can easily bias the learning frameworks,
but sadly was not elaborated in previous works.

In this study, the data imbalance issue of medical image
data is explicitly addressed and tested on the LIDC dataset.
The specific approach in this study is to explore the data
synthesis to augment the sample numbers in the minority
classes. The commonly-used conventional data augmentation
techniques may involve random image translation, rotation,
flipping w.r.t. horizontal or vertical direction, etc. Since the
conventional data augmentation techniques don’t consider the
data distributions of classes, the efficacy of over-sampling
for the minority classes may be limited for the data with
extreme imbalanced distribution. In this paper, we investi-
gate the deep learning approach called generative adversarial
networks (GAN) [24] to synthesize samples within general
distribution-aware decision region for the minority classes to
combat multi-class fine-grained data imbalance problem.

The GAN technique was firstly introduced by
Goodfellow et al. [24] and basically is constituted of two
networks of a generator and a discriminator. The two net-
works are trained at the same time and compete against each
other in a minimax game. The generator is trained to fool the
discriminator by synthesizing realistic samples, whereas the
discriminator is trained to be equipped high discriminative
capability for the synthetic samples. However, the training of
the two networks can be quite unstable and may suffer mode
collapse problem [24]. Therefore, the synthesized samples
by the generator can be easily noisy and incomprehensible.
To further improve the capability of the generator, the tech-
nique of the deep convolutional generative adversarial net-
works (DCGAN) [25] was proposed by imposing a set of
constraints on the architectural topology of GAN to stabilize
the training process. Although better synthetic quality can be
achieved with the DCGAN technique, the training of both
GAN and DCGAN share the same problem of not easy to
reach convergence. Therefore, to train a promising GAN and
DCGAN can be very difficult.

To alleviate the issue of training difficulty, the Wasserstein
GAN [26], denoted as WGAN for short, was developed by
employing the Earth Mover (EM) distance for better mea-
surement of the distances between distributions. With the
EM distance, the WGAN is equipped with better converge
capability and the training of the WGAN can be more stable
and better withstand the problems like mode collapse, etc.

The family of the GAN techniques has been shown suc-
cessfully in the applications of text-to-image [27], [28]
as well as image-to-image translation [29], image super-
resolution [30], etc. In medical image analysis, the GAN

techniquewas also introduced to synthesis images of different
modality [31], [32], denoising for low dose CT [33], segmen-
tation [34], image reconstruction [35], etc. Themajor purpose
of using GAN is to approximate the object distribution for
better performance in each specific application. To our best
knowledge, the GAN technique has been less exploited to
approach the data imbalance issue in the domain of medical
image analysis. In this paper, we adopt the WGAN for the
over-sampling of the minority classes. Through the adver-
sarial iterative training, the distribution of the synthesized
images will approximate the distribution of the authentic CT
images. Fig. 2 compares the authentic samples of the subor-
dinate classes of the ‘‘texture’’ attribute with the synthesized
samples by the WGAN. The majority class of the ‘‘texture’’
attribute is the class 5. Therefore, no over-sampling is per-
formed for this class. As can be found, the synthesized sam-
ples are quite similar but different to the authentic samples.
The process of synthesizing samples with WGAN considers
the distributions of classes, and, thus the synthesized CT
image samples may reserve more general distribution-aware
decision regions for classifier than conventional approaches.
Meanwhile, the difficult of the fine-grained classification can
also be observed in Fig. 2. The classification between the two
consecutive subordinate classes is quite challenging.

The contribution of this work can be summarized in
twofold. First, the WGAN-based synthetic over-sampling
technique is presented for the data augmentation of theminor-
ity classes to tackle the imbalance issue. The WGAN tech-
nique attempts to synthesize samples by the approximation of
the original data distributions of the minority classes. Second,
our method is also applied to the challenging problem of
the fine-grained classification on the 7 semantic attributes of
the LIDC lung nodules. It will be shown that the WGAN-
based synthetic over-sampling technique can improve the
fine-grained classifications on highly imbalanced medical
data and provide better and useful synthesized minority class
samples than those transformed samples with the conven-
tional data augmentation method, which is commonly used in
many deep learning paradigms. It is worth noting that the goal
of this study is to illustrate the efficacy of the WGAN-based
synthetic over-sampling technique on the fine-grained clas-
sification for the application with extreme data imbalance.
Therefore, we don’t formulate the semantic attributing of the
lung nodules into a regression framework as shown in [20]
and [21]. Since the studies don’t consider the data imbalance
issue, the optimization of regression may easily favor the
majority class with smaller regression error and scarified the
accuracy of the minority classes.

II. MATERIALS AND METHODS
A. DATASET
The LIDC dataset includes more than 1010 thoracic CT
scans from 1010 patients, where each scan was reviewed
and annotated by four experienced thoracic radiologists with
rigorous reading protocol. In total, 2632 nodules in the LIDC
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FIGURE 2. Illustration of all subordinate classes in the attribute ‘‘texture’’. The images shown in the left part are the authentic samples, whereas
the synthetic samples by WGAN are shown in the right part.

dataset are involved in [36]. The region of interests (ROIs)
in the slices that depict each nodule is cropped into 64 ×
64 pixels and normalized with the lung HU window range
level of [−1400, 200]. Referring to [36] and [37], the size of
the largest nodule in the LIDC dataset in the transversal CT
slice is no more than 64× 64 pixels. Therefore, the setting of
the ROI size can sufficiently enclose all nodules in the LIDC
dataset. Each nodule was annotated with 9 semantic attribute
scores by at least one radiologist. If one nodule was annotated
by more than one radiologist, the semantic attribute scores
from all radiologists are averaged as representative scores
for training and testing [20], [21]. For the robustness of the
performance evaluation, 5-fold cross validation scheme based
on nodule unit is implemented for both the data augmenta-
tion step and the fine-grained classification of each semantic
attribute.

In this study, the seven semantic attributes shown in Table 1
are adopted to illustrate the efficacy of the over-sampling
technique with WGAN. The ‘‘is’’ and ‘‘cal’’ attributes are
excluded as the sample distributions of the two attributes
are too skewed to be processed. The class distributions of
‘‘is’’ and ‘‘cal’’ are (2606/15/8/2/1) and (0/0/189/82/97/2264)
respectively. On the other hand, the original number of the
subordinate classes of the rest seven attributes is 5. However,
we found that the sample number of the subordinate class 1 in
‘‘sphe’’, subordinate class 5 in ‘‘lob’’ and subordinate class
5 in ‘‘spic’’ are 2, 36 and 44 respectively. By comparing to
the number of samples in the majority class w.r.t. the above
classes, the sample numbers are too small to fit the scheme
of the 5-fold cross validation. Therefore, these minority sub-
ordinate classes are merged into their neighboring classes.
Specifically, the class with score 1 in the attribute ‘‘sphe’’

TABLE 1. Number of subordinate classes (#), sample distribution and
imbalanced ratios for each semantic attribute.

is merged into the class with score 2, and the classes with
score 5 in both attributes ‘‘lob’’ and ‘‘spic’’ are merged into
the class with score 4, respectively. After the merging pro-
cess, the numbers of the subordinate classes of the attributes
‘‘sphe’’, ‘‘lob’’ and ‘‘spic’’ are 4, see Table 1. Here, themajor-
ity class is defined as the class with the largest samples.
The imbalanced ratio throughout this paper is defined as
the ratio of the sample numbers of the majority class to
the minority class [38], [39]. As can be found in Table 1,
even with the merge preprocessing, the largest imbalanced
ratios of all seven semantic attributes range from 8.03 to
19.15, suggesting that the class imbalance issue remains
very serious. In this study, the schemes of GAN, DCGAN
and WGAN synthetic techniques and a conventional data
augementation method are employed to augment samples of
theminority subordinate classes to improve the sementic fine-
grained classification of lung nodules in CT images.

B. OVER-SAMPLING FOR MINORITY SUBORDINATE
CLASSES IN SEMANTIC ATTRIBUTES
In this study, the technique of the generative adversarial
networks (GAN) is employed for the over-sampling of the
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FIGURE 3. The training flowchart of a typical GAN. (a) Training path of the
discriminator network; (b) training path of the generator network.

minority subordinate classes. Typical GAN can be constituted
of a generator and a discriminator network. The function-
ality of the generator network is to synthesize samples by
estimating the underlying distribution of the target domain,
whereas the discriminator aims to differentiate the true sam-
ples and the synthetic samples derived from the generator.
The optimization process of the GAN pushes the generator
to synthesize plausible samples that can fool the discrimina-
tor, while also sharpens the differentiation capability of the
discriminator. Therefore, the effectively training of the GAN
needs to optimize two networks. The concept of the typical
GAN is illustrated in Fig. 3.

Since it needs to train the networks of the generator and
discriminator for the GAN, the optimization process can be
difficult and may suffer several drawbacks. First, the training
of the GAN is relatively unstable and may highly depend
on the competition between the generator and the discrim-
inator within the minimax game framework [24]. In other
words, a good equilibrium between the generator and the
discriminator is important to yield good quality of sample
synthesis. However, the gradient descent during the training
of the networks can’t always promise a good equilibrium.
For example, if a discriminator is equipped with high dif-
ferentiation capability in the training process, the generator’s
gradient may vanish quickly. Therefore, the optimization of
the generator may not be able to proceed to approximate the
true distribution of the target domain. As suggested in [40],
a better generator can be trained if the discriminator is deliber-
ately weaken. In such case, it may then require several passes
of trial and error and turn the whole training process difficult
and unstable. Second, there exists the so-calledmode collapse
in GAN, where the generator tends to produce samples with
low variety. The mode collapse is caused by the cases that
the generator is trapped to the same local minimum of the
cost function to synthesize similar samples. In such case,
the generated samples are not sufficiently diverse to represent
the whole distribution of the target domain, and hence is not
helpful to address the problem of the data imbalance.

FIGURE 4. The training flowchart of WGAN. (a) Training path of the
discriminator network; (b) training path of the generator network.

The Wasserstein GAN (WGAN) is a new GAN to ease the
training difficulty of the typical GAN and avoid the potential
problem of the mode collapse. The overview of the work-
flow structure of the WGAN for samples synthesis is shown
in Fig. 4. Comparing to Fig. 3, the objective functions of the
discriminator between the WGAN and the typical GAN are
different. For the typical GAN, the objective function of the
discriminator is determined with the binary classification of
true and synthesized samples, whereas the objective function
of the WGAN’s discriminator is represented by the Earth-
Mover (EM) distance between real and synthesized distribu-
tions. To this end, the learning of the WGAN’s discriminator
is formulated as a regression task but not classification.

The incorporation of the Earth Mover (EM) distance for
the measurement of the two comparing distributions in the
WGAN can avoid the asymmetry problem of the Kullback-
Leibler divergence [40] that could lead to mode collapse,
as well as the discontinuous issue of the loss function with
Jensen-Shannon divergence that may result in unsatisfac-
tory synthetic results. The EM distance can provide reliable
and usable gradient for the loss function to more easily
achieve synthesis results with better quality. The EM distance
between the real samples’ distribution Pr and the synthetic
samples’ distribution Ps can be defined as

W (Pr ,Ps) = inf
δ∈

∏
(Pr ,Ps)

E(x,y)∼δ ‖ x − y ‖, (1)

where x and y stand for the real and the synthetic samples,
respectively, and

∏
(Pr ,Ps) suggests the set of all joint dis-

tribution δ(x, y), where the marginal distributions of x and y
are Pr and Ps, respectively. Intuitively, the EM distance can
be interpreted as the minimal transported ‘‘mass’’ from y to
x for the purpose of transforming the distribution Ps to the
distribution Pr .

However, the infimum in e.q. (1) is highly intractable.
Instead, referring to [26], the solving of e.q. (1) can be sought
by

max
D

Ex∼Pr [D(x)]− Ey∼Ps [D(y)], (2)
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where D stands for the neural network of the discriminator.
The EM distance can then be approximately sought with
the optimization of the discriminator D, which is driven by
maximization the term Ex∼Pr [D(x)]−Ey∼Ps [D(y)] [26]. The
generator network, G, aims to synthesize samples with the
distribution Ps that approximates the real data distribution Pr .
During the training process, the generator network will map
a random vector z, which is commonly drawn from a normal
distribution p(z). By considering the sample synthesis by the
generator G, the EM distance can be rewritten as

max
D

Ex∼Pr [D(x)]− Ez∼p(z)[D(G(z))]. (3)

Referring to equations (1-3), the solving of the infimum
in e.q. (1) was equivalently transformed by approximately
seeking the maximum in e.q. (3). The maximum in e.q. (3)
can suggest the EMdistance betweenPr andPs. Furthermore,
we hope to change Ps to close to Pr as much as possible.
This can be determined by adjusting the synaptic weights
of the generator G, which is equivalent to min

G
W (Pr ,Ps).

Therefore, the whole training process of the WGAN can then
be expressed as

min
G

max
D

Ex∼Pr [D(x)]− Ez∼p(z)[D(G(z))]. (4)

Accordingly, the training of the WGAN can then be inter-
preted as a two-player minimax game between the discrim-
inator D and the generator G, and then can be achieved by
iteratively optimizing the discriminator D by

maxEx∼Pr [D(x)]− Ez∼p(z)[D(G(z))], (5)

as well as seeking the better generator that satisfies

min−Ez∼p(z)[D(G(z))]. (6)

The networks of the discriminator and the generator can
be both CNNs. The architectures of the discriminator and the
generator of the WGAN in this study are shown in Fig. 5.
Specifically, the input layer of the discriminator is an image
sample (either real or synthetic) with dimensions of 64 ×
64 pixels. The following layers of the discriminator are a
series of convolutional layers paired with batch normalization
and leaky rectified linear unit (LReLU). Batch normalization
can stabilize the leaning process and enable the gradient flow
toward deeper layers. Referring to [25], the batch normal-
ization is not recommended to be implemented for the input
layer of the discriminator and the output layer of the generator
to avoid sample oscillation and model instability.
The generator is structured to output the samples with the

same dimensionality of inputs for the discriminator. The input
of the generator is a random vector with 100 dimensions ini-
tialized from a normal distribution. The random noise vector
is reshaped to 100 × 1 × 1 and then filtered with transposed
convolution, denoted as CONVT, to 512 channels 4 × 4 fea-
ture maps. The CONVT is also named as deconvolution [25].
The following four layers of the generator are also CONVT
layers. For the generator, rectified linear unit (ReLU) is used
as the activation function of the neurons whereas the LReLU

FIGURE 5. The architecture of our WGAN. (a) Discriminator architecture;
(b) generator architecture.

TABLE 2. The Architecture of the fine-grained classification CNN model.
The abbreviations of ‘‘C’’, ‘‘M’’, and ‘‘FC’’ stand for convolution, max
pooling and full connected layer, respectively. The ‘‘K’’ is the number of
the subordinate classes of each semantic attribute.

is adopted for the neurons in the discriminator network. Batch
normalization is also implemented for the stabilization of the
learning process. The four CONVT layers subsequently dou-
ble the dimensions of the feature maps, whereas the number
of the channels is sequentially halved. The output layer of the
generator is constitutedwith 64× 64 pixels. The optimization
of the WGAN is carried out with the RMSProp algorithm.
The generator and the discriminator networks of the WGAN
are initialized from scratch (random initialization from zero-
centered normal distribution with standard deviation 0.02).
The slope of the leak for the LReLU in the discriminator
network is set to 0.2, whereas the learning rates for the both
discriminator and generator are 5e-5.

C. FINE-GRAINED CLASSIFICATION FOR THE
SEMANTIC ATTRIBUTES
The major purpose of this study is to illustrate the over-
sampling effectiveness with the WGAN. Therefore, a normal
CNN model is employed for the task of the fine-grained
classification for each semantic attributes of lung nodules.
The detailed architecture configuration of the category model
is described in Table 2. The optimization of the CNN is sought
by the stochastic gradient descent (SGD) algorithm and the
momentum parameter is set as 0.9. The learning rate is set to
be 0.0001 and the number of the training epoches is 100. The
batch size of the training is 64 and the weight decay is set
as 0.0005. The architecture of the fine-grained classification
CNN model is extended from the standard shallow convolu-
tional neural network LeNet. The hyper-parameters such as
momentum, batch size and weight decay are also set as the
default values used in the LeNet. The learning rate and the
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TABLE 3. The Data partitions in the 5-fold CV w.r.t the 7 semantic attributes. ‘‘class1’’, ‘‘class2’’, ‘‘class3’’, ‘‘class4’’ and ‘‘class5’’ are abbreviated as ‘‘c1’’,
‘‘c2’’, ‘‘c3’’, ‘‘c4’’ and ‘‘c5’’, respectively.

number of the training epochs are empirically determined for
the fine-grained classification.

III. EXPERIMENTS AND RESULTS
In this study, the fine-grained subordinate classification is
performed for the 7 different semantic attributes of lung
nodules in the LIDC CT images. To illustrate the efficacy
of the data over-sampling for the minority classes with the
WGAN, five schemes are implemented for comparison. The
first scheme, denoted as ORI, performs no over-sampling
and data augmentation on the training data, whereas the sec-
ond scheme, named AUG, carries out the standard data
augmentation adopted in [7] and [19] on the training data,
where each image can be rotated randomly with the degree
in the range from 0 to 359. Afterward, the image may be
flipped horizontally or vertically with probability of 0.5. The
rest three schemes are implemented with the GAN-based
synthetic over-sampling technique which adopt the typical
GAN [24], DCGAN [25] and WGAN [26] respectively for
data synthesis. All five schemes use the same CNNs with
the architecture shown in Table 2 for the purpose of the fine-
grained classification.

Since every CT scan in the LIDC dataset was read by
4 radilogists, each nodule can be possibly annotated by
at least one radiologist. For nodules annotated by at least
2 radiologists, the annotated scores of the semantic attributes
from different radiologists are averaged as the ground truth
labels [10], [11], [20], [21], [41].

A. DATA OVER-SAMPLING AND EXPERIMENTAL SETTINGS
In this study, the data over-sampling for the minority classes,
including the AUG, GAN, DCGAN and WGAN schemes,
is evaluated with the 5-fold cross validation (CV). For each

fold in the CV, the over-sampling is performed on the training
dataset, whereas the validation data remains unchanged for
the latter fine-grained classification. For fair comparison,
the numbers of the synthesized samples of each class in each
fold in the AUG, GAN, DCGAN and WGAN schemes are
the same. Meanwhile, the data partitions in the 5-fold CV are
the same for the ORI, GAN, DCGAN and WGAN schemes.
Table 3 shows the details in the 5-fold CV data partitions for
the five schemes and the batch size configuration in training
GAN, DCGAN and WGAN. The batch size in training the
WGAN, is mostly set as the same as the size of the training
samples to obtain synthetic samples as many as possible.
For the special cases like class 2 in ‘‘lob’’ and class 5 in
‘‘sub’’, the batch size are cut down for better training of the
discriminator. However, the batch size setting in training the
WGAN can not perform well in training the GAN and the
DCGAN in practice. Therefore, we set the batch size a bit
smaller in training the GAN and the DCGAN. Specifically,
the batch size settings can be also found in Table 3.

The training of the GANs is conducted on 32-core Intel
Xeon CPU E5-2620 and 128GB memory machine equipped
with an NVIDIA Tesla M40 (24GB on-board memory) GPU
card. The number of the synthesized samples for a minor-
ity class is determined by the size difference between the
majority and the minority classes to make the samples of the
minority and the majority classes as equal as possible. For
eachminority class, the training iterations is empirically set as
20000 to obtain the synthesized samples with quality. Fig. 6
illustrates the synthetic quality w.r.t. the number of generator
iterations. As can be observed in Fig. 6, the synthetic quality
can be reasonably good in the iteration of 20000. The training
process of theWGAN is much more stable than the GAN and
DCGAN.
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FIGURE 6. The training process and the synthetic quality with the discriminator loss for the GAN, DCGAN and WGAN, respectively.

B. FINE-GRAINED CLASSIFICATION FOR SEMANTIC
ATTRIBUTES
The normal CNNs with architecture described in Table 2 are
used for the task of the fine-grained classification. Specifi-
cally, the 7 classification CNNs are trained for the 7 semantic
attributes of lung nodules. The fine-grained CNN classifiers
are also evaluated with the 5-fold CV that share the same
data partitions in the 5-fold CV of the over-sampling schemes
in Table 3.
In this study, three assessment metrics are adopted to

profile the performance of the subordinate classification
and indirectly illustrate the efficacy of the over-sampling
schemes. The first and the second assessment metrics are the
F1 score and the extended G-mean, which are derived by the
basic metrics of the precision and recall. The third metric
is absolute distance defined in e.q. (9) for better evaluat-
ing the classification performance of the subordinate classes
that share very similar properties of the same base attribute
class [20], [21].

The F1 score is a standard accuracy of a multi-class clas-
sification problem by considering both precision and recall.
Specifically, the F1 score for the class i can be computed as

F1(i) =
2 ∗ R(i) ∗ P(i)
R(i)+ P(i)

, (7)

where P(i) and R(i) are the precision and recall of the class i,
respectively. Accordingly, the overallF1 score for one seman-
tic attribute can be simply obtained by averaging theF1 scores
of all k subordinate classes as

∑k
i=1 F1(i)/k . The second

extended G-mean metric [38], [42] is the geometric mean
of the recalls over all k subordinate classes for one semantic
attribute. The extended G-mean can reflect overall sensitivity
for one semantic attribute. Specifically, the extendedG-mean,
G, over all k subordinate classes for one attribute can be
defined as

G = (
k∏
i=1

R(i))
1
k , (8)

where R(i) is the recall of the class i. In general, larger values
ofF1 score andG-mean suggest the better agreement between
the predicted results and the labeled ground truths.

On the other hand, because the subordinate classes of each
semantic attribute share very similar properties of the same
base attibute class, the distance between the labeled class and
the predicted class can be a referential index to reflect the
relations of the subordinate classes [20], [21]. Accordingly,
the metric of absolute distance is adopted to illustrate how
close the prediction results to the true labeled class i, denoted
as d(i), which can be calculated as

d(i) =
1
Ni

Ni∑
n=1

|vn − ṽn|, (9)

whereNi is the total number of the samples for the class i, and
vn and ṽn are the true label, i.e., i, and predicted label of the
sample n, respectively. Different to the metrics of F1 score
and G-mean, smaller absolute distance values suggest better
performance of the classification method.

C. PERFORMANCE COMPARISON
To illustrate the efficacy of the data over-sampling tech-
niques for the data imbalance issue, five schemes of ORI,
AUG, GAN, DCGAN and WGAN are implemented for the
fine-grained classification of the seven different semantic
attributes of the lung nodules. Table 4 reports the overall
performances in terms of the metrics of F1 score, G-mean and
absolute distance for the seven semantic attributes w.r.t. the
five schemes. Since all five schemes are evaluated with
the 5-fold CV, the mean ± standard deviation statistics for
the three assessment metrics over the 5 folds are reported
in Table 4.

As can be observed in Table 4, both the GAN and DCGAN
schemes can achieve relatively higher F1 scores and G-means
and less absolute distances for most semantic attributes by
comparing to the ORI scheme. Meanwhile, the DCGAN
scheme performs a slight better than the GAN scheme. This
may suggest that the synthetic data augmentation can slightly
address the data imbalance issue for the CNN fine-grained
classification. In addition, the AUG scheme can achieve
slightly higher F1 scores and G-means and less absolute
distances for most semantic attributes by comparing to the
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TABLE 4. Performance summary in terms of F1 score, G-mean and Absolute distance for the 7 semantic attributes w.r.t. the five schemes over all five
folds in CV.

FIGURE 7. Performance boosting analysis of F1 score w.r.t. the over-sampling rate for the GAN, DCGAN, AUG and WGAN
schemes to the baseline scheme ORI.

DCGAN scheme. This indicates the efficacy of the conven-
tional data augmentation method commonly used in many
deep learning works. Besides, it is worth noting that the
G-mean performance in the ‘‘sphe’’ attribute of the ORI
scheme is 0. It is because the recall of its subordinate class
1 is 0 and hence the overall G-mean is resulted as 0 due
to the operation of geometric mean. The sample number of
the subordinate class 1 is 124, which is a minority class.
Accordingly, it can be suggested that data imbalance is a
critical impact factor for fine-grained classification.

On the other hand, it can be also found in Table 4 that
the WGAN scheme can perform much better than the AUG
for all semantic attributes tasks. It may be because that the
WGAN-based synthetic data augmentation method attempts
to approximate the underlying data distributions of the sub-
ordinate classes in each attribute. The conventional data aug-
mentation (AUG) method doesn’t consider the underlying
data distribution and thus the boosting of performance may
be limited. The reasons of that the performances of the GAN
and DCGAN schemes do not provide better help might be the
not enough stable training process of the GAN and DCGAN,

particularly in the small samples situation. Therefore, the syn-
thesized data from the GAN andDCGANmay sometimes not
very representative for the subordinate classes comparing to
the WGAN.

D. PERFORMANCE BOOSTING WITH OVER-SAMPLING
SCHEMES
To further illustrate the efficacy of the over-sampling tech-
nique on the performance trends of all minority classes,
we carry out the performance boosting analysis w.r.t. the
factor of the over-sampling rate of all minority classes. The
over-sampling rate is defined as num(major)−num(minor)

num(minor) , where
num(major) means the sample number of a majority class and
num(minor) means the sample number of a minority class.
The operation of the over-samplingmakes the sample number
of the minority classes are equal to that of the majority class.
The performance boosting here is defined as the difference
between the over-sampling schemes of the GAN, DCGAN,
AUG orWGAN to the baseline schemeORI in terms of either
F1 score or absolute distance. Meanwhile, it is worth noting
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FIGURE 8. Performance boosting analysis of absolute distance w.r.t. the over-sampling rate for the GAN, DCGAN, AUG and
WGAN schemes to the baseline scheme ORI.

again that the four over-sampling schemes of GAN, DCGAN,
AUG and WGAN are only performed in the training phase
data of the CNN fine-grained classification.

Fig. 7 illustrates the performance boosting in terms of F1
score for the GAN, DCGAN, AUG andWGAN schemes over
the ORI scheme w.r.t. all minority subordinate classes of the
seven semantic attributes. The horizontal axis in Fig. 7 is
sorted with the over-sampling rate of each subordinate class
in ascending order, whereas each index in the horizontal axis
is supplemented with 3-tuple of the corresponding semantic
attribute, subordinate class and the F1 score of ORI. As can
be observed in Fig. 7, the performance boosting on both AUG
and WGAN schemes can be mostly positive. The WGAN
scheme can gain larger performance boosting than the other
three schemes, particularly for the cases with larger over-
sampling rates, i.e., the subordinate classes with samples
significantly less than its majority class. It is worth noting
that the DCGAN scheme is comparable to the AUG scheme
when the over-sampling rate is smaller than 3.37, whereas
the DCGAN scheme doesn’t provide better help than the
AUG scheme when the over-sampling rate is larger than
3.96. This suggests that the fact of the small original training
samples might be an unfavorable condition for the DCGAN.
In contrast, the WGAN scheme performs still efficiently
and robustly even if the original training samples are very
small.

Fig. 8 illustrates similar performance boosting analysis to
Fig. 7 in terms of the absolute distance metric. Different
to the F1 score, the larger negative difference of the abso-
lute distance suggests better performance boosting. It can be
found that the better performance can be achieved when the
over-sampling rate is larger than 2.5. Meanwhile, the WGAN
scheme can also outperform the GAN, DCGAN and AUG
schemes with the metric of absolute distance.

It can be observed in Fig. 7 that the over-sampling
rate index of 10.13 (text, c1, 0.57) suggests almost
no performance boosting for either AUG or WGAN.

TABLE 5. The classification ratios of the subordinate class1 over all
subordinate classes of the ‘‘text’’ attribute w.r.t the ORI, GAN, DCGAN,
AUG and WGAN schemes. For example, the notation of ‘‘c1→c3’’ means
the proportion of true samples of the subordinate class1 being classified
as the subordinate class3.

However, the same index in Fig. 8 illustrates the performance
boosting with the AUG and WGAN schemes. It is because
that the F1 score metric can only reflect the miss-
classification but not illustrate the erroneous degree. Since
there exists class relation among the consecutive subordi-
nate classes in all semantic attributes, the erroneous degree
shall suggest that the error of miss-classifying subordinate
class 1 into class 5 can be larger than the error of miss-
classifying class 1 into class 2. The erroneous degree can be
reflected with the absolute distance metric. To further inves-
tigate the underlying cause of performance discordance for
the index 10.13 in Figs. 7 and 8, we report the classification
ratios of the subordinate class 1 (c1) into all subordinate
classes (c1,c2,c3,c4,c5) in the attribute ‘‘text’’ w.r.t. the five
schemes of the ORI, GAN, DCGAN, AUG and WGAN
in Table 5. As can be found, the miss-classification ratios
of ‘‘c1→c5’’ in the ORI and AUG schemes are perceiv-
ably larger than the ratio in the WGAN scheme, whereas
the situation is just opposite for the ratios of ‘‘c1→c2’’.
Unfortunately, themiss-classifications of the cases ‘‘c1→c2’’
and ‘‘c1→c5’’ are treated equally for the computation of F1
score. The absolute distance on the other hand can reflect
the difference between the cases ‘‘c1→c2’’ and ‘‘c1→c5’’
with erroneous degree. Accordingly, the performance dis-
cordance in Figs. 7 and 8 for the index 10.13 can be
explained.
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TABLE 6. Performance summary in terms of F1 score, G-mean and Absolute distance for the 7 semantic attributes w.r.t. the schemes of the GAN, DCGAN,
AUG and WGAN over all five folds in CV when more realistic images are augmented by comparing to Table 4.

E. PERFORMANCE IMPROVEMENT WITH MORE
REALISTIC AUGMENTED DATA
To illustrate the efficacy of the data over-sampling techniques
for the data imbalance issue when more realistic samples
are augmented, we attempt to augment more data for each
subordinate class in all semantic attributes. With the oper-
ation of the more data augmentation, the sample number
of each subordinate class has been doubled on the basis
of the schemes of the GAN, DCGAN, AUG and WGAN
in Table 4. Table 6 reports the overall performances in terms
of the metrics of F1 score, G-mean and absolute distance for
the seven semantic attributes w.r.t. the schemes of the GAN,
DCGAN, AUG and WGAN. Meanwhile, the performance
of increment (↑) and decrement (↓) comparing to Table 4
w.r.t the F1 score, G-mean and absolute distance are also
supplemented in Table 6.

As can be observed in Table 6, the performance of
the fine-grained classification of the WGAN scheme has
been improved for all semantic attribute tasks when double
amounts of data for each subordinate class in all semantic
attributes are synthesized. The WGAN scheme still performs
much better than the schemes of the GAN, DCGAN and
AUG. The performance of the schemes of the GAN, DCGAN
and AUG has also been boosted for most semantic attributes
with more augmented data. However, there are some degrees
of performance degradation in the schemes of the GAN,
DCGAN and AUG for the semantic attributes ‘‘sub’’, ‘‘text’’
and ‘‘mar’’. This may suggest that the WGAN scheme
can be more effective and robust than the schemes of the
GAN, DCGAN and AUG for addressing the data imbalance
problem.

IV. DISCUSSION AND CONCLUSION
In this paper, theWGAN technique is exploited to address the
data imbalance issue which commonly exists in the medical
image classification problems. The WGAN technique is able
to estimate the underlying distribution of a minority class
domain and hence can synthesize plausible samples to mit-
igate the data imbalance issue for the performance boosting.
The WGAN-based data synthetic over-sampling technique
is specifically applied for the fine-grained classification of
the 7 nodule semantic attributes in the public LIDC dataset.
As can be found in Fig. 1, the sample distribution of the

subordinate classes are very imbalanced, the optimization
of classification or regression [20], [21] can easily favor
the majority classes. In such case, the accuracy over the
minority classes can be scarified to attain smaller classifica-
tion or regression errors. To clearly illustrate the effectiveness
of WGAN-based data synthetic over-sampling technique for
the data imbalance issue, a CNN architecture is employed for
the fine-grained classification of the 7 semantic attributes.
Referring to Tables 4, 6 and Figs. 7, 8, the experimental
results suggest the efficacy of the WGAN scheme for the
performance boosting on the fine-grained classification of the
7 semantic attributes, particularly for those minority subordi-
nate classes.

Meanwhile, it is also shown that the WGAN-based data
synthetic over-sampling technique can be more effective than
the conventional data augmentation (AUG) scheme, which is
commonly practiced in many deep learning works. It is sug-
gested that more helpful synthesized samples can be obtained
by considering the underlying distributions of the minority
classes. On the other hand, the synthesized data from the
schemes of the GAN and DCGAN do not provide better help
in the data imbalance problem than the synthesized data from
the AUG scheme. Referring to Fig. 6, the training processes
of the generators in the GAN and DCGAN can be very
unstable in terms of the discriminator loss. The synthesized
data from the GAN and DCGAN may sometimes turn out
to be implausible or not very representative for the class
of minority. Therefore, helpful synthesized data may not be
easily obtained with a systematic tuning for the training of the
GAN and DCGAN. By contrast, the training of the generator
in the WGAN scheme is relatively stable and therefore the
quality of the synthesized data from the WGAN scheme can
be better assured.

In the medical context, the minority classes can be very
important. Since for some subtypes or stages of one disease
can be very difficult to collect, it will lead to significant data
imbalance situation, and then render the classification prob-
lem very arduous. For example, the subordinate class 3 in the
attribute ‘‘text’’ refers to the sub-solid nodules, which are rel-
atively rare in the LIDC data but important as this type of nod-
ules are highly associated to the subtype of adenocarcinomas.
Therefore, accurate identification of sub-solid nodules can
be helpful for the determination of adenocarcinomas for
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more precise diagnosis and treatment recommendation in the
computer-aided diagnosis (CAD) application. Without the
support of sufficient training data, promising performance
of the fine-grained classification may not be easily attained.
In such case, the tackle of the data imbalance matters for
many AI applications in medicine.

Important as it is, the data imbalance issue has been
less explicitly explored in previous computer-aided medical
image analysis studies. In particular, with the popularization
of data-hungry deep learning paradigms, the data imbalance
issue may be getting important. In this study, the efficacy of
the WGAN-based over-sampling scheme is demonstrated to
address the serious data imbalance issue for the fine-grained
classification on the LIDC dataset. The fine-grained classi-
fication is per se a quite difficult problem and satisfactory
performance can’t not be easily achieved [43], [44]. For the
fine-grained classification of the nodule semantic attributes,
the boundary between the adjacent subordinate classes can
be very ambiguous and subjective. The difficulty of this
problem is further exacerbated by the severe data imbalance
issue and turns out to be very arduous. Although promising
regression performance was reported in [20] and [21], low
regression values don’t necessarily reflect high prediction
accuracy for the minority classes. As the optimization may
favor the majority classes and scarify the minority classes,
the data imbalance issue shall be explicitly addressed, but
unfortunately was not tackled in many previous studies [20],
[21] on the LIDC dataset. The WGAN-based approach pre-
sented in this paper is shown to be better than the conventional
data augmentation technique used in many previous deep
learningworks and the fine-grained classificationwithout any
data augmentation. Accordingly, it may thus shed a light on
using the WGAN technique for data augmentation for the
future imbalanced deep learning studies.

The major limitation of this study lies in that we perform
minority over-sampling on individual semantic attributes,
and hence the whole over-sampling process can be little bit
tedious. The future work will explore on the relations among
the semantic attributes for the data synthesis to simplify the
over-sampling process as well as to boost the synthetic quality
even further.
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