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ABSTRACT Massivemultiple inputmultiple output (MIMO) technology significantly improves the capacity
of wireless communication systems by deploying hundreds of antennas at the base station. However, the large
scale of the array implies higher computational complexity and pilot overhead when implementing channel
estimation in the uplink. Utilizing the sparse channel structure is a promising approach to improve the
channel estimation performance while circumventing such problems. In this paper, we investigate the
detailed physical structure in the delay-spatial domain of uplink channels in massive MIMO-orthogonal
frequency division multiplexing (MIMO-OFDM) systems and construct a hierarchical probabilistic model
based on Dirichlet process (DP) prior to match the channel’s structural sparse features. Based on the
model, we derive a structured sparse channel estimation algorithm by implementing collapsed variational
Bayesian inference (CVBI). The simulation results demonstrate that the proposed CVBI-DP algorithm
can improve channel estimation performance significantly compared with the state-of-the-art methods for
massive MIMO-OFDM, without increasing the computational complexity and pilot overhead.

INDEX TERMS Massive MIMO, structured sparse channel, Dirichlet process, collapsed variational
Bayesian inference.

I. INTRODUCTION
Massive MIMO has the potential to significantly improve the
capacity, spectral and power efficiency of cellular communi-
cation systems by deploying a massive number of antennas
at the base-station [1]. The system can serve users with high
data rates by exploiting the spatial degrees of freedom (DoF)
of the resulting large-dimensional channel. However, few
channel estimation methods take advantage of DoFs from
the spatial structure of such radio channels. In addition, mas-
sive MIMO may introduce bigger bandwidth for users and
higher frequency carriers, which makes the channels more
complex than in traditional systems. Channel measurements
and modeling [2], [3] already show there are new proper-
ties in massive MIMO channels. An important one is the
fact that the channel is more sparse under higher carrier
frequency [2], and this makes using sparse channel estima-
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tion methods a viable avenue to reduce the pilot overhead
in massive MIMO. Another important aspect is the non-
stationarity of the response over the large antenna array [3],
which means the non-zero elements (support) of the channel
impulse response vector may shift or disappear over the array
depending on several system parameters and the propagation
environment. Meanwhile, the drastic increase in the scale of
antenna array complicates the channel estimation procedure,
as higher computational complexity and pilot overhead is
required [4]. Finding ways to exploit the spatial DoFs of the
channel to improve estimation performance without increas-
ing computational complexity and pilot overhead become,
thus, an important issue to push massive MIMO technology
closer to reality.

In most of the work done in the field of channel estima-
tion for massive MIMO, the methods are mere extensions
of traditional MIMO techniques, while few of the methods
exploit the channel’s structure. We can classify the state-of-
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art methods into three main approaches. The first is an exten-
sion of the methods in traditional wireless communication
systems, which estimate the channel independently for each
antenna element [5] without accounting for their similarities.
The second approach–and also the most popular–uses the
channels spatial structure by assuming the channel impulse
response (CIR) vectors have the same support, such that the
support is estimated jointly for all array elements [6]–[8].
This approach, however, ignores the potential differences in
the support of the channels for different array elements. The
third approach consists in assuming that the channel sup-
port pattern is similar in a neighboring region [9], [10], and
estimate the channel independently first. Then, the different
antenna ports exchange information about their respective
supports with the neighboring elements, and redo the esti-
mation independently again by averaging the messages from
neighbors to improve the accuracy.

In all the aforementioned methods, the assumption that the
response of the channel at each antenna element is sparse
in the delay domain is exploited. In this work, we leverage
as well this assumption but from a different perspective.
We first analyze the received signals over the antenna array
in a massive MIMO system, and provide an uplink channel
structure description in the delay-spatial domain, describing
the non-stationary behavior of the response. In particular,
we note that for very large arrays–as found inMassiveMIMO
systems– a given multi-path component may be received with
significantly different propagation delay at antenna elements
that are far apart in the array. The model shows that the
support of the channel impulse response varies slightly from
one array element to the next, resulting in channel responses
that slightly shift their delay support across the elements of
the array.

Inspired by the machine learning community, we propose
to apply tools for estimation of clustered sparse signals in
order to exploit the similarity of the support across elements
of the array. Specifically we apply the Dirichlet Process (DP)
Prior( [11], [12]) to probabilistically model the structure of
uplink channels in massive MIMO systems under Bayesian
formalism, and apply variational Bayesian inference [13] in
order to estimate the channel responses. Inspired by [14],
we implemented a collapsed VBI (CVBI) inference method
to improve estimation performance, which is based on a
marginalization of one of the variables from the model. Such
marginalization leads to a loss of the conjugate relationship
of the variables in neighboring layers, which we circum-
vent by an approximation based on a Taylor expansion that
leads to tractable inference. In addition–and differently to
[14]– we propose to infer as well the concentration param-
eter of the DP-based model–which influences the number
of clusters estimated from the observed data [15]– lead-
ing to more accurate results. In the experiments, we verify
that the proposed structured channel estimation algorithm
improves the performance compared to state-of-art methods
without increasing the computational complexity or pilot

overhead, and while being robust against the system
parameters.

The notational convention for the rest of the paper is as
follows: the superscripts (·)T and (·)H denote transposition
and conjugate transposition operator respectively. We use
the lowercase and capital letters in bold to denote vectors
and matrices respectively. The symbol x | a, b ∼ f(a, b)
indicates that a random variable x follows a distribution with
parameters a and b. Diag(·) denotes a diagonal matrix with
its vector argument on the main diagonal, and trace(·) denotes
the trace operator. The symbol · ∝ · indicates proportionality.
The expectation operation with respect to a function q(x)
is represented by 〈·〉q(x). The most updated estimate of a
variable, vector or matrix is denoted by ˆ(·).

II. SYSTEM AND CHANNEL MODEL
Weconsider the uplink channel estimation problem in a single
cell of a massive MIMO-OFDM system where the base-
station is equipped with a uniform linear array (ULA) of
R receiver elements and jointly serves many single-antenna
users.

A. UP-LINK OF MASSIVE MIMO-OFDM SYSTEM
Without loss of generality, we use a generic system model
inspired by that of [9]. The frequency domain signal received
by r-th antenna in the array at the BS after removing the CP
and multiplying by a DFT matrix can be described as

yr = Diag(x)F
(

hr
0N−L

)
+ wr

= Diag(x)Fhr + wr = Ahr + wr (1)

where yr ∈ CN is the received signal vector, x ∈ CN are
the transmitted signals or pilots, N is the total number of
subcarriers, F is the truncated Fourier matrix of size N × L
formed by selecting the first L columns of an N × N DFT
matrix F, L is the length of the discrete channel impulse
response vector which can include a maximum number of
significant taps, F is an N ×N DFT matrix whose (k, l) entry
is given by fk,l = exp{−j 2πN kl}, hr ∈ CL is the discrete
channel impulse response vector from the user antenna to
the r-th antenna in the array, and wr ∈ CN is a complex,
circularly-symmetric white Gaussian noise vector.

B. STRUCTURAL PHYSICAL CHANNEL MODEL
The multi-path channel impulse response from user antenna
to the first antenna in the ULA at the base-station reads

h1(τ ) =
IP∑
i=1

β1,ie−2π fcτ1,iδ(τ − τ1,i) (2)

where β1,i and τ1,i are the amplitude and delay respectively
of the i-th multi-path component received at the 1st array
element, IP is the total number of multi-path components, and
fc is the carrier frequency, as illustrated in Fig. 1. As shown
in the figure, when one wave impinges the antenna array,
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FIGURE 1. Incident wave received by the different elements in a ULA.

the gains and arrival times of the wave received are different
over the array according to the different propagation distances
from the user antenna to the receiving antennas. Then the
multi-path channel impulse response from the user antenna
to the r-th antenna in the array is

hr (τ ) =
IP∑
i=1

βr,ie−2π fc
dr,i
C δ(τ −

dr,i
C

) (3)

where dr,i is the distance which the i-th wave experienced
from user antenna to the r-th antenna in the array, andC is the
speed of light.We assume the distance between two neighbor-
ing antennas is 1d = λ/2, where λ is the wavelength. Then,
dr,i can be approximated as dr,i ≈ d0,i+(r−1)1dcosθi [16],
where d0,i is the distance of i-th path between the user antenna
to the 1st antenna. With this, the propagation delay of the
ith component at the r-th antenna can also be approximated
as τr,i ≈ d0,i/C + (r − 1)1dcosθi/C . Considering the
amplitude βr,i ∝ 1/d2r,i changes slightly over the array given
that the distance is changed by (r − 1)1dcosθi, we ignore
the differences on the i-th path gain and instead fix it as an
invariant value βi. Then the channel spatial signature induced
on the antenna array by the i-th path can be described with a
steering vector shape:

h(τi) = [h1(τi), . . . , hR(τi)]

= βie−2π fc
d0,i
C [1, · · · , e−j2π fc

(R−1)1dcosθi
C ]. (4)

Consider now the discrete-time equivalent channel model,
where we denote hr (l) as the l-th complex channel filter tap
of hr (τ ). Its value is a function of mainly the gains βie−2π fcτr,i
of the paths, whose delays τr,i are close to l/W . Then the l-th
channel tap in the discrete-time equivalent channel of hr (τ )
can be expressed as

hr (l) =
IP∑
i=1

βie−2π fcτr,isinc[l − τr,iW ] l = 1, . . . ,L (5)

where the sampling function is defined as sinc(t) ,
sin(π t)/(π t), and sinc[l] , sinc(l/W ), W = 1/Ts is the
system bandwidth, and Ts is the sampling period. We assume
that L×Ts ≤ τmax , where τmax is the maximum excess delay
of the channel. With this model, we obtain a channel matrix

H = [h1 . . . hR]

= [(h1(l) . . . h1(L))T . . . (hR(l) . . . hR(L))T ] (6)

FIGURE 2. Effect of the parameters (W , fc , θ) on the channel structure.

From the discussion above, we observe that the delay-
spatial structure of the channel matrix H depends on the
system parameters W and fc, on the multi-path component
parameters d0,i and θi, and on the array geometry, which
is fully described by 1d and R in a ULA. To reveal the
structure characteristics clearly, we illustrate an instance of
the channel matrix by simulation. We set the carrier fre-
quency as 2.6 and 6 GHz respectively, and bandwidth as
100 and 20 MHz respectively. Then generate one multi-path
component and sample it by assuming 3 different DOAs.
The results are shown in Fig.(2), where the 3 rows of sub-
figure are generated by θ ∈ {π/2, π/4, 3π/4} in sequence.
The 3 columns are the channel patterns generatedwith param-
eters (W , fc) with (100MHz, 2.6GHz), (20MHz, 2.6GHz),
and (100MHz, 6GHz) in sequence.

From the simulation results we can see how the parameters
θ , W , and fc affect the channel support patterns. 1) From the
incident signal side, when θ = π/2 all the significant taps of
the channel vectors have the same position over the array for
all kinds of bandwidth and carrier frequency configurations,
and therefore we say that all the channels have the same sup-
port pattern. And in the other two cases, the channel’s support
will shift in different directions. As a consequence, we see
that 2 or 4 different types of support–i.e. number and position
of the channel’s significant taps– can be observed across
the array elements for different configurations. 2) From the
system parameter side, with a fixed carrier frequency, the sup-
port will shift more for larger bandwidths and, consequently,
a larger number of different support patterns can be observed
across the array. With a fixed bandwidth, increasing the car-
rier frequency leads to less shift on the supports across the
array, as the inter-element distance in the array is inversely
proportional to the carrier frequency.

In the wireless channel of massive MIMO under rela-
tively high carrier and bandwidth scenarios, there will be few
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multi-path components, which will make up structured sparse
channels over the array. If two paths arrive close together, and
the two waves may be summarized together to contribute to
the same channel tap–some taps are strengthenedwhile others
are receded–the non-stationarity of the response over the
large antenna arraywas observed [2], [3]. From the discussion
above, we can conclude that the uplink channel of massive
MIMO has a structured sparse character in the delay-spatial
domain, and the structure of channel matrix is effected by
the physical scenario and communication system parameters.
To improve the channel estimation performance by exploiting
the channel structure, a flexible structured sparse channel
model and an efficient algorithm are needed.

III. COLLAPSED VBI-DP BASED ALGORITHM
FOR STRUCTURED CHANNEL ESTIMATION
From the discussion in Sec.II-B, it is observed that the chan-
nel responses seen across the different array elements share
many structural features, and we aim to exploit such simi-
larities in order to improve the channel estimation accuracy.
To achieve this, we first construct a probabilistic model of
the received signal at the array based on DP that captures
the similarities of the responses seen across the array. Then,
we derive an inference method on that model that we coin
‘‘collapsed VBI’’.

A. PROBABILISTIC MODEL BASED
ON DIRICHLET PROCESS
1) LIKELIHOOD FUNCTIONS
Assuming the noise vectors follow a complex Gaussian dis-
tribution with precision α0, then the likelihood function of
signal model in (1) can be given as

yr | hr , α0 ∼ CN (Ahr , α−10 IN ) (7)

where IN denotes an identity matrix of size N . The noise
precision α0 follows a Gamma distribution

α0 ∼ Gamma(a, b). (8)

2) SPARSITY PATTERN OF hr

The channel vectors hr are modeled as complex, zero-mean
Gaussian vectors with covariance matrix 3−1r , i.e.

hr | αr ∼ CN (0,3−1r ) (9)

where 3r = Diag(αr ). The entries of the precision vector αr
are modeled as statistically independent variables following
a Gamma distribution

αr ∼
L∏
l=1

Gamma(c, d) (10)

As the entries of the precision vector are the inverse
variances of the entries of the channel vectors hr , they con-
tain information about the sparsity pattern–or support–of the
channel vector. Channel taps with large value of their associ-
ated precision vector entries correspond to taps that are nearly

zero, while those with low precision value correspond to
taps with significant channel energy. Consequently, channel
vectors having the same support pattern will have the same
precision vector. As discussed in the previous section, chan-
nels corresponding to adjacent array elements will, with high
probability, have the same support, and the support patterns
of the channel vectors for all the array elements can therefore
be described with just a few precision vectors. We call this
structure a clustered-sparse structure, as the different vectors
hr vectors to be estimated can be grouped into a few clus-
ters with the same support pattern. In order to exploit such
clustered-sparse nature, we use Dirichlet Processes as a tool
for modeling the precision vectors of the channel vectors.

3) DIRICHLET PROCESS WITH STICK-BREAKING
Inspired by their excellent clustering performance, we adopt
the modeling by Dirichlet Process ( [11], [12]). We assume
{αr }r=1:R are R random samples drawn from G, where G is
a random measure drawn from DP(γ,G0), where γ is the
concentration parameter related to the number of clusters,
and G0 is the base distribution, i.e. the mean of the process.
Following the context of Bayesian non-parametric methods,
we have

αr ∼ G, r = 1, · · · ,R

G ∼ DP(γ,G0). (11)

Since the exact formulation of G is unavailable, at first we
follow the stick-breaking construction method [13]

G =
∞∑
k=1

wkδα∗k (12)

where {α∗k}k=1,...∞ are the atoms of the distribution G, each
of them follows the base distribution G0, which has the same
shape as αr . The variables {wk}k=1,...∞ are the weights of
each atom, and can be initialized in the stick-breaking fashion

wk = πk
k−1∏
l=1

(1− πl). (13)

We assume each stick πk follows a Beta distribution

πk ∼ Beta(1, γ ) (14)

where γ is the concentration parameter of the DP, which
controls the number of clusters. This process can be thought
of as repeatedly breaking a stick of unit length into two pieces
where the breakpoint is randomly sampled from the Beta
distribution, and guarantees that the infinite sum of mixture
weights wk converges to 1 in probability. The purpose of
choosing the stick-breaking formulation is to apply it flexibly
by using the Beta distribution.

To assign a precision vector αr to each of the cluster
precisions {α∗k}k=1,...∞, we introduce an indicator vector zr ,
which follows a Multinomial distribution

zr | {wk}k=1,...∞ ∼ Multinomial({wk}k=1,...∞) (15)
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In the above construction, zr is a vector with all its entries
being zero except one of them, which is one, with the proba-
bilities of each entry being one given by {wk}k=1,...∞.

With the above, we can now pose the probabilistic model
for the channel vectors as

hr | zr , {α∗k}k=1,...∞ ∼
∞∏
k=1

{CN (0,3−1zr }
1[zr=k] (16)

where 1[zr = k] is an indicator function equal to 1 if the k-th
entry of vector zr is one, and zero otherwise. For tractability
reasons, we also truncate the infinite number of clusters to a
big number K .

4) COLLAPSED DIRICHLET PROCESS
The main reason for using the stick breaking method to
construct a DP is that it is conjugate to the multinomial
distribution, and therefore it is easy to infer the posterior
in the Bayesian framework. The original VBI assumes a
factorized form for the posterior distribution which means
the parameters are independent of assignment variables.
However, the stick breaking representation is defined in the
space of the explicit cluster labels. For a two clusters case,
if we have 3 observations and assign them as (z1 = z2 = 1,
z3 = 2), this will result in a different solution than the
assignment (zz = z2 = 2, z3 = 1). So randomly permuting
the cluster labels will change the probability of the obser-
vations [14]. This is a bad assumption when applying VBI
on the model, because changes in {πk}k=1:K by randomly
permuting the labels will impact on {zr }r=1:R. To surmount
this, we marginalize the variables {πk}k=1:K out of the model
and get the collapsed DP model [14]:

p(Z | γ ) =
∫ 1

0
p(Z | π )p(π ) | γ )dπ

=

∫ 1

0

R∏
r=1

p(zr | π )
K∏
k=1

p(πk ) | γ )dπ

= γ K
K∏
k=1

0(1+ Nk )0(γ + N>k )
0(1+ γ + N≥k )

(17)

where Z = [z1, . . . , zR], π = [π1, . . . , πK ], Nk ,∑R
r=1 1[zr = k], N>k ,

∑R
r=1 1[zr > k], and N≥k ,

Nk +N>k . We define a matrix collecting all the observations
as Y = [y1, ..., yR], the set of hidden variables as 2 =
{α0, γ,Z,H, {α∗k}k=1,...,K }, and the set of hyperparameters
as � = {a, b, c, d, e, f }. The joint density function for all
variables is given by

p(Y ,2) =
R∏
r=1

p(yr | hr , α0)p(hr | zr , {α
∗
k}k=1:K )

× p(α0)p(Z | γ )
K∏
k=1

p(α∗k ). (18)

Fig.3 graphically illustrates the dependencies between the
different variables based on two different kinds of DP model

FIGURE 3. Graphical Model for Up-Link Channel in Massive MIMO
Collapsed DP based.

in the same graph. The nodes under the indigo shadow exist
in the original DP but don’t belong to the proposed model
which doesn’t include the variables π or the prior on γ . The
latter model shows a more compact dependencies relation-
ship between the variables. We expect that inference on the
collapsed model will perform better than in the original DP
model because it reduces the impact of fluctuations of π on
the latent variables.

B. VBI ALGORITHM FOR COLLAPSED DP MODEL
According to the VBI framework, we design the approximate
posterior with a factorized shape

q(2) = q(α0)
R∏
r=1

q(zr )q(hr )
K∏
k=1

q(α∗k ). (19)

We compute q(2) by alternately minimizing the Kullback-
Leibler divergence D(q(2)||p(2|Y )) with respect to each of
the individual factors above. In the general rule, the optimal
factor q∗(2k) given all other factors can be obtained by

ln q∗(2k ) ∝ 〈ln p(Y ,2)〉q(2\2k ) (20)

where 2 \ 2k denotes the set of all variables 2 except
2k . Then the updated approximate posterior for each hidden
variable can be obtained by computing (20) iteratively.

1) UPDATE OF α0
According to (20), the update equation for α0 reads

ln q∗(α0) ∝ 〈ln p(Y |H, α0)p(α0)〉q(H) (21)

The prior of α0 is a Gamma distribution with parameters a, b,
and the posterior of it is also a Gamma distribution with the
updated parameters â, b̂:

â = a− 1+ RM

b̂ = b+
R∑
r=1

(||yr − Aµr ||
2
2 + trace{AHA0−1r }) (22)
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where µr and 0r are the updated mean and precision of hr
respectively, whose value will be given later. The updated
estimate of α0 is then given as the mean of the approximate
posterior:

α̂0 =
â

b̂
(23)

2) UPDATE OF hr

According to (20), we have

ln q∗(hr ) ∝ 〈ln p(yr |hr , α0)

p(hr | zr , {α∗k}k=1:K )〉q(α0)q(zr ))
∏K
k=1 q(α

∗
k )

(24)

Since the prior of hr is a complex Gaussian distribution with
mean µr and precision 0r , the posterior of hr follows the
same distribution with updated mean µ̂r and precision 0̂r :

µ̂r = α̂00̂
−1
r AHyr

0̂r =

K∑
k=1

q∗(zr = k)3̂k + α̂0AHA (25)

where 3̂k , Diag{α̂∗k}. We get the update of hr as its mean
vector

ĥr = µ̂r . (26)

3) UPDATE OF α∗k
Following the same method as before, the update for α∗k is
obtained as

ln q∗(α∗k ) ∝ 〈ln
R∏
r=1

p(hr |zr = k, {α∗k}k=1:K )p(α
∗
k )〉q(hr )q(zr )

(27)

Each element of α∗k follows a prior Gamma distribution with
parameters c, d , and consequently the posterior distribution
is also Gamma with updated parameters ĉ, d̂

ĉ = c+
R∑
r=1

q∗(zr = k)

d̂ = d +
R∑
r=1

q∗(zr = k)(µ2
r,l + σ

2
r,l) (28)

whereµr,l and σ 2
r,l are the l-th element of the mean vectorµr

and the covariance matrix 0r respectively. The approximate
posterior mean of α∗k is then

α̂
∗

k,l =
ĉ

d̂
(29)

4) UPDATE OF zr
We update the approximate posterior of zr according to

ln q∗(zr = k)

∝ 〈lnp(hr |zr=k, {α∗k}k=1:K )p(Z|γ )〉
q(hr )

K∏
k=1

q(α∗k )
R∏

m 6=r
q(zm)

= 〈ln p(hr |zr = k, {α∗k}k=1:K )〉q(hr )
∏K
k=1 q(α

∗
k )︸ ︷︷ ︸

eq1

+ 〈ln p(Z|γ )〉∏R
m 6=r q(zm)︸ ︷︷ ︸

eq2

(30)

eq1 =
L∑
l=1

ln α̂∗k,l − trace{0̂
−1
r 3̂k} − µ̂

H
r 3̂k µ̂r (31)

eq2 = 〈ln p(zr |Z\r , γ )〉∏R
m 6=r q(zm)

+ 〈ln p(Z\r |γ )〉∏R
m 6=r q(zm)

∝ 〈ln p(zr |Z\r , γ )〉∏R
m 6=r q(zm)

+ constant

∝ 〈ln(1+N \rk )〉∏R
m 6=r q(zm)

−〈ln(1+γ + N \r
≥k )〉∏R

m 6=r q(zm)

+

∑
f<k

〈ln(γ + N \r>f )〉∏R
m 6=r q(zm)

−

∑
f<k

〈ln(1+ γ + N \r
≥f )〉∏R

m 6=r q(zm)
(32)

where Z\r denotes the matrix Z with the column zr removed,
N \rk ,

∑
m6=r

1[zm = k], N \r>k ,
∑
m6=r

1[zr > k], and N \r
≥k ,

N \rk + N
\r
>k .

It’s difficult to compute the expectations in (32) directly,
we use a second order Taylor Expansion ( [14], [15])

E[f (x)] ≈ f (E[x])+
1
2
f ′′(E[x])V[x]

where E[x] and V[x] are the mean and variance of a random
variable x respectively. Using this, eq2 can be approximated
by

eq2 ≈ ln(1+ E[N \rk ])+
V[N \rk ]

2(1+ N \rk )2

− (ln(1+ γ̂ + E[N \r
≥k )]+

V[γ̂ + N \r
≥k ]

2(1+ γ̂ + N \r
≥k )

2
)

+

∑
f<k

(ln(γ̂ + E[N \r>f )]+
V[γ̂ + N \r>f ]

2(γ̂ + N \r>f )
2
)

−

∑
f<k

(ln(1+ γ̂ + E[N \r
≥f )]+

V[γ̂ + N \r
≥f ]

2(1+ γ̂ + N \r
≥f )

2
)

(33)

To compute the means and variances in (33), we use the
following equations:

E[Nk ] =
R∑
r=1

q(zr = k)

V [Nk ] =
R∑
r=1

q(zr = k)(1− q(zr = k))

E[N>k ] =
R∑
r=1

∑
f>k

q(zr = f )

V [N>k ] =
R∑
r=1

∑
f>k

q(zr = f )
∑
i≤k

(1− q(zr = i)).

(34)
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5) UPDATE OF γ
Since the role of γ in the DPmodel is to control the number of
inferred clusters, we propose to estimate as well this variable
so that the model can adapt to the different types of channel
conditions observed in the received signal. Applying the VBI
method, we get

ln q∗(γ ) = 〈ln p(Z|γ )〉q(Z)

=

K∑
k=1

(〈ln0(1+ Nk )+ ln0(γ + N>k )〉q(Z)

−〈ln0(1+ γ + N≥k )〉q(Z))+ K ln γ (35)

where 0(·) is the Gamma function. Since the mean of this
approximate posterior is difficult to compute, we apply
Minka’s fixed-point iteration [17] to get the following update:

γ̂ =
K∑K

k=1(9(1+ γ ∗ + N̂≥k )−9(1+ γ ∗ + N̂>k ))
(36)

where 9(x) = 0′(x)
0(x) is the Digamma function, and γ ∗ is the

value from last iteration.

C. STRUCTURED SPARSE CHANNEL
ESTIMATION ALGORITHM
The structured sparse channel estimation algorithm is
obtained by iteratively calculating the updates of α0,
{µr ,0r , zr }r=1:R, {α∗k}k=1:K , and γ until convergence, with
the estimates of the channel response being given by (26). The
steps of the algorithm are summarized in Algorithm 1. As the
stopping criterion, we set a threshold on the average squared
distance of two successive estimates of H , or maximum
number of iterations Itmax . The choice on the value of each
hyperparameter in� is another issue [13], [18], but we won’t
discuss it here. We set all the value of hyperparameters except
c as 1.0× 10−4, and c = 1.

Algorithm 1 Structured Channel Estimation
Algorithm

Input: Observations Y , the matrix A, Threshold
Thr ,
Maximum iteration number Itmax .

Output: The estimated channel H
Initialize: �,2; iteration counter it = 0;
while ||Ĥ − Ĥ

it−1
||
2
2 < Thr or it < Itmax do

Update α0 by (23) and (22);
Update H by (26) and (25);
Update α∗k by (29) and (28);
Update Z by (30), (31),(32), (33), and (34);
Update γ by (36);
it = it + 1;

end

The iteration steps in the algorithm we show here are sim-
ilar to those of [12]. There are 3 different steps on updating

equations of Z, γ and π in the iteration part of the two algo-
rithms. The most significant difference is the marginalization
of π to improve the accuracy on cluster assignment. Com-
pared with [14], we apply the collapsed VBI based onDPM to
a channel estimation problem, which leads to a more complex
model shown in Fig.3. Furthermore, we update γ to infer the
number of clusters more accurately.

D. ALGORITHM ANALYSIS
To show that the proposed channel estimation algorithm
works robustly and has better performance than the bench-
marks without increasing the computational cost, we analyze
its convergence behavior and computational complexity next.

1) CONVERGENCE
The convergence of collapsed VBI for DP models has been
discussed in [14], where it was shown that the collapsed
VBI algorithm reaches convergence slower than when using
the non-collapsed model, but can be guaranteed by Minka’s
fixed-point equation [17]. To illustrate this in our system,
we numerically assess the convergence for different SNR
values as shown in Fig.(4). We implement the algorithm for
a system with BW = 20 MHz, with NP = 64 evenly-spaced
pilots, a channel with IP = 6 multi-path components in a
vector of length L = 64, and SNR ranging over 0 ∼ 30 dB.

FIGURE 4. Convergence performance over iterations:
BW = 20MHz,NP = 64, IP = 6, L = 64,SNR = 0 ∼ 30dB.

From the simulation results, we can see that the algorithm
always reaches convergence at around 20 iterations, which
will change slightly with SNR.

2) COMPUTATIONAL COMPLEXITY
From the system model Eq.(1) and the channel estimation
algorithm from Eq.(23) to Eq.(36), we know that maximum
cost in the iterative algorithm is the computation of the
inverse of the channel covariance matrix 0̂r . In the update
equation (25), 3̂k and AHA are diagonal matrices, and the
summation of 0̂r is a diagonal matrix with the dimensions
L × L. So the computational complexity of this is O(RL2).
Similar, we can get the computational complexity for the
stat-of-art algorithms, which are shown in Table 1. The Fast
SBL (FSBL) estimator is proposed in [18], the T-MSBL
is a efficient Block SBL estimator which makes a reason-
able approximation to the T-SBL under a similar recovery
performance [19], and the SABMP algorithm is a sparse dis-
tribution agnostic Bayesianmatching pursuit method from [9]
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FIGURE 5. Simulated Original Channel Structure and Observed by Different Estimator: BW = 20 MHz, IP = 6,
SNR = 15dB, L = 64, and NP = 64. (a) Original Channel. (b) Channel Estimated by CVBI-DP. (c) Channel Estimated by
FSBL. (d) Channel Estimated by BSBL.

TABLE 1. Complexity order of the algorithms.

which has been proven to outperform several other compres-
sive sensing methods, including OMP, StOMP, and Bayesian
compressive sensing.

With the system parameters that we use in the next section
for numerical assessment (N = 2048,L = 64,R = 128),
we observe that the computational complexity of CVBI-DP
and FSBL are the lowest of all the evaluated algorithms.

IV. NUMERICAL ASSESSMENT
A. SIMULATION SETUP
To demonstrate the performance of our proposed algorithm,
we consider a MIMO-OFDM system following the descrip-
tion given in Section II with the parameters shown in Table 2.

The channel responses are generated following (4) and (5),
with two different settings for the number of multipath com-
ponents, IP = 4 or IP = 6.

TABLE 2. Parameters for MIMO-OFDM.

B. NUMERICAL RESULTS
1) RECOVERY OF THE CHANNEL STRUCTURE
In order to illustrate the advantages of exploiting the
clustered-sparse structure of the Massive MIMO channel
responses in our proposed estimation algorithm, we com-
pare its performance to that of two sparse estimators: the
FSBL and T-MSBL. The former estimates independently the
channels observed at each of the array elements and, there-
fore, doesn’t exploit the similarities between them. On the
other hand, the latter assumes that the sparsity pattern of
the channels seen at all the array elements is the same and,
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hence, estimates a single support for all responses. In Fig. 5,
the resulting estimates for an instance of the algorithms
are shown, along with the original channel response, for a
system with BW = 20 MHz, NP = 64 pilot subcarri-
ers, a channel with IP = 6 multi-path components in a
L = 64 length vector, and a signal-to-noise ratio (SNR ,
Trace(Cov(Ahr ))/Trace(Cov(hr ))) of 15 dB. In these results,
we observe that, although the sparsity pattern of the chan-
nel responses stays approximately constant across the array
elements, there are slight variations of the delays of the
multi-path components across the array. While our proposed
CVBI-DP algorithm appears to be able to track those slight
variations accurately, the T-MSBL (in the figures we rename
it BSBL) estimator is not and instead estimates a constant
support over all array elements. On the other hand, FSBL is
able to estimate the positions of the significant channel taps
well for each array element, but tends to mistakenly assign
small power to portions of the response where no multi-
path component is present. We attribute this to the fact that
FSBL does not exploit the similarities between the channels
observed at the different array elements. As we will see next,
the differences between the estimators observed in Fig. 5
result in better overall accuracy for the CVBI-DP estimator.

2) ESTIMATION ACCURACY PERFORMANCE
Next, we evaluate the estimation accuracy of the proposed
algorithm and the benchmarks over different SNR values.
We do so by numerically evaluating the mean squared error
(MSE) of the estimated responses, defined as MSE =

E{||Ĥ − H||22}/(L × R), over 50 Monte-Carlo runs in a
system with BW = 20 MHz, number of pilot NP = 64,
and channels with IP = 4 multi-path components in a full
vector length of L = 64 taps. In addition to the bench-
marks already mentioned, we include here the SABMP algo-
rithm from [9] and the DP-based estimators–without model
collapsing–of [12] and [13]. As an ideal bound, we include
an Oracle estimator which implements LMMSE estimation
of the responses assuming perfect knowledge of the sparsity
pattern of each channel response and of the noise variance;
this can be shown to be equivalent to the Cramér-Rao lower
bound (CRLB) of the channel vector assuming knowledge of
its support. The results, depicted in Fig. 6, demonstrate the
superior estimation accuracy of our proposed CVBI-DP algo-
rithm over all benchmarks throughout the entire SNR range.

3) INFLUENCE OF SYSTEM PARAMETERS
We investigate next how two key system parameters, band-
width and number of pilots, affect the performance of dif-
ferent channel estimation methods. To that end, we first set
the SNR to 20 dB, and vary the transmission bandwidth
from 10 MHz to 150 MHz. The results, shown in Fig. 7,
indicate that while other estimators, such as the T-MSBL and
the original DP, see a performance degradation as bandwidth
increases, our proposed CVBI-DP method’s performance is
robust to the different bandwidth configurations.

FIGURE 6. MSE performance over SNR:0 ∼ 30dB, BW = 20 MHz, IP = 4,
L = 64, and NP = 64.

FIGURE 7. MSE performance over BW : 10 ∼ 150MHz, SNR = 20dB, and
IP = 4, L = 64, and NP = 64.

FIGURE 8. MSE performance over pilot overhead:32 ∼ 2048,
BW = 20MHz, SNR = 20dB, IP = 4, L = 64, and NP = 64.

To evaluate the effect of the amount of pilots symbols,
we set the SNR to 20 dB and the bandwidth to 20 MHz, and
vary the number of pilot subcarriers from 32 to 512. From
the results shown in Fig. 8, we conclude that our proposed
estimator performs better than all competitors regardless of
the amount of pilots used.

When system bandwidth increases, there are more non-
zero elements around the delay of the incident wave after
sampling, and the channel structure becomes more complex.
From Fig.7 we can see that the proposed method CVBI-DP is
robust to bandwidth. From Fig.8 we know that regardless of
the pilot overhead, the CVBI-DP always provides better esti-
mation performance, so we can choose a low pilot overhead.

From the simulation results shown above, we draw the
overall conclusion that the proposed structured channel esti-
mation algorithm based on collapsed VBI-DP improves
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the MSE performance without increasing the computational
complexity and pilot overhead, while it works robustly
towards other system parameters such as bandwidth.

V. CONCLUSION AND FUTURE RESEARCH
In this paper we analyze the uplink channel structure in
massive MIMO-OFDM system, then derive a sparse channel
estimation algorithm based on CVBI-DP. Simulation results
show that the proposed channel estimation method has better
performance under the MSE criterion without increasing the
computational complexity and pilot overhead, and it’s also
robust to the system parameters.

In the future, we will continue the research on structured
channel estimation for massive MIMO, but focus on two
points: 1) we will improve the DP model to reinforce spa-
tial relationship between the neighboring channels, e.g. by
devising a correlation model for the neighboring taps in one
channel vector; 2) we will rebuild the probabilistic channel
model to adapt to different kinds of antenna arrays.
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