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ABSTRACT Privacy amplification (PA) is a vital procedure in quantum key distribution (QKD) to shrink
the eavesdropper’s information about the final key almost to zero. With the increase of repeat frequency of
discrete variable QKD (DV-QKD) system, PA processing speed has become the bottleneck in many high-
speed DV-QKD systems. In this paper, a high-speed adaptive field-programmable gate array (FPGA)-based
PA scheme using a fast Fourier transform (FFT) is presented. To decrease the computation complexity,
a modified 2-D FFT-based Toeplitz PA scheme is designed. To increase the processing speed of the scheme
on the constraint of limited resources, a real-value oriented FFT acceleration method and a fast read/write
balancedmatrix transpositionmethod are designed and implemented in our scheme. The experimental results
on a Xilinx Virtex-6 FPGA demonstrate that the throughput is nearly double of the latest FPGA based
Toeplitz PA scheme according to the literature. Besides, this scheme owns not only the good adaptivity to
compression ratio but also the compression ratio independent resource consumption. Therefore, this scheme
can fit many high-speed QKD applications.

INDEX TERMS Quantum key distribution, privacy amplification, fast Fourier transform,
field-programmable gate array.

I. INTRODUCTION
Quantum key distribution (QKD) is a notable technique
which exploits the principles of quantum mechanics to
accomplish the secure key distribution between two remote
parties, called Alice and Bob. Since Bennet and Brassard
proposed the first practicable protocol in 1984 [1], many pro-
tocols have been proposed successively. These protocols can
be divided into discrete variable (DV) protocols and continu-
ous variable (CV) protocols [2]–[10]. Mainly due to the thor-
ough security analysis, DV-QKD has drawn more attentions,
and many DV-QKD systems have been developed [7]–[10].
A DV-QKD system includes two parts: quantum subsystem
and post-processing subsystem. The function of quantum
subsystem includes quantum state preparation, transmission
and measurement. The post-processing subsystem mainly
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consists of error reconciliation and privacy amplification
(PA) [11]. The task of error reconciliation is to correct error
bits between two parties and get the identical corrected bit
string by means of exchanging information over a public
classical channel [12], [13]. Since the attacker, called Eve,
may not only eavesdrop the quantum channel but also have
full access to the classical channel, he may obtain some
information about the corrected bit string. Therefore, it is
necessary for PA to shrink Eve’s information about the final
key to almost zero. Furthermore, PA is also an open issue
in some technique associated with QKD, e.g. quantum pri-
vate query [14]–[16]. PA eliminates the leaked information
by mapping a long corrected bit string to a much shorter
final key via universal2 hash function families [17]–[21].
To reduce the finite size effect in a practical QKD sys-
tem, the length of an input block for PA should be at
least 106, which leads to the high computation complex-
ity and large storage requirement [22]. Therefore, PA has
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become the bottleneck in many QKD systems. To solve
this problem, the researchers studied different kinds of hash
functions, implementation algorithms and platforms. In the
aspect of hash function selection, C. M. Zhang et al. chose
a multiplicative-based universal2 class of hash function to
speed up PA process, and they constructed an optimal mul-
tiplication algorithm with four basic multiplications on the
central processing unit (CPU) [23]. While the multiplication
of large numbers is a complex calculation, which is diffi-
cult to transplant and further optimize. Nowadays, Toeplitz
hashing is the most widely used in PA process because of
its simple structure and parallel feature [24]. To speed up the
implementation of Toeplitz hashing based PA, several imple-
mentation algorithms have been proposed. Hayashi et al.
proposed a modified Toeplitz matrix to further decrease the
computation [25]. Zhang et al. [26] proposed a block parallel
algorithm. Yuan et al. [27] applied number theoretical trans-
form (NTT) algorithm to Toeplitz matrix multiplication. For
the first time, the use of fast Fourier transform (FFT) was
proposed to accelerate Toeplitz hashing and improved the
process speed significantly by Liu et al. [28]. Among these
algorithms, the computation complexity of FFT-based algo-
rithm is the lowest, i.e., O(n log n). As for the platform selec-
tion, CPU is the conventional option for Toeplitz based PA
[27], [28]. While the performance improvement of Toeplitz
based PA on CPU is limited by the weak parallel computation
support of CPU. Graphic processing unit (GPU) draws many
attentions due to its great advantage in parallel computing.
Wang et al. [29] proposed a FFT-based PA algorithm in CV-
QKD based on GPU and improved the processing speed of
PA to over 1Gbps. However, the volume and power con-
sumption of GPU are pretty high, making it not suitable
for practical DV-QKDapplications. Field-programmable gate
array (FPGA) is a suitable platform for DV-QKD system
with the feature of high-parallelism, compact volume and
low power consumption. Zhang et al. [26] first proposed a
block parallel algorithm to speed Toeplitz hashing on FPGA.
Constantin et al. [30] and Yang et al. [31] proposed an
improved block parallel algorithm for Toeplitz hashing on
FPGA respectively [30], [31]. The scheme of S. S. Yang
et al. achieves 64Mbps processing speed based on FPGA and
reduces memory resources significantly [31].

As far as we know, all existing PA schemes on FPGA
use parallel block method Toeplitz hashing with computation
complexity of O(n2). It is natural to think of the FFT-based
algorithm when a Toeplitz PA is designed on FPGA. How-
ever, it is a big challenge to implement the FFT-based Toeplitz
PA on FPGA due to the requirements of input block length
at least 106, and the limited resources. In this paper, a high
speed FFT-based Toeplitz PA hardware scheme is proposed
for the first time. The scheme is implemented on a Virtex-6
FPGA. The throughput of our scheme reaches 116Mbps with
the input block length n = 1M . Compared with the latest
FPGA based PA scheme, our scheme achieves nearly twice
throughput on a lower level hardware platform. Except for
the high throughput, our scheme owns the good adaptivity

to compression ratio and the compression ratio independent
resource consumption. These advantages helped it to fit more
QKD applications.

The rest of this paper is organized as follows. Some related
works are described in Section 2 as the basis. In Section 3,
the proposed high speed FFT-based Toeplitz PA hardware
scheme is introduced in details. In Section 4, the experiment
results and analysis are given. In Section 5, some conclusions
are drawn.

II. RELATED WORK
A. PRIVACY AMPLIFICATION
Privacy amplification is a process that allows two parties,
Alice and Bob, to distill a secure final key from a partially
secure bit string [17]. The definition of privacy amplification
is given below from the standpoint of information theory.
Before PA procedure in QKD, Alice and Bob share a random
n-bit binary string X, called the corrected key in QKD. Eve
learns a correlated random string W providing t(t < n) bits
of information about X, i.e., H(X|W) ≥ n− t . Alice and Bob
wish to publicly choose a compression function g : {0, 1}n→
{0, 1}r such that Eve’s partial information about X and her
complete information of g can only give her little information
about Y = g(X). Such procedure is indicated as Fig. 1.

FIGURE 1. The Procedure of Privacy Amplification.

To choose a universal2 hash function as the compression
function g for PA, the mutual information between the dis-
tilled key compressed by universal2 hash function and Eve’s
information follows:

I (Y; g,W ) ≤ 2−s/ ln 2, (1)

where s = n − t − r denotes the security coefficient of
PA [17], [21].

While the above definition based on the information theory
ignores the setting where Eve holds quantum information.
To address this problem, Renner et al. refined the definition
of privacy amplification from the standpoint of composable
security [32]. They further proved the upper bound of Eve’s
information asymptotically tight under both definitions, for
n approaching infinity [32]. In practical QKD system, n
is suggested to be larger than or equal to 106 to elimi-
nate the difference between two definitions [33]. Therefore,
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the implementation of PA is usually computation and storage
expensive.

B. TOEPLITZ MATRIX BASED PA
Toeplitz matrix based PA is most popular in DV-QKD, and
the essential processing is multiplying the input n-bit string
X by a n × r random Toeplitz matrix [34]. For instance, (2)
is a Toeplitz matrix,

Tr×n =


Vr−1 Vr · · · Vn+r−3 Vn+r−2
Vr−2 Vn+r−3
...

. . .
. . .

...
V1 Vn−1 Vn
V0 V1 · · · Vn−2 Vn−1

. (2)

Because a Toeplitz matrix is a diagonal-constant matrix,
it can be constructed by its first column and first row which
means n + r − 1 random binary numbers are required.
FFT algorithm is an efficient algorithm to calculate the
Toeplitz matrix multiplication. The computation complexity
of such multiplication operation can be reduced from O(n2)
to O(n log n) via FFT. The main process of Toeplitz matrix
multiplication accelerated by FFT is shown as (3),

Vn+r−1 ⊗ Xn+r−1

= [IFFT (FFT (Vn+r−1) • FFT (Xn+r−1))

=

[
Pn×r Pn×n
Pr×r Vr×n

]
×

[
0
Xn

]
=

[
Pn×n × Xn
Vr×n × Xn

]
=

[
Pn×n × Xn

Yr

]
, (3)

where Xn = [X0,X1, · · · ,Xn-1]′ is the input sequence of
PA, Yr = [Y0,Y1, · · · ,Yr ]′ is the final key sequence,
Xn+r−1 = [0, 0, · · · , 0,X0,X1, · · · ,Xn-1]′ and Vn+r-1 =

[V0,V1, · · · ,Vn+r−2] is the description of Toeplitz matrix.
The function of matrix P is to transfer the Toeplitz matrix to
a cyclic matrix. Using this method, the input length of FFT
to calculate the Toeplitz matrix would be n + r − 1, which
depends on the length of both input and output of PA.

Hayashi et al. proposed a modified Toeplitz matrix as the
compression function and gave the security proof [25]. The
modified Toeplitz matrix is constructed by the concatenation
of Toeplitz matrix and the identity matrix (I,V). For instance,
(4) is a modified Toeplitz matrix,

Sr×n =


1 Vr−1 Vr · · · Vn−2

1 Vr−2 Vr−1 Vn-3
. . .

...
. . .

...
V1 Vn−r

1 V0 V1 · · · Vn−r−1

. (4)

Let Xn = [X0,X1, · · · ,Xn-1]′ be the input sequence of PA,
and Yr = [Y0,Y1, · · · ,Yr ]′ be the final key sequence. (5)
is the calculative process of the final key with the modified
Toeplitz matrix Sr×n,

Yr = Sr×n × Xn = [Ir×r,Vr×(n−r)]× [
Xr

Xn−r
]

= [Ir×r × Xr]+ [Vr×(n−r) × Xn−r] = Xr + Y
′

r. (5)

Make up the Toeplitz matrix Vr×(n−r) to a cyclic matrix,
then the calculation ofY′r can be accelerated by FFT as shown
in (6).

[
P(n−r)×(n−r)×Xn−r

Y
′

r
]

= [
P(n−r)×(n−r) × Xn−r
Vr×(n−r) × Xn−r

]

=

[
P(n−r)×r P(n−r)×(n−r)
Pr×r Vr×(n−r)

]
×[

0
Xn−r

] = Vn−1 ⊗ X
′

n−1

= IFFT(FFT(Vn−1) • FFT(X
′

n−1)), (6)

where Vn−1 = [V0,V1, · · · ,Vn−2] is the description of
Toeplitz matrix, X′n−1 = [0, 0, · · · ,Xr , · · · ,Xn−1]′ is a part
of the input sequence. The function of matrix P is to transfer
the modified Toeplitz matrix to a cyclic matrix.

Using the modified Toeplitz matrix, the required quantity
of random bits can be reduced from n + r − 1 to n − 1 and
the input length of FFT can also be reduced from n + r − 1
to n − 1. In this case, the length of FFT is only related to
the input length, not to the output length anymore. This fea-
ture can notably reduce the design complexity of FFT-based
Toeplitz PA.

III. HIGH SPEED FFT-BASED PRIVACY AMPLIFICATION
HARDWARE SCHEME
Ahigh-speed PA hardware scheme for FPGA implementation
is proposed in this section. Firstly, the overall process of the
scheme is given. Then a modified 2-dimensional (2-D) FFT
algorithm is proposed, followed by a real-value oriented FFT
acceleration method and a block-wise matrix transposition
method.

A. OVERALL PROCESS OF FFT-BASED PA
HARDWARE SCHEMES
The overall process of FFT-based PA Hardware Scheme is
indicated as Fig. 2.

FIGURE 2. The Overall Process of FFT-based PA Hardware Scheme.

As a Toeplitz matrix based PA, our scheme is built
upon the FFT algorithm and it only relies on the cor-
rected key length without the final key length. Therefore,
the scheme owns good adaptivity to the compression ratio.
The compression ratio is defined as the ratio of the final key
length r and the corrected key length n. The pre-processing
phase is designed to adapt the varying compression ratio,
in which the input sequence Xn = [X0,X1, · · · ,Xn−1]′

is divided into Xr = [X0,X1, · · · ,Xr−1, 0, · · · , 0]′ and
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X′n−1 = [0, 0, · · · , 0,Xr , · · · ,Xn−1]′. As the compression
ratio changes, the pre-processing phase adjusts the length r
in Xr and the length n− r in X′n−1 as shown in Fig. 3.

FIGURE 3. The Adaptive Design for the Compression Ratio.

The dot operational character means the dot product of the
two FFT results. In the post-processing phase, the result of
inverse FFT (IFFT) is rounded to a boolean sequence. The
final key sequence of PA is the XOR of Xr and the result of
the Toeplitz cyclic convolution Y′r .
During the whole processing, the main computation load

comes from FFT/IFFT. Although some FFT/IFFT cores can
be obtained for FPGA design, the input length of these cores
cannot satisfy the requirement of PA. To overcome this prob-
lem, a 2-D large-point FFT is designed with small-point FFT
hardware cores [35]. The procedure of 2-D large-point FFT
algorithm is described as Algorithm 1.

Algorithm 1 2-D Large-Point FFT
Input: Xn = x0, x1, · · · , xn−1
Output: Yn = FFT (Xn)
1: Convert a one-dimensional input sequence Xn into a two-

dimensional matrix Ak×k
2: A′ = Transposed(A)
3: // Transposed(A) is the transpose of the matrix A
4: for i = 0 to k − 1 do
5: A1[i][0 : k − 1] = FFT (A′[i][0 : k − 1])
6: end for
7: for i = 0 to k − 1 do
8: for j = 0 to k − 1 do
9: A2[i][j] = A1[i][j]×W [i× j]
10: // W is the multiply rotation factor of FFT
11: // W [i× j] = e

−i2π ij
k

12: end for
13: end for
14: A′2 = Transposed(A2)
15: for i = 0 to k − 1 do
16: A3[i][0 : k − 1] = FFT (A′2[i][0 : k − 1])
17: end for
18: A′3 = Transposed(A3)
19: for i = 0 to k − 1 do
20: for j = 0 to k − 1 do
21: Y [i× k + j] = A′3[i][j]
22: end for
23: end for

Although this method makes it possible to accomplish
FFT/IFFT via multiple small-point FFT cores at high speed,
many matrix transpositions and memory access are needed

repeatedly. Thus, to speed up the PA scheme, the most impor-
tant task is to optimize the number and speed of matrix trans-
position and memory access. Aiming at such a challenge,
we design a modified 2-D FFT algorithm, a real-value ori-
ented FFT acceleration method and a fast read/write balanced
matrix transposition method.

B. A MODIFIED 2-D FFT FOR PA
Since matrix transposition is very time consuming, the PA
can be accelerated if fewer matrix transpositions are required.
According to Algorithm 1, three matrix transpositions are
needed in the 2-D large-point FFT. It is found that removing
the first and the third matrix transposition operations would
only affect the order of output final key, while the mutual
information between the input and output does not change at
all. Therefore, the 2-D large-point FFT/IFFT algorithm can
be simplified as Algorithm 2, the Modified 2-D Large-Point
FFT for PA.

Algorithm 2 Modified 2-D Large-Point FFT for PA

Input: Xn = x0, x1, · · · , xn−1
Output: Yn = FFT (Xn)
1: Convert a one-dimensional input sequence Xn into a two-

dimensional matrix Ak×k
2: for i = 0 to k − 1 do
3: A1[i][0 : k − 1] = FFT (A[i][0 : k − 1])
4: end for
5: for i = 0 to k − 1 do
6: for j = 0 to k − 1 do
7: A2[i][j] = A1[i][j]×W [i× j]
8: end for
9: end for
10: A′2 = Transposed(A2)
11: for i = 0 to k − 1 do
12: A3[i][0 : k − 1] = FFT (A′2[i][0 : k − 1])
13: end for
14: for i = 0 to k − 1 do
15: for j = 0 to k − 1 do
16: Y [i× k + j] = A3[i][j]
17: end for
18: end for

If Y = g(X) indicates the process of Toeplitz-based PA
with 2-D large-point FFT, the process of Toeplitz-based PA
with modified 2-D large-point FFT can be described by

Y′ = T(Y1) = T(g(X1)) = T(g(T(X))) = g′(X), (7)

where the function T is a sequence transformation indi-
cated as

T(X(i+ j× C)) = X1(j+ i× C), (8)

where i, j = 0, 1, · · · ,C − 1, C means the number of rows
of the matrix in the 2-D FFT. Although the transformation
makes Y′ different from Y, it can be proved that the secu-
rity of PA using Algorithm 2 and Algorithm 1 are exactly
equal, i.e., I (Y′; g′,W ) = I (Y; g,W ). The detailed proof is
presented in the following Proposition 1.
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Proposition 1: Let X be a random n-bit string with uni-
form distribution over {0, 1}n. LetW = e(X) for an arbitrary
eavesdropping function e : {0, 1}n → {0, 1}t , where t < n,
and let the length of Y and Y′ is r = n − t − s, where s
is a positive safety parameter and s < n − t . Let function
T be the sequence transformation indicated as (8). If Alice
and Bob choose Y′ = g′(X)(7) or Y = g(X) as their secret
key, where g is chosen at random from a universal2 class of
hash functions from {0, 1}n to {0, 1}r , then Eve’s expected
information about the secret key satisfies I (Y′; g′,W ) =
I (Y; g,W ) ≤ 2−s/ ln 2.

Proof: According to (7), the main differences between
Y and Y′ are Y′ = T(Y1) and X1 = T(X). So the proof
starts with the equivalent of the information uncertainty of
Eve about X and X1 indicated as (9) and (10), respectively.

H (X|W,T) = H (X,W,T)− H (W,T), (9)

H (X1|W,T) = H (X1,W,T)− H (W,T). (10)

Expand combination entropy H (X,W,T,X1) with chain
rule as:

H (X,W,T,X1) = H (X,W,T)+ H (X1|X,W,T), (11)

H (X,W,T,X1) = H (X1,W,T)+ H (X|X1,W,T). (12)

Because X1 = T(X) is an one-one mapping relationship,
H (X1|X,W,T) = H (X|X1,W,T) = 0. Then (13), (14) can
be established,

H (X,W,T) = H (X1,W,T), (13)

H (X|W,T) = H (X1|W,T). (14)

Apparently,

H (g(X)|W,T, g) = H (g(X1)|W,T, g), (15)

H (Y|W,T, g) = H (Y1|W,T, g). (16)

Applying the same deduction as (9) - (14), (17) can be
obtained,

H (Y1|W,T, g) = H (Y′|W,T, g), (17)

so,

H (Y|W,T, g) = H (Y′|W,T, g). (18)

Therefore, I (Y; g,W ) = I (Y′; g′,W ) according to the
definition of mutual information. On the basis of existing
proof in [17], I (Y; g,W ) = I (Y′; g′,W ) ≤ 2−s/ ln 2.

Let us take a one-million points PA as an example. Because
our PA algorithm is based on the 2-D large-point FFT algo-
rithm, the input sequence will be loaded into a 1024 × 1024
matrix. The input and output sequences of the PA algo-
rithm with the 2-D large-point FFT are shown in Fig. 4 (a).
The input and output sequences of the PA algorithm with
the modified 2-D large-point FFT for PA are shown in
Fig. 4 (b). We have proved that the security of two methods
is equivalent.

With the modified method, the number of matrix trans-
formation and memory access that the large-point FFT/IFFT

FIGURE 4. The Input/Output Sequence Order Diagram of FFT. (a) 2-D
Large-Point FFT. (b) Modified 2-D Large-Point FFT.

algorithm needs will significantly decrease. Since the PA
algorithm needs one FFT and one IFFT. The number ofmatrix
transposition in the whole PA algorithm will be decreased
from six to two, and the time consumption of the PA algorithm
will decrease significantly.

C. REAL-VALUE ORIENTED FFT ACCELERATION
The commercially available FFT hardware cores are designed
to compute the FFT of a complex sequence, while both the
input sequence Xn and the description of Toeplitz Vn are
real sequences. Most FFT-based PA schemes regard the input
sequence as the real part and set the imaginary part to zero
directly. This method leads to a waste of computing resource
and storage resource. A real-value oriented FFT algorithm
is introduced to solve this problem, to compute the FFT of
the input sequence x(n) and Toeplitz sequence v(n). Their
FFT results X (k) and V (k) can be obtained via one complex-
valued FFT as described by (19)-(24) [36].

z(n) = x(n)+ i · v(n) (19)

Z (k) = FFT (z(n)) (20)

Re[X (k)] = 1/2 · (Re[Z (k)]+ Re[Z (N − k)]) (21)

Im[X (k)] = 1/2 · (Im[Z (k)]− Im[Z (N − k)]) (22)

Re[V (k)] = 1/2 · (Im[Z (k)]+ Im[Z (N − k)]) (23)

Im[V (k)] = 1/2 · (Re[Z (N − k)]− Re[Z (k)]) (24)

Such optimization method can save nearly half computing
resource and storage resource of PA.
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FIGURE 5. The High Effective Matrix Transposition Process.

D. BLOCK WISE MATRIX TRANSPOSITION
Although the modified 2-D FFT algorithm has decreased the
number of the matrix transposition, the matrix transposition
is still time-consuming. To improve the processing rate of
PA further, an effective matrix transposition method, so-
called block wise matrix transposition, is introduced in our
scheme [37]. The access mechanism of double data rate syn-
chronous dynamic random access memory (DDR-SDRAM,
DDR for short) makes the row span access operation cost
much more time than the inline access. Because the matrix
transposition needs a large amount of the row span access
operations, the block wise matrix transposition is introduced
to reduce the number of the row span access operations,
which is shown as (25) and (26).

Mwrite
l×C+i,j+k×C = Ak+C×l,j+C×i, (25)

A′k+C×l,j+i×C = Mread
l+i×C,k+j×C , (26)

where A is the square matrix to be transposed, the size of the
matrix is N ×N , N should be a perfect square, C =

√
N , and

i, j, k, l = 0, · · · ,C − 1. M indicates the DDR memory to
access.

The main process of the common matrix transposition
based on the DDR memory model is indicated as (27),

A′j,i =Mi,j = Ai,j. (27)

Taking the one-million points PA algorithm as an example,
the number of row span access operation in the common
matrix transposition is calculated as (28),

Tspan=Twrite+Tread=1024+1024×1024=1049600. (28)

The block wise matrix transposition method uses the
matrix partitioning technology to balance the number of row
span access of read/write operations. This method can reduce
the total row span access number and increase the processing
rates of matrix transposition significantly. The main process
of the block wise matrix transposition is indicated as Fig. 5.

In this case, each row of the matrix is transformed to a 32×
32 matrix. The number of row span access operation of the
block wise matrix transposition method is calculated as (29).

Tspan=Twrite+Tread= 32× 1024+ 32× 1024 =65536.

(29)

To verify its improvement on the processing rates of matrix
transposition, the experiment is carried out with the DDR3-
SDRAM. The comparison experiment results of the two
methods are indicated in TABLE 1.

According to the experiment results, the block wise matrix
transposition method can bring a boost of the processing rate
of matrix transposition by a factor of 2.76.

IV. IMPLEMENTATIONS AND RESULTS
The proposed PA scheme is implemented on the Xil-
inx ML605 Evaluation Kit. The kit includes a Virtex-6
XC6VLX240T-1FFG1156 FPGA with 241,152 logic cells
and a 512MB DDR3 SDRAM. The overall structure of our
PA scheme is shown in Fig. 6.

FIGURE 6. The Overall Structure of the PA Scheme.

The input preprocessing unit is designed to store the cor-
rected keys and the Toeplitz random numbers. It also con-
verts the data to the floating-points for the FFT convolution.
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TABLE 1. The Effective Matrix Transposition Experiment Result.

TABLE 2. The Resource Utilization of the PA Scheme.

In addition, because the Toeplitzmatrix should be constructed
randomly for each trail, the buffer size of the corrected keys
and the Toeplitz random numbers should be same to guar-
antee the correctness and performance of the scheme. The
function of PA control unit is to control the process sequence
and data interaction of the other units. The FFT convolution
unit is the key unit of the PA module, which contains five
major parts. The FFT core is designed to calculate the FFT on
each row of the matrix. The length of the FFT IP-core is set as
1024 in the one-million points PA algorithm. The processing
rate of single FFT core is 12.8Gbps, and the maximum rate
of the matrix transposition is 19.74Gbps. Hence, two FFT IP
cores are used in our scheme to match the rates of the FFT
cores and transposition. Similarly, the IFFT core is designed
to calculate the IFFT on each row of the matrix. Two IFFT IP-
cores are used and their lengths are also set as 1024. The real-
value oriented acceleration unit completes the computation
task of the real-value FFT efficiently. The rotator factory
correction unit multiplies rotation factors point-wisely by the
result of FFT/IFFT core to accomplish the 2-D large-point
FFT algorithm. The data distribution unit distributes the data
for the calculation units and exchanges data with DDR3-
SDRAM controller. The scheme is simulated with Modelsim
v10.4, and the function of the scheme is verified by compar-
ing with the reference program on Matlab 2017a. Then the
scheme is implemented on a ML605 Evaluation Kit and the
results are accord with the simulation. The resource utiliza-
tion of the PA scheme in hardware is shown in TABLE 2.
According to the resource utilization, there is enough spare
resource for other modules to constitute the complete post-
processing system on the XC6VLX240T FPGA.

The comparison of several FPGA-based implementations
of PA schemes is demonstrated in TABLE 3.

According to the implementation results, the processing
speed of our PA scheme can reach 116Mbps, and it is nearly

FIGURE 7. The PA Scheme Comparison as the Compression Ratio
Changes. (a) the Resource Consumption vs the Compression Ratio. (b) the
Processing-Speed vs the Compression Ratio.

double of the latest FPGA based Toeplitz PA scheme [31].
This processing speed enhancement mainly benefits for two
reasons. Firstly, the computation complexity of the FFT algo-
rithm is lower than that of the linear feedback shift reg-
ister (LFSR) based algorithm. Secondly, the modified 2-D
FFT algorithm with a real-value oriented FFT acceleration
method and a block wise matrix transposition is employed in
this scheme. Besides, the processing speed of the proposed
scheme is mainly limited by the memory transfer rate, it can
be improved greatly by simply replacing the DDR3 used in
our scheme by a faster memory chip, e.g. DDR4-DRAM.

Except for the high processing speed, another advantage
of our scheme is the good adaptivity to the compression
rate. Both schemes in [30] and [31] are based on the LFSR,
which suffer from the compression rate dependent resource
consumption. To bemore specific, the resource consumptions
of those schemes increase sharply with the rising of compres-
sion rate to maintain the high processing speed. The compres-
sion ratio roughly varies in the range of 10% through 30% in
existing QKD systems. For example, the compression ratio
in the high speed QKD system of [27] is 29%. The scheme
proposed in [31] is resource-saving when the compression
ratio of PA is a fixed value 10%, but the resource require-
ment will double if the compression rate becomes 20% to
maintain the same processing speed. Unlike the LFSR-based
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TABLE 3. The comparison of Several FPGA-based PA schemes.

PA scheme, the resource consumption of proposed FFT-based
PA is independent of the compression rate.

Keeping the throughput constant, the resource consump-
tions of our scheme and the comparative two schemes are
shown in Fig. 7(a). Keeping the resource consumption stable,
the throughputs of the three schemes are shown in Fig. 7(b).
From the comparison, our FFT-based scheme can meet the
requirements of more QKD systems.

Although the proposed FFT-based scheme costs about
4MB BRAM, which is higher than the comparative LFSR-
based schemes, 4MB is acceptable consumption considering
the total BRAM resource of a typical FPGA. For example,
the XC6VLX240T FPGA used in our implementation con-
tains 30MB BRAM.

V. CONCLUSIONS AND OUTLOOK
This paper provides a high-speed PA hardware scheme and
its implementation in FPGA based on the FFT. The experi-
mental results on a Xilinx Virtex-6 FPGA demonstrate that
the throughput is nearly double of the latest FPGA based
Toeplitz PA scheme according to the literature. Compared
with other representative works, the proposed PA scheme can
support wide-range and variable compression ratio. It can
reach faster processing speed with faster memory. The opti-
mization schemes proposed in this paper also fits the FFT-
based PA algorithm on other platforms, such as CPU and
GPU. In the future, we will try to further improve the process-
ing speed and reduce the resource consumption of FFT-based
PA scheme on FPGA.
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