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ABSTRACT The minimum neighborhood and combinatorial property are two important indicators of fault
tolerance of a multiprocessor system. Given a graphG, θG(q) is the minimum number of vertices adjacent to a
set of q vertices of G (1 ≤ q ≤ |V (G)|). It is meant to determine θG(q), the minimum neighborhood problem
(MNP). In this paper, we obtain θAGn (q) for an independent set with size q in an n-dimensional alternating
group graph AGn, a well-known interconnection network for multiprocessor systems. We first propose some
combinatorial properties of AGn. Then, we study the MNP for an independent set of two vertices and obtain
that θAGn (2) = 4n−10. Next, we prove that θAGn (3) = 6n−16. Finally, we propose that θAGn (4) = 8n−24.

INDEX TERMS Minimum neighborhood, combinatorial property, fault tolerance, independent set, alternat-
ing group graphs.

I. INTRODUCTION
Minimum neighborhood problem of interconnection net-
works has become increasingly important due to the rapid
development of multiprocessor systems. Given a graph G,
the θG(q) is the minimum number of vertices adjacent to a
set of q vertices of G (1 ≤ q ≤ |V (G)|). It is meaning-
ful to determine θG(q), the Minimum Neighborhood Prob-
lem (MNP). To ensure the stable running of the systems,
we should consider the tolerant degree in term of MNP. Also,
the MNP plays a crucial role in determining the connectivity,
the diagnosability and the general relationship between them
in interconnection networks. Nevertheless, it is rather com-
plicated to determine the MNP for a general set of q vertices,
since it depends intensely on the topological structure of the
interconnection network, and it needs detailed analysis on the
common neighbors and the private neighbors.

Minimum neighborhood problem is not only of inter-
est in its own right, but also useful in system-level fault
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diagnosibility–traditional diagnosability [11], conditional
diagnosability [13], extra conditional diagnosability [38],
good-neighbor diagnosability [17], t/k-diagnosability [25],
and in the analysis of fault tolerance of interconnection
networks–traditional connectivity [8], extra connectivity [7],
restricted connectivity [29], component connectivity [4],
structure connectivity [23].

In 1996, Somani and Peleg [25] gave the lower bounds
on the size of neighbors of a subset D with |D| = q in
n-hypercube Qn with 1 ≤ q ≤ n+ 1 and n-star graph Sn with
1 ≤ q ≤ n, which are qn− q(q+ 1)/2+ 1 and qn− 3q+ 2,
respectively, and used them to obtain the t/k-diagnosability
under the PMC model. Caruso et al. [1] used the minimum
neighborhood of regular systems to obtain the diagnosability.
Lai et al. [14] also applied the minimum neighborhood of
matching composition network to the diagnosability. Fan and
Lin [6] computed the minimum neighborhood of BC graphs
which is applied to t/k-diagnosability. Zheng et al. [40] and
Zheng and Zhou et al. [41] proposed the size of neighbors of a
subsetDwith 2 ≤ |D| ≤ 4 and used it to obtain the traditional
diagnosability. Yang et al. [34]–[36] applied this results to
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obtain the maximal component. In 2009, Yang andMeng [31]
established the size of a subgraph A ofQn which is (q+1)n−
2q−q(q−1)/2 when |V (A)| = q+1 and used it to obtain the
extra connectivity. In 2015, Lin et al. [18] proposed the size
of neighbors of a subset D in n-shuffle-cube, which can be
applied to conditional diagnosability. In 2016, Zhao et al. [39]
proposed that the size of neighbors of an independent set D
of vertices with |D| = q in Qn is ≥ −q2/2+ (2n− 5/2)q−
n2+2n+1 for n+1 ≤ q ≤ 2n−4 and applied it to obtain the
component connectivity. In 2016, Xu et al. [32] established
the lower bound of size of neighbors of a subset D with 3 ≤
|D| ≤ 5 in (n, k)-arrangement graph, which can be applied
to t/k-diagnosability and extra conditional diagnosability.
Lin et al. [21] proposed the size of neighbors of a 2-path or a
3-cycle in general regular graphs, which can be applied to
build the relationship between conditional diagnosability and
extra connectivity under the comparison model. In 2018,
under the PMC model, Lin et al. [16] proposed the size of
neighbors of a 4-cycle in general regular graphs, which can
be applied to build the relationship between conditional diag-
nosability and extra connectivity. Moreover, Lin et al. [22]
also applied the size of neighbors of a subsetD to propose the
t/k-diagnosability for regular graphs, including n-alternating
group graph, n-split-star network, ln-hypermesh and (n, l)-
star graph. Also, Lin et al. [19] proposed the size of neighbors
of a subgraph B of order q + 1 in the (n, k)-arrangement
graph An,k , which can be applied to the g-good-neighbor
conditional diagnosability. Lin et al. [15] used the size of
neighbors of a subset in general regular networks to establish
the relationship between g-good-neighbor diagnosability and
g-restricted connectivity. To summarize, the minimum neigh-
borhood problem in a network is very meaningful.

In 1993, Jwo et al. [12] first proposed the n-alternating
group graph AGn as a topology of interconnection network
for multiprocessor systems. The n-alternating group graph
AGn possesses sufficient amount of good properties including
cycle-embedding [2], [27], [33], and small diameter [12].
Moreover, the alternating group graph is not only pancyclic
and hamiltonian-connected [3], but also panconnected [10].
It also have a fault-free longest path [26] and vertex pan-
cyclicity [28]. Furthermore, Lin et al. [24] established the
extra fault tolerance and conditional diagnosability of AGn
in 2015. There is another type of interconnection network
based on alternating group called the n-alternating group
network ANn, which is different from the n-alternating group
graph AGn [12] investigated in this paper. Both of the AGn
and ANn are Cayley graphs, but with different generating
sets. Consequently, they have distinct adjacency manners.
Roughly speaking, the edges of AGn are generated by (12i)
and (1i2) for i = 3, . . ., n, while the edges of ANn are
generated by (123), (132) and (12)(3i) for i = 4, . . ., n.

Motivated by the research on minimum neighborhood in
a generalized cube [30] and the size of neighbors of an
independent set D of vertices with |D| = q in Qn [39], in this
paper, we obtain θAGn (q) for an independent set with size q
in AGn. We first propose some combinatorial properties of

AGn. Then we study the minimum neighborhood problem for
an independent set of two vertices and obtain that θAGn (2) =
4n − 10. Next, we prove that θAGn (3) = 6n − 16. Finally,
we propose that θAGn (4) = 8n − 24. Meanwhile, we present
sufficient amount of figures to better illustrate the process of
the proofs.
Organization: The remainder of this paper is organized

as follows. Section II introduces some preliminaries used
throughout this paper. Section III gives some basic combina-
torial properties of AGn. Section IV focuses on the minimum
neighborhood of AGn. Section V concludes this paper.

II. PRELIMINARIES

In this section, we will introduce some basic definitions for
networks.

A. TERMINOLOGIES
The term G = (V (G),E(G)) represents a graph where v ∈
V (G) is a vertex and e ∈ E(G) is an edge. The numbers of
vertices and edges of G are defined as |V (G)| and |E(G)|.
A subgraph S of G denoted by H ⊆ G, is a graph where

V (S) ⊆ V (G) and E(S) ⊆ E(G). Let G1,G2, . . . ,Gt be t
subgraphs of G, and we set

⋃t
i=1 Gi = G[

⋃t
i=1 V (Gi)] and⋂t

i=1 Gi = G[
⋂t

i=1 V (Gi)]. Let D ⊆ V (G), the notation G−
D denotes a subgraph obtained by deleting all vertices of D
from G and deleting those edges with at least one end-vertex
in D, simultaneously. We use E[M ,N ] to represent the set of
all edges between M and N .

For any v ∈ V (G), the neighborhood NG(v) of v in G is
the set of all vertices which are adjacent to v. Let NG[v] =
NG(v) ∪ {v}. We define NG(D) = {v ∈ V (G) − D | ∃u ∈
D, uv ∈ E(G)} = (

⋃
u∈D N (u))−D. LetNG[D] = NG(D)∪D.

A path is a finite or infinite sequence of edges which connect
a sequence of vertices that are all distinct from each another.
A cycle is a path of edges and vertices wherein a vertex is
reachable from itself. A k-path (or k-cycle) is a path (or cycle)
of length k .

B. ALTERNATING GROUP GRAPHS
Let 〈n〉 = {1, . . . , n − 1, n} and let ζ = ζ1ζ2 . . . ζn be a
permutation of elements in 〈n〉 where ζα ∈ 〈n〉 for 1 ≤ α ≤ n
and ζα 6= ζβ for 1 ≤ α 6= β ≤ n. A pair of elements ζα
and ζβ is said to be an inversion of ζ if ζα < ζβ whenever
1 ≤ β < α ≤ n. An even permutation is a permutation with
an even number of inversions. LetAn denote the set of all even
permutations over 〈n〉.
Definition 1 [12]: The n-dimensional alternating group

graph AGn consists of vertex-set V (AGn) = An, and edge-set
E(AGn) = {ζη | η is obtained from ζ by rotating the symbols
in positions 1, 2, and α from left to right or from right to left
for some α ∈ {3, 4, . . . , n− 1, n}}.

It can be seen that AGn is regular of degree 2n − 4,
|V (AGn)| = n!

2 , and |E(AGn)| =
(n−2)n!

2 . Fig. 1 describes
an example of AG4.
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FIGURE 1. An illustration of a 4-alternating group graph.

Denote by Aαn (n ≥ 3 and 1 ≤ α ≤ n) the subset of
An consisting of all even permutations with α in the n-th
position, and denote by AGαn the subgraph of AGn induced
by Aαn . It implies that AGαn is isomorphic to AGn−1 for any
α ∈ 〈n〉. The n-alternating group graph is composed of n
disjoint copies of (n − 1)-alternating group graphs such that
AGαn connects AGβn (1 ≤ α 6= β ≤ n) by (n − 2)! disjointed
edges due to the hierarchical structure. These (n − 2)! dis-
jointed edges are called outside edgeswith the form ζηwhere
ζ = γβ · · ·α, η = αγ · · ·β or ζ = βγ · · ·α, η = γα · · ·β
for γ ∈ 〈n〉 − {α, β}. Let Eα,βn (AGn) be the set of edges
in AGn connecting AGαn and AGβn for 1 ≤ α 6= β ≤ n.
In particular, for each inside edge ζη with ζ = γβ · · · δ · · ·α
and η = βδ · · · γ · · ·α in AGαn , there are two adjacent vertices
ζ ′ = αγ · · · δ · · ·β and η′ = δα · · · γ · · ·β in AGβn such
that {ζ, ζ ′, η′, η, ζ } is a 4-cycle in AGn. Note that ζ ′ and
η′ are uniquely determined by the 4-cycle structure of ζη.
Moreover, every vertex ζ ∈ V (AGαn ) lies on exactly 2n − 6
inside edges and two outside edges. Furthermore, the two
end-vertices, connecting one node via these two outside edges
are in distinct induced subgraphs.

III. COMBINATORIAL PROPERTIES OF ALTERNATING
GROUP GRAPHS

In this section, we give some basic combinatorial proper-
ties of AGn.
Lemma 1 [12]: An n-alternating group graph AGn has the

following basic properties.
(1) AGn is (2n−4)-regular and κ(AGn) = δ(AGn) = 2n−4

for n ≥ 3.
(2) Every vertex of AGαn has two outside neighbors, whose

are in distinct AGβn and AGγn for 1 ≤ α 6= β ≤ n, 1 ≤ α 6=
γ ≤ n, 1 ≤ β 6= γ ≤ n and n ≥ 4.
(3) There exist (n−2)! disjoint edges between any two AGαn

and AGβn , i.e., |E
α,β
n (AGn)| = (n − 2)!, for 1 ≤ α 6= β ≤ n

and n ≥ 4.
Lemma 2: Given any two vertices ζ, η of AGn.
(1) [9] If ζη /∈ E(AGn), then |N (ζ ) ∩ N (η)| ≤ 2.
(2) [24] If ζη ∈ E(AGn), then |N (ζ ) ∩ N (η)| = 1.

Lemma 3: Let D be a subset of V (AGn) (n ≥ 5).
(1) [5], [9] If |D| ≤ 4n− 11, then AGn − D possesses one

of the following results.

• one component (connected);
• two components, the small one being a node;
• two components, the small one being an edge.
Furthermore, |D| = 4n − 11 and D consists of all
neighbors of the edge.

(2) [5] If |D| ≤ 6n − 20, then AGn − D possesses one of
the following results.

• one component (connected);
• two components, the small one being a node or an edge;
• three components, the small two being both a node,
respectively.

(3) [9] If |D| ≤ 6n − 19, then AGn − D possesses one of
the following results.

• one component (connected);
• two components, the small one being a 2-path, or a
node, or an edge;

• three components, the small two being both a node,
respectively.

(4) [24] If |D| ≤ 8n− 29, then AGn − D possesses one of
the following results.

• one component (connected);
• two components, the small one being a 3-cycle, or a 2-
path, or a node, or an edge;

• three components, the small two being both a node,
respectively, or a node and an edge;

• four components, the small three being all a node,
respectively.

Lemma 4 [37]: (1) Any 3-cycle in AGn has the form
u1u2u3u1, where u1 = u2(12i), u2 = u3(12i), u3 = u1(12i)
for some i. Each edge is in a unique triangle.
(2) Any 4-cycle in AGn has the form u1u2u3u4u1 where

u2 = u1(12i), u3 = u2(12j), u4 = u3(12i), u1 = u4(12j) for
some i, j with i 6= j.

It should be noted that a 3-cycle may also have the form
u2 = u1(1i2), u3 = u2(1i2) and u1 = u3(1i2). Moreover,
a 4-cycle may also have the form u2 = u1(1i2), u3 = u2(1j2),
u4 = u3(1i2), u1 = u4(1j2) for i 6= j. That is to say, if u =
v(1i2), then v = u(12i).
Theorem 1: Let u, v be two independent vertices in a

4-cycle of an (n− 1)-subgraph of AGn. Then the four outside
neighbors of u, v are in four different subgraphs.

Proof:Assume that uxvyu is a 4-cycle in subgraph AGknn .
By Lemma 4 (2) and the symmetry of AGn, x = u(12i), v =
x(12j), y = v(12i) and u = y(12j) where i 6= j (see
Fig. 2). Assume that u = k1k2 · · · ki · · · kj · · · kn. We have
v = kikj · · · k1 · · · k2 · · · kn. By Lemma 1 (2), u has two
outside neighbors in subgraph AGk1n and subgraph AGk2n .
Moreover, v has two outside neighbors in subgraphs AGkin
and AG

kj
n , respectively. By the fact that any two values in set

{k1, k2, ki, kj} are distinct, the four outside neighbors of u, v
are in four different subgraphs.

VOLUME 7, 2019 17301
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FIGURE 2. An illustration of outside neighbors of two independent
vertices in a 4-cycle of an (n− 1)-subgraph of AGn.

Theorem 2: Let u, v be two independent vertices in a
2-path of an (n−1)-subgraph of AGn such that uv /∈ E(AGn).
If |N (u) ∩ N (v)| = 1, then the four outside neighbors of u, v
are in three different subgraphs.

Proof: Assume that uxv is a 2-path in subgraph AGknn
such that uv /∈ E(AGn). By the symmetry of AGn, let x =
u(12i). Hence, u = x(1i2).

FIGURE 3. Illustrations of outside neighbors of two independent vertices
in a 2-path of an (n− 1)-subgraph of AGn.

If v = x(12i) (see Fig. 3 (1)), then uxv is a 3-cycle by
Lemma 4 (1). Hence uv ∈ E(AGn), which is a contradiction.
If v = x(12j) (j 6= i) (see Fig. 3 (2)), then there

exists a vertex y = v(12i) such that uxvyu be a 4-cycle
by Lemma 4 (2). Hence |N (u) ∩ N (v)| = 2, which is a
contradiction.

If v = x(1i2) (see Fig. 3 (3)), then u = v, which is a
contradiction.

Therefore, v = x(1j2) (j 6= i) (see Fig. 3 (4)).
Assume that u = k1k2 · · · ki · · · kj · · · kn. We have v =
kjk2 · · · k1 · · · ki · · · kn. By Lemma 1 (2), u has two outside
neighbors in subgraphs AGk1n and AGk2n , respectively. More-
over, v has two outside neighbors in subgraphsAG

kj
n andAGk2n ,

respectively. By the fact that any two values in set {k1, k2, kj}
are distinct, the four outside neighbors of u, v are in three
different subgraphs.

IV. MINIMUM NEIGHBORHOOD OF ALTERNATING
GROUP GRAPHS

In this section, we will compute the minimum neighbor-
hood of an independent set in V (AGn).
Theorem 3: Let D be an independent set in V (AGn) (n ≥

4). We have the following results:
(1) If |D| = 2, then |N (D)| ≥ 4n − 10, and the minimum

neighborhood for D in AGn is θAGn (2) = 4n− 10.
(2) If |D| = 3, then |N (D)| ≥ 6n − 16, and the minimum

neighborhood for D in AGn is θAGn (3) = 6n− 16.
Proof: Let D be an independent set of V (AGn).

(1) Let D = {u, v}. By Lemma 2 (1), |N (u) ∩ N (v)| ≤ 2.
By Lemma 1 (1), |N (u)| = |N (v)| = 2n−4. Hence, |N (D)| ≥
2(2n− 4)− 2 = 4n− 10 and θAGn (2) = 4n− 10.
(2) Let D = {u, v,w}. We divide it into the following three

cases depending on the distribution of D.
Case 1 (D Is in a Subgraph (see Fig. 4)): By the symme-

try of AGn, assume that D ∈ V (AG1
n). We will prove the

result by mathematical induction. First, the result holds for
n = 4. Assume that the result holds for n − 1. By inductive
assumption, |NAG1

n
(D)| ≥ 6(n − 1) − 16 = 6n − 22.

By Lemma 1 (2), any vertex of D has two outside neighbors
outside subgraphAG1

n and these two neighbors are in different
subgraphs. Hence, |NAG<n>−{1}n

(D)| ≥ 2× 3 = 6. Therefore,

|N (D)| = |NAG1
n
(D)| + |NAG<n>−{1}n

(D)|

≥ 6n− 22+ 6

= 6n− 16.

FIGURE 4. An illustration of outside neighbors of D distributed in an
(n− 1)-subgraph with |D| = 3.

Case 2 (D Is Distributed in Two Distinct Subgraphs): By
the symmetry of AGn, assume that {u, v} ⊆ V (AGnn) and w ∈
V (AG1

n).
(2.1) |N (u) ∩ N (v)| = 2 (see Fig. 5 (1)-(3)).
|NAGnn (u)| = |NAGnn (v)| = 2(n−1)−4 = 2n−6 by Lemma 1

(1). Hence, |NAGnn ({u, v})| ≥ 2(2n − 6) − 2 = 4n − 14.
By Theorem 1, the four outside neighbors of u, v are in
four different subgraphs. Therefore, there exists at most one
outside neighbor of u, v in subgraph AG1

n. Suppose that there
exists one outside neighbor x of u, v in subgraph AG1

n such
that x ∈ NAG1

n
(w). Assume that u = 12 · · · i · · · j · · · k · · · n

and v = ij · · · 1 · · · 2 · · · k · · · n by Theorem 1. Hence, x =
2n · · · i · · · j · · · k · · · 1. The other outside neighbor of u is
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FIGURE 5. Illustrations of outside neighbors of D = {u, v, w} where
{u, v} ⊆ V (AGn

n) and w ∈ V (AG1
n) such that |N(u) ∩ N(v )| = 2.

n1 · · · i · · · j · · · k · · · 2 and two outside neighbors of v are
ni · · · 1 · · · 2 · · · k · · · j and jn · · · 1 · · · 2 · · · k · · · i.

AGkn

By the symmetry of AGn, assume that w = x(12i) (see
Fig. 5 (1)), we have w = ni · · · 2 · · · j · · · k · · · 1. Hence, two
outside neighbors of w are i1 · · · 2 · · · j · · · k · · · n in AGnn and
1n · · · 2 · · · j · · · k · · · i in AGin. Since 1n · · · 2 · · · j · · · k · · · i 6=
jn · · · 1 · · · 2 · · · k · · · i, |NAG<n>−{n}n

({u, v})∪NAG<n>−{1}n
(w)| ≥

4. By Lemma 1 (1), |NAG1
n
(w)| ≥ 2(n − 1) − 4 = 2n − 6.

Therefore,

|N (D)| = |NAGnn ({u, v})| + |NAG1
n
(w)|

+ |NAG<n>−{n}n
({u, v}) ∪ NAG<n>−{1}n

(w)|

≥ 4n− 14+ 2n− 6+ 4

= 6n− 16.

By the symmetry of AGn, assume that w = x(12j)
(see Fig. 5 (2)), we have w = nj · · · i · · · 2 · · · k · · · 1.
Hence, two outside neighbors of w are j1 · · · i · · · 2 · · · k · · · n
and 1n · · · i · · · 2 · · · k · · · j. Since 2n · · · i · · · 2 · · · k · · · j 6=
ni · · · 1 · · · 2 · · · k · · · j, |NAG<n>−{n}n

({u, v})∪NAG<n>−{1}n
(w)| ≥

4. By Lemma 1 (1), |NAG1
n
(w)| ≥ 2(n − 1) − 4 = 2n − 6.

Therefore,

|N (D)| = |NAGnn ({u, v})| + |NAG1
n
(w)|

+ |NAG<n>−{n}n
({u, v}) ∪ NAG<n>−{1}n

(w)|

≥ 4n− 14+ 2n− 6+ 4

= 6n− 16.

We can find that the result still holds when w = x(1j2).
By the symmetry of AGn, assume that w = x(12k)

(k 6= i and k 6= j) (see Fig. 5 (3)), we have
w = nk · · · i · · · j · · · 2 · · · 1. Thus, two outside neighbors
of w are in subgraphs AGnn and AGkn, respectively. Hence,
|NAG<n>−{n}n

({u, v}) ∪ NAG<n>−{1}n
(w)| ≥ 4. By Lemma 1 (1),

|NAG1
n
(w)| ≥ 2(n− 1)− 4 = 2n− 6. Therefore,

|N (D)| = |NAGnn ({u, v})| + |NAG1
n
(w)|

+ |NAG<n>−{n}n
({u, v}) ∪ NAG<n>−{1}n

(w)|
≥ 4n− 14+ 2n− 6+ 4
= 6n− 16.

We can find that the result still holds when w = x(1k2).
Otherwise, |NAG<n>−{n}n

({u, v}) − NAG1
n
(w)| = 4.

By Lemma 1 (1), |NAG1
n
(w)| ≥ 2(n − 1) − 4 = 2n − 6.

Therefore,

|N (D)| = |NAGnn ({u, v})| + |NAG1
n
(w)|

+ |NAG<n>−{n}n
({u, v})− NAG1

n
(w)|

≥ 4n− 14+ 2n− 6+ 4
= 6n− 16.

(2.2) |N (u) ∩ N (v)| = 1 (see Fig. 6 (1)).
We have |NAGnn (u)| = |NAGnn (v)| = 2(n− 1)− 4 = 2n− 6

by Lemma 1 (1). Hence, |NAGnn ({u, v})| ≥ 2(2n − 7) +
1 = 4n − 13. By Theorem 2, the four outside neighbors
of u, v are in three different subgraphs. Thus, there exist
at most two outside neighbors of u, v in subgraph AG1

n.
If there exist two outside neighbors x, y of u, v in subgraph
AG1

n such that x, y ∈ NAG1
n
(w), then assume that u =

12 · · · i · · · j · · · n and v = 1j · · · 2 · · · i · · · n by Theorem 2.
Hence, x = 2n · · · i · · · j · · · 1 and y = jn · · · 2 · · · i · · · 1.
The other outside neighbor of u is n1 · · · i · · · j · · · 2 and the
other outside neighbor of v is n1 · · · 2 · · · i · · · j. We have
w = ni · · · 2 · · · j · · · 1. Therefore, two outside neigh-
bors of w are i1 · · · 2 · · · j · · · n and 1n · · · 2 · · · j · · · i. Thus,
|NAG<n>−{n}n

({u, v}) ∪ NAG<n>−{1}n
(w)| ≥ 3. By Lemma 1 (1),

|NAG1
n
(w)| ≥ 2(n− 1)− 4 = 2n− 6. Hence,

|N (D)| = |NAGnn ({u, v})| + |NAG1
n
(w)|

+ |NAG<n>−{n}n
({u, v}) ∪ NAG<n>−{1}n

(w)|
≥ 4n− 13+ 2n− 6+ 3
= 6n− 16.
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FIGURE 6. Illustrations of outside neighbors of D = {u, v, w} where
{u, v} ⊆ V (AGn

n) and w ∈ V (AG1
n) such that

|N(u) ∩ N(v )| = 1 or |N(u) ∩ N(v )| = 0.

Otherwise, |NAG<n>−{n}n
({u, v})−NAG1

n
(w)| ≥ 3. By Lemma 1

(1), |NAG1
n
(w)| ≥ 2(n− 1)− 4 = 2n− 6. Therefore,

|N (D)| = |NAGnn ({u, v})| + |NAG1
n
(w)|

+ |NAG<n>−{n}n
({u, v})− NAG1

n
(w)|

≥ 4n− 13+ 2n− 6+ 3

= 6n− 16.

(2.3) |N (u) ∩ N (v)| = 0 (see Fig. 6 (2)).
|NAGnn (u)| = |NAGnn (v)| = 2(n − 1) − 4 = 2n − 6

by Lemma 1 (1). Hence, |NAGnn ({u, v})| ≥ 2(2n − 6) =
4n − 12. By Lemma 1 (2), the four outside neighbors of
u, v are in at least two different subgraphs. Thus, there exist
at most two outside neighbors of u, v in subgraph AG1

n.
Hence, |NAG<n>−{n}n

({u, v})−NAG1
n
(w)| ≥ 2. By Lemma 1 (1),

|NAG1
n
(w)| ≥ 2(n− 1)− 4 = 2n− 6. Therefore,

|N (D)| = |NAGnn ({u, v})| + |NAG1
n
(w)|

+ |NAG<n>−{n}n
({u, v})− NAG1

n
(w)|

≥ 4n− 12+ 2n− 6+ 2

= 6n− 16.

Case 3 (D Is Distributed in Three Distinct Subgraphs): By
the symmetry of AGn, assume that u ∈ V (AGnn), v ∈ V (AG

1
n)

and w ∈ V (AG2
n).

By Lemma 1 (1), |NAGnn (u)| = |NAG1
n
(v)| = |NAG2

n
(w)| =

2(n − 1) − 4 = 2n − 6. By Lemma 1 (2), any one of u, v,w
has two outside neighbors and these six outside neighbors
are distinct. Otherwise, there exists at least one edge among
u, v,w by Lemma 4 (1). Let these six outside neighbors of
u, v,w be u′, u′′, v′, v′′,w′,w′′.

If |{u′, u′′, v′, v′′,w′,w′′} ∩ (NAGnn (u) ∪ NAG1
n
(v) ∪

NAG2
n
(w))| ≤ 4, then |{u′, u′′, v′, v′′,w′,w′′} − (NAGnn (u) ∪

NAG1
n
(v) ∪ NAG2

n
(w))| ≥ 2. Therefore,

|N (D)| = |NAGnn (u)| + |NAG1
n
(v)| + |NAG2

n
(w)|

+ |{u′, u′′, v′, v′′,w′,w′′}

− (NAGnn (u) ∪ NAG1
n
(v) ∪ NAG2

n
(w))|

≥ 3(2n− 6)+ 2

= 6n− 16.

If |{u′, u′′, v′, v′′,w′,w′′} ∩ (NAGnn (u) ∪ NAG1
n
(v) ∪

NAG2
n
(w))| ≥ 5, then there exist at least two 4-cycles between

u, v,w (see Fig. 7). By the symmetry of AGn, assume that
v′ ∈ NAGnn (u), v

′′
∈ NAG2

n
(w), u′ ∈ NAG1

n
(v) and w′ ∈

NAG1
n
(v) and assume that v′ = v(12n) and v′′ = v(1n2).

By Lemma 4 (2), u′ = v(1i2) and w′ = v(12j) (i may
be equal to j). Let v = n2 · · · i · · · j · · · 1. If i 6= j (see
Fig. 7 (1)), then v′ = 21 · · · i · · · j · · · n in AGnn and v′′ =
1n · · · i · · · j · · · 2 in AG2

n. By Lemma 4 (1), u = v′(12i) =
1i · · · 2 · · · j · · · n and w = v′′(1j2) = j1 · · · i · · · n · · · 2. Thus,
u′′ = u(1n2) = n1 · · · 2 · · · j · · · i in AGin and w

′′
= w(12n) =

12 · · · i · · · n · · · j in AGjn. Hence, |{u′, u′′, v′, v′′,w′,w′′} ∩
(NAGnn (u)∪NAG1

n
(v)∪NAG2

n
(w))| = 4, which is a contradiction.

If i = j (see Fig. 7 (2)), then v′ = 21 · · · i · · · n in AGnn and

FIGURE 7. Illustrations of outside neighbors of D distributed in three
distinct (n− 1)-subgraphs with |D| = 3.
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v′′ = 1n · · · i · · · 2 in AG2
n. By Lemma 4 (1), u = v′(12i) =

1i · · · 2 · · · n and w = v′′(1i2) = i1 · · · n · · · 2. Therefore,
u′′ = u(1n2) = n1 · · · 2 · · · i in AGin and w′′ = w(12n) =
12 · · · n · · · i in AGin. Since n1 · · · 2 · · · i 6= 12 · · · n · · · i,
|{u′, u′′, v′, v′′,w′,w′′}∩(NAGnn (u)∪NAG1

n
(v)∪NAG2

n
(w))| = 4,

which is a contradiction.
From the above, |N (D)| ≥ 6n − 16 when |D| = 3 for

n ≥ 4.
We give two examples in AG4 to explain Theorem 3 as

follows (see Table 1 and Table 2).

TABLE 1. Minimum neighborhood of an independent set of two vertices
in AG4.

TABLE 2. Minimum neighborhood of an independent set of three vertices
in AG4.

Theorem 4: Let D be an independent set in V (AGn) (n ≥
4) with |D| = 4, then |N (D)| ≥ 8n − 24 and the minimum
neighborhood for D in AGn is θAGn (4) = 8n− 24.

Proof: Let D = {u, v, x, y}. We divide it into the follow-
ing four cases depending on the distribution of D.
Case 1 (D Is in a Subgraph (see Fig. 8)): By the symmetry

of AGn, assume that D ∈ V (AG1
n). We will prove the result

by mathematical induction. First, the result holds for n =
4. Assume that the result holds for n − 1. By inductive
assumption, |NAG1

n
(D)| ≥ 8(n − 1) − 24 = 8n − 32.

By Lemma 1 (2), any one of D has two outside neighbors
outside subgraphAG1

n and these two neighbors are in different
subgraphs. Hence, |NAG<n>−{1}n

(D)| ≥ 2 × 4 = 8. Therefore,
|N (D)| = |NAG1

n
(D)| + |NAG<n>−{1}n

(D)| ≥ 8n − 32 + 8 =
8n− 24.
Case 2 (D Is Distributed in Two Distinct Subgraphs):
Case 2.1 (By the Symmetry of AGn, Assume That {u, v, x} ⊆

V (AGnn) and y ∈ V (AG
1
n)): By Lemma 1 (1),

|NAGnn (u)| = |NAGnn (v)|

= |NAGnn (x)|

FIGURE 8. An illustration of outside neighbors of D distributed in an
(n− 1)-subgraph with |D| = 4.

= 2(n− 1)− 4

= 2n− 6.

and |NAG1
n
(y)| ≥ 2(n− 1)− 4 = 2n− 6.

(1) Any two of {u, v, x} have no common neighbors (see
Fig. 9 (1)).

Hence, |NAGnn ({u, v, x})| ≥ 3(2n − 6) = 6n − 18.
By Lemma 1 (2), the six outside neighbors of u, v, x are in
at least two different subgraphs. Thus, there exist at most
three outside neighbors of u, v, x in subgraph AG1

n. Hence,
|NAG<n>−{n}n

({u, v, x})− NAG1
n
(w)| ≥ 3. Therefore,

|N (D)| = |NAGnn ({u, v, x})| + |NAG1
n
(w)|

+ |NAG<n>−{n}n
({u, v, x})− NAG1

n
(w)|

≥ 6n− 18+ 2n− 6+ 3

= 8n− 21.

(2) There exists one common neighbor between two
vertices of u, v, x (see Fig. 9 (2)).
By the symmetry of AGn, assume that |N (u) ∩ N (v)| = 1.

Hence, |NAGnn ({u, v, x})| ≥ 2(2n− 7)+ (2n− 6)+ 1 = 6n−
19. By Lemma 1 (2), the six outside neighbors of u, v, x are
in at least two different subgraphs. Thus, there exist at most
three outside neighbors of u, v, x in subgraph AG1

n. Hence,
|NAG<n>−{n}n

({u, v, x})− NAG1
n
(w)| ≥ 3. Therefore,

|N (D)| = |NAGnn ({u, v, x})| + |NAG1
n
(w)|

+ |NAG<n>−{n}n
({u, v, x})− NAG1

n
(w)|

≥ 6n− 19+ 2n− 6+ 3

= 8n− 22.

(3) There exist two common neighbors between two
vertices of u, v, x (see Fig. 9 (3)).
By the symmetry of AGn, assume that |N (u) ∩ N (v)| = 2.

Hence, |NAGnn ({u, v, x})| ≥ 2(2n−8)+(2n−6)+2 = 6n−20.
By Theorem 1, the four outside neighbors of u, v are in four
different subgraphs. Thus, there exists at most one outside
neighbor of u, v in subgraph AG1

n. By Lemma 1 (2), x has at
most one outside neighbor in AG1

n. Moreover, the other three
outside neighbors of u, v are different from the other outside

VOLUME 7, 2019 17305



Y. Huang et al.: Minimum Neighborhood of Alternating Group Graphs

neighbor of x. Hence, |NAG<n>−{n}n
({u, v, x})− NAG1

n
(w)| ≥ 4.

Therefore,

|N (D)| = |NAGnn ({u, v, x})| + |NAG1
n
(w)|

+ |NAG<n>−{n}n
({u, v, x})− NAG1

n
(w)|

≥ 6n− 20+ 2n− 6+ 4

= 8n− 22.

(4) There both exists one common neighbor in two pairs
of vertices of u, v, x (see Fig. 9 (4)).

By the symmetry of AGn, assume that |N (u) ∩ N (v)| = 1
and |N (v) ∩ N (x)| = 1. Hence, |NAGnn ({u, v, x})| ≥ 2(2n −
7)+ (2n− 8)+ 2 = 6n− 20. By Theorem 2, the four outside
neighbors of u, v are in three different subgraphs. Moreover,
the four outside neighbors of v, x are in three different sub-
graphs. Thus, there exist at least two outside neighbors of
u, v outside subgraph AG1

n and there also exist at least two
outside neighbors of v, x outside subgraph AG1

n. By Lemma 1
(2), the three outside neighbors of u, v, x are different. Hence,
|NAG<n>−{n}n

({u, v, x})− NAG1
n
(w)| ≥ 3. Therefore,

|N (D)| = |NAGnn ({u, v, x})| + |NAG1
n
(w)|

+ |NAG<n>−{n}n
({u, v, x})− NAG1

n
(w)|

≥ 6n− 20+ 2n− 6+ 3

= 8n− 23.

(5) There all exists one common neighbor in three pairs
of vertices of u, v, x (see Fig. 9 (5)).

By the symmetry of AGn, assume that |N (u) ∩ N (v)| =
1, |N (v) ∩ N (x)| = 1 and |N (u) ∩ N (x)| = 1. Hence,
|NAGnn ({u, v, x})| ≥ 3(2n − 8) + 3 = 6n − 21. By Theo-
rem 2, the four outside neighbors of u, v are in three different
subgraphs. Moreover, the four outside neighbors of v, x are
in three different subgraphs. Furthermore, the four outside
neighbors of u, x are in three different subgraphs. Thus, there
exist at least three outside neighbors of u, v, x outside sub-
graph AG1

n and these neighbors are different by Lemma 1 (2).
Hence, |NAG<n>−{n}n

({u, v, x})− NAG1
n
(w)| ≥ 3. Therefore,

|N (D)| = |NAGnn ({u, v, x})| + |NAG1
n
(w)|

+ |NAG<n>−{n}n
({u, v, x})− NAG1

n
(w)|

≥ 6n− 21+ 2n− 6+ 3

= 8n− 24.

(6) There exist two common neighbors in one pair and
one common neighbor in another pair of vertices of u, v, x
(see Fig. 9 (6)).
By the symmetry of AGn, assume that |N (u) ∩ N (v)| = 2

and |N (v)∩N (x)| = 1. Hence, |NAGnn ({u, v, x})| ≥ (2n−8)+
(2n− 9)+ (2n− 7)+ 3 = 6n− 21. By Theorem 1, the four
outside neighbors of u, v are in four different subgraphs.
Thus, there exists at most one outside neighbor of u, v in
subgraph AG1

n. By Lemma 1 (2), x has at most one outside
neighbor in AG1

n. Moreover, by Lemma 1 (2), the other three
outside neighbors of u, v are different from the other outside

FIGURE 9. Illustrations of outside neighbors of D distributed in two
distinct subgraphs with |D| = 4.

neighbor of x. Hence, |NAG<n>−{n}n
({u, v, x})− NAG1

n
(w)| ≥ 4.

Therefore,

|N (D)| = |NAGnn ({u, v, x})| + |NAG1
n
(w)|

+ |NAG<n>−{n}n
({u, v, x})− NAG1

n
(w)|

≥ 6n− 21+ 2n− 6+ 4

= 8n− 23.

(7) There both exist two common neighbors in two pairs
of vertices of u, v, x (see Fig. 9 (7)).

By the symmetry of AGn, assume that |N (u) ∩ N (v)| = 2
and |N (v) ∩ N (x)| = 2. Hence, |NAGnn ({u, v, x})| ≥ 2(2n −
8)+ (2n−10)+4 = 6n−22. By Theorem 1, the four outside
neighbors of u, v are in four different subgraphs. Thus, there
exists at most one outside neighbor of u, v in subgraph AG1

n.
By Lemma 1 (2), x exists at most one outside neighbor in
AG1

n. Moreover, by Lemma 1 (2), the other three outside
neighbors of u, v are different from the other outside neighbor
of x. Hence, |NAG<n>−{n}n

({u, v, x})−NAG1
n
(w)| ≥ 4. Therefore,

|N (D)| = |NAGnn ({u, v, x})| + |NAG1
n
(w)|

+ |NAG<n>−{n}n
({u, v, x})− NAG1

n
(w)|
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FIGURE 10. Illustrations of outside neighbors of
x = u′(12i ) or x = u′(1i2).

≥ 6n− 22+ 2n− 6+ 4

= 8n− 24.

(8) There exist in total at least five common neighbors
in three pairs of vertices of u, v, x.

According to the process of proof of Case 3 in Theorem 3,
the situation does not exist.
Case 2.2 (By the Symmetry of AGn, Assume That {u, v} ⊆

V (AGnn) and x, y ∈ V (AG
1
n)): By Lemma 1 (1), |NAGnn (u)| =

|NAGnn (v)| = 2(n − 1) − 4 = 2n − 6 and |NAG1
n
(x)| =

|NAG1
n
(y)| ≥ 2(n− 1)− 4 = 2n− 6.

(1) |N (u) ∩ N (v)| = 2 and |N (x) ∩ N (y)| = 2.
Hence, |NAGnn ({u, v})| ≥ 2(2n − 8) + 2 = 4n − 14 and
|NAG1

n
({x, y})| ≥ 2(2n − 8) + 2 = 4n − 14. By Lemma 1

(2), the four outside neighbors of u, v are in four different
subgraphs. Thus, there exists at most one outside neighbor of
u, v in subgraph AG1

n. Moreover, the four outside neighbors
of x, y are in four different subgraphs and in which there
exists at most one outside neighbor of u, v in subgraph AG1

n.
If one of four outside neighbors u, v is in NAG1

n
({x, y}), say

u′, then assume that u = 12 · · · i · · · j · · · k · · · n (i 6= j) and
v = ij · · · 1 · · · 2 · · · n. By Lemma 1 (2), u′ = u(12n) =
2n · · · i · · · j · · · k · · · 1 and two outside neighbors of v are
jn · · · 1 · · · 2 · · · k · · · i and ni · · · 1 · · · 2 · · · k · · · j.
Assume that x = u′(12i) (see Fig. 10 (1)).

We have x = ni · · · 2 · · · j · · · k · · · 1. Hence, x has
one outside neighbor 1n · · · 2 · · · j · · · k · · · i. By the fact
that jn · · · 1 · · · 2 · · · k · · · i 6= 1n · · · 2 · · · j · · · k · · · i,
|NAG<n>−{n}n

({u, v}) ∪ NAG<n>−{1}n
({x, y})| ≥ 4.

FIGURE 11. Illustrations of outside neighbors of
x = u′(12j ) or x = u′(1j2).

Assume that x = u′(1i2) (see Fig. 10 (2)).
We have x = i2 · · · n · · · j · · · k · · · 1. Hence, x has
one outside neighbor 21 · · · n · · · j · · · k · · · i. By the fact
that jn · · · 1 · · · 2 · · · k · · · i 6= 21 · · · n · · · j · · · k · · · i,
|NAG<n>−{n}n

({u, v}) ∪ NAG<n>−{1}n
({x, y})| ≥ 4.

Assume that x = u′(12j) (see Fig. 11 (1)).
We have x = nj · · · i · · · 2 · · · k · · · 1. Hence, x has
one outside neighbor 1n · · · i · · · 2 · · · k · · · j. By the fact
that ni · · · 1 · · · 2 · · · k · · · j 6= 1n · · · i · · · 2 · · · k · · · j,
|NAG<n>−{n}n

({u, v}) ∪ NAG<n>−{1}n
({x, y})| ≥ 4.

Assume that x = u′(1j2) (see Fig. 11 (2)).
We have x = j2 · · · i · · · n · · · k · · · 1. Hence, x has
one outside neighbor 21 · · · i · · · n · · · k · · · j. By the fact
that ni · · · 1 · · · 2 · · · k · · · j 6= 21 · · · i · · · n · · · k · · · j,
|NAG<n>−{n}n

({u, v}) ∪ NAG<n>−{1}n
({x, y})| ≥ 4.

Assume that x = u′(12k) (k 6= i and k 6= j) (see
Fig. 12 (1)). We have x = nk · · · i · · · j · · · 2 · · · 1. Hence, x
has one outside neighbor AGkn. Hence, |NAG<n>−{n}n

({u, v}) ∪
NAG<n>−{1}n

({x, y})| ≥ 4.
Assume that x = u′(1k2) (k 6= i and k 6= j) (see

Fig. 12 (2)). We have x = k2 · · · i · · · j · · · n · · · 1. Hence, x
has one outside neighbor AGkn. Hence, |NAG<n>−{n}n

({u, v}) ∪
NAG<n>−{1}n

({x, y})| ≥ 4.
Therefore,

|N (D)| = |NAGnn ({u, v})| + |NAG1
n
({x, y})|

+ |NAG<n>−{n}n
({u, v}) ∪ NAG<n>−{1}n

({x, y})|
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FIGURE 12. Illustrations of outside neighbors of
x = u′(12k) or x = u′(1k2) (k 6= i and k 6= j ).

≥ 2(4n− 14)+ 4

= 8n− 24.

Otherwise, |NAG<n>−{n}n
({u, v})−NAG1

n
({x, y})| ≥ 4. There-

fore,

|N (D)| = |NAGnn ({u, v})| + |NAG1
n
({x, y})|

+ |NAG<n>−{n}n
({u, v})− NAG1

n
({x, y})|

≥ 2(4n− 14)+ 4

= 8n− 24.

(2) |N (u) ∩ N (v)| = 2 and |N (x) ∩ N (y)| = 1 (see
Fig. 13 (1)).

Hence, |NAGnn ({u, v})| ≥ 2(2n − 8) + 2 = 4n − 14 and
|NAG1

n
({x, y})| ≥ 2(2n − 7) + 1 = 4n − 13. By Theo-

rem 1, the four outside neighbors of u, v are in four different
subgraphs. Thus, there exists at most one outside neigh-
bor of u, v in subgraph AG1

n. Hence, |NAG<n>−{n}n
({u, v}) −

NAG1
n
({x, y})| ≥ 3. Therefore,

|N (D)| = |NAGnn ({u, v})| + |NAG1
n
({x, y})|

+ |NAG<n>−{n}n
({u, v})− NAG1

n
({x, y})|

≥ (4n− 14)+ (4n− 13)+ 3

= 8n− 24.

(3) |N (u) ∩ N (v)| = 2 and |N (x) ∩ N (y)| = 0 (see
Fig. 13 (2)).

Hence, |NAGnn ({u, v})| ≥ 2(2n − 8) + 2 = 4n − 14 and
|NAG1

n
({x, y})| ≥ 2(2n−6) = 4n−12. By Theorem 1, the four

outside neighbors of u, v are in four different subgraphs.
Thus, there exists at most one outside neighbor of u, v in
subgraph AG1

n. Hence, |NAG<n>−{n}n
({u, v}) − NAG1

n
({x, y})| ≥

3. Therefore,

|N (D)| = |NAGnn ({u, v})| + |NAG1
n
({x, y})|

+ |NAG<n>−{n}n
({u, v})− NAG1

n
({x, y})|

≥ (4n− 14)+ (4n− 12)+ 3

= 8n− 23.

(4) |N (u) ∩ N (v)| = 1 and |N (x) ∩ N (y)| = 1 (see
Fig. 13 (3)).
Hence, |NAGnn ({u, v})| ≥ 2(2n − 7) + 1 = 4n − 13 and
|NAG1

n
({x, y})| ≥ 2(2n − 7) + 1 = 4n − 13. By Theo-

rem 2, the four outside neighbors of u, v are in three different
subgraphs. Thus, there exist at most two outside neigh-
bors of u, v in subgraph AG1

n. Hence, |NAG<n>−{n}n
({u, v}) −

NAG1
n
({x, y})| ≥ 2. Therefore,

|N (D)| = |NAGnn ({u, v})| + |NAG1
n
({x, y})|

+ |NAG<n>−{n}n
({u, v})− NAG1

n
({x, y})|

≥ 2(4n− 13)+ 2

= 8n− 24.

(5) |N (u) ∩ N (v)| = 1 and |N (x) ∩ N (y)| = 0 (see
Fig. 13 (4)).
Hence, |NAGnn ({u, v})| ≥ 2(2n − 7) + 1 = 4n − 13 and
|NAG1

n
({x, y})| ≥ 2(2n−6) = 4n−12. By Theorem 2, the four

outside neighbors of u, v are in three different subgraphs.
Thus, there exist at most two outside neighbors of u, v in
subgraph AG1

n. Hence, |NAG<n>−{n}n
({u, v}) − NAG1

n
({x, y})| ≥

2. Therefore,

|N (D)| = |NAGnn ({u, v})| + |NAG1
n
({x, y})|

+ |NAG<n>−{n}n
({u, v})− NAG1

n
({x, y})|

≥ (4n− 13)+ (4n− 12)+ 2

= 8n− 23.

(6) |N (u) ∩ N (v)| = 0 and |N (x) ∩ N (y)| = 0.
Hence, |NAGnn ({u, v})| ≥ 2(2n − 6) = 4n − 12 and
|NAG1

n
({x, y})| ≥ 2(2n − 6) = 4n − 12. By Lemma 1 (2),

the four outside neighbors of u, v are in at least two differ-
ent subgraphs. Thus, there exist at most two outside neigh-
bors of u, v in subgraph AG1

n. Hence, |NAG<n>−{n}n
({u, v}) −

NAG1
n
({x, y})| ≥ 2. Therefore,

|N (D)| = |NAGnn ({u, v})| + |NAG1
n
({x, y})|

+ |NAG<n>−{n}n
({u, v})− NAG1

n
({x, y})|

≥ 2(4n− 12)+ 2

= 8n− 22.

Case 3 (D Is Distributed in Three Distinct Subgraphs):
By the symmetry of AGn, assume that u, v ∈ V (AGnn),
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FIGURE 13. Illustrations of Theorem 4 Case 2: (2)-(5).

x ∈ V (AG1
n) and y ∈ V (AG

2
n). By Lemma 1 (1), |NAGnn (u)| =

|NAGnn (v)| = |NAG1
n
(x)| = |NAG2

n
(y)| = 2(n−1)−4 = 2n−6.

(1) |N (u) ∩ N (v)| = 2 (see Fig. 14 (1)).
Hence, |NAGnn ({u, v})| ≥ 2(2n − 8) + 2 = 4n − 14.

By Theorem 1, the four outside neighbors of u, v are in four
different subgraphs. Thus, there exist at most two outside
neighbors of u, v in subgraphs AG1

n and AG2
n, respectively.

Hence, |NAG<n>−{n}n
({u, v})−NAG1

n
(x)−NAG2

n
(y)| ≥ 2. There-

fore,

|N (D)| = |NAGnn ({u, v})| + |NAG1
n
(x)|

+ |NAG2
n
(y)| + |NAG<n>−{n}n

({u, v})

−NAG1
n
(x)− NAG2

n
(y)|

≥ (4n− 14)+ 2(2n− 6)+ 2

= 8n− 24.

(2) |N (u) ∩ N (v)| = 1 (see Fig. 14 (2)).
Hence, |NAGnn ({u, v})| ≥ 2(2n−7)+1 = 4n−13. By Theo-

rem 2, the four outside neighbors of u, v are in three different
subgraphs. Thus, there exists at least one outside neighbor of
u, v outside in subgraphs AG1

n and AG
2
n, respectively. Hence,

|NAG<n>−{n}n
({u, v})− NAG1

n
(x)− NAG2

n
(y)| ≥ 1. Therefore,

|N (D)| = |NAGnn ({u, v})| + |NAG1
n
(x)|

+ |NAG2
n
(y)| + |NAG<n>−{n}n

({u, v})

−NAG1
n
(x)− NAG2

n
(y)|

≥ (4n− 13)+ 2(2n− 6)+ 1

= 8n− 24.

(3) |N (u) ∩ N (v)| = 0.
Hence, |NAGnn ({u, v})| ≥ 2(2n− 6) = 4n− 12. Therefore,

|N (D)| = |NAGnn ({u, v})| + |NAG1
n
(x)|

+ |NAG2
n
(y)| + |NAG<n>−{n}n

({u, v})

−NAG1
n
(x)− NAG2

n
(y)|

≥ (4n− 12)+ 2(2n− 6)+ 0

= 8n− 24.

FIGURE 14. Illustrations of Theorem 4 Case 3: (1)-(2).

TABLE 3. Minimum neighborhood of an independent set of four vertices
in AG4.

Case 4 (D Is Distributed in Four Distinct Subgraphs): By
the symmetry of AGn, assume that u ∈ V (AGnn), v ∈ V (AG

1
n),

x ∈ V (AG2
n) and y ∈ V (AG

3
n).

By Lemma 1 (1), |NAGnn (u)| = 2(n − 1) − 4 = 2n − 6,
|NAG1

n
(v)| = 2(n−1)−4 = 2n−6, |NAG2

n
(x)| = 2(n−1)−4 =

2n− 6 and |NAG3
n
(y)| = 2(n− 1)− 4 = 2n− 6. Therefore,

|N (D)| = |NAGnn (u)| + |NAG1
n
(v)|

+ |NAG2
n
(x)| + |NAG3

n
(y)|

≥ 4(2n− 6)

= 8n− 24.

From the above, |N (D)| ≥ 8n − 24 when |D| = 4 for
n ≥ 4.

We give one example in AG4 to explain Theorem 4 as
follows (see Table 3).

V. CONCLUSION
In this paper, we obtain θAGn (q) for an independent set with
size q inAGn. We first propose some combinatorial properties
of AGn. Then we study the minimum neighborhood prob-
lem for an independent set of two vertices and obtain that
θAGn (2) = 4n − 10. Next, we prove that θAGn (3) = 6n − 16.
Finally, we propose that θAGn (4) = 8n − 24. Meanwhile,
we present sufficient amount of figures to better illustrate the
process of the proofs.

Wewill further applied theminimum neighborhood ofAGn
to obtain the fault tolerance of the n-split-star network [18] in
the future. Meanwhile, the minimum neighborhood can be
applied to obtain all kinds of conditional fault tolerance and a
variety of conditional diagnosability. Furthermore, the min-
imum neighborhood will be applied to solve the privacy
protection and the optimization of various networks.
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