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ABSTRACT In this paper, a random forest regression model with multitype predictor variables (MTVRF)
was utilized with four kinds of input variables, including surface reflectance, spectral indices, terrain factors,
and land cover types, to establish the nonlinear relationship between land surface temperature (LSTs) and
other land surface parameters. Themain objective of this paper is to analyze the superiority ofMTVRFmodel
in multivariable regression wherever on the simple or complex underlying surface and further to demonstrate
the robustness of random forest (RF) regression downscaling model trained in one study area while being
applied to another area. The spatial resolution of the Moderate Resolution Imaging Spectroradiometer LST
product was downscaled by MTVRF from 990 to 90 m. A comparison with two other downscaling methods,
such as the basic RF model and the thermal sharpening algorithm, was also made. By computing the mean
error, the determination coefficient (R2), and the root mean square error (RMSE) between the downscaled
and referenced LSTs, the MTVRF model achieved a satisfied performance. Further satisfactory results were
also obtained for the MTVRF to downscale LSTs for different land covers and evaluate the training model
in various regions. The RMSE of the MTVRF model trained on study area B and evaluated on study area A
was 3.13k, while the RMSE trained on study area A and evaluated on study area B was 2.11k; this shows the
MTVRF model trained in a specific region is thought to be robust enough to downscale LSTs under other
various surface conditions.

INDEX TERMS Land surface temperature, downscaling, random forest, thermal remote sensing, thermal
sharpening, robustness.

I. INTRODUCTION
Land surface temperature (LST), which is described as one
of the most important parameters for atmospheric and land
surface interactions, material cycles and energy exchanges in
the terrestrial ecosystem at regional and global scales, plays
an essential role in the energy balance of land surfaces and
the solution of biophysical parameters [1]–[6]. LSTs with
a finer resolution have been widely used in hydrologi-
cal equilibrium assessments, global warming studies, urban
heat island effect assessments and surface evapotranspiration
calculations [7]–[12].

The associate editor coordinating the review of this manuscript and
approving it for publication was Tomasz Trzcinski.

Thermal infrared remote sensing data, which usually derive
from thermal infrared sensors such as the Thermal Infrared
Sensor (TIRS), Advanced Spaceborne Thermal Emission and
Reflection Radiometer (ASTER) and Moderate Resolution
Imaging Spectroradiometer (MODIS), have been continu-
ously used to retrieve land surface temperatures. However,
remotely sensed LST products yield a tradeoff between high
temporal and high spatial resolutions [13]. For example,
the resolution of Landsat ETM plus at band 6 is 60 m but
with a 16-day cycle, which cannot meet continuous time
series observations for the same area. High temporal reso-
lution sensors, such as MODIS, obtain observations twice
every day, but only 1-km LSTs can be provided. Thermal
infrared images with low spatial resolutions are affected by
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spatial heterogeneity due to the subcomponents within each
pixel. This issue impedes the application of LSTs. Therefore,
an effective downscaling method is desired to improve the
resolution of LSTs [14]–[16].

During the past few years, various downscaling algorithms
have been proposed to downscale LSTs from coarser to
finer resolutions [13], [17]–[25], where downscaling meth-
ods based on scale factors are recognized as one kind of
popular algorithm [15]–[16], [26]. Downscaling methods
based on scale factors are commonly divided into three
categories: statistical regression-based downscaling meth-
ods [13], [19], [27], [28], modulation distribution-based
downscaling methods and linear spectral mixture model-
based downscaling methods [29]–[35]. Statistical regression
methods, such as the disaggregation procedure for radio-
metric surface temperature (DisTrad) method [13] and the
thermal sharpening (TsHARP) algorithm [19], have been
commonly accepted as easily manipulated and satisfactorily
accurate among these methods. Early regression algorithms
tend to focus on the statistical relationship between vegetation
indices and LST, such as the normalized difference vegetation
index (NDVI) [13], fractional vegetation cover [17]–[19],
and soil-adjusted vegetation index (SAVI) [24], based on
the belief that the spatial variance of land surface tempera-
ture is mostly controlled by vegetation coverage [36], [37].
However, the main limitation of these algorithms is that the
correlation between a vegetation index and LST appears to
be insufficient for regions with impervious surfaces, barren
lands and wetlands [29], [38], [39]. Thus, many other spec-
tral indices have been used to fit the nonlinear relationships
between LST and land parameters, including the normal-
ized difference building index (NDBI), modified normal-
ized water index (MNDWI) [28], and normalized difference
drought index (NDDI) [22]. Other scale factors, such as sur-
face albedo, digital evaluation models and land cover types,
have continuously been introduced to improve the statistical
regression algorithm [27], [41].

In addition to this method, recent studies also addressed
the issues of linear or nonlinear regression algorithms
between LST and the mentioned parameters [42]–[45], for
example, Duan and Li proposed an original geographi-
cally weighted regression downscaling model and achieved
good results [45]. Machine learning algorithms, such as
the Bayesian-based model [42], artificial neural network
(ANN) [46]–[48], support vector machine (SVM) [49],
combined global window and moving window regression
trees and random forest (RF) [25], [28], [50], [51], have
obtained great accuracies when fitting the nonlinear relation-
ship between LST and other variables.

Recently, the random forest model has been utilized in
the LST downscaling of vegetation and arid areas [28], [39].
In addition, a great contribution to introduce land surface
reflectance, terrain factors (DEM, slope) and land use map
into RF downscaling model and achieved good results in
simulative Landsat LST as well as MODIS LST product [51].
However, something detailed still worthy to be discussed

such as the application of RF downscaling model in different
kind of regions, as well, the selection of predictors should be
considered more comprehensively and systematically. There-
fore, the main objective of this study is to verify that the
random forest regressionmodel withmultitype predictor vari-
ables (MTVRF) has a satisfied performance on LST down-
scaling over various underlying surface and the robustness
of the MTVRF model is also comprehensively evaluated.
In this study, the MTVRF model is first applied to downscale
the resampled LST product of MODIS (990 m) to 90 m
by using four kinds of predictor variables, including surface
reflectance, spectral indices, terrain factors and a land classi-
fication map; then, the results are evaluated by the LST prod-
uct of ASTER (90 m). Two distinguished areas with different
land cover and terrain factors are selected to further compare
the downscaling performance of the MTVRFmodel. The rest
of this paper is organized as follows: Section 2 presents the
study areas, data and methodology. Section 3 gives a detailed
analysis of the downscaling results. Section 4 derives further
discussion, and Section 5 draws a conclusion.

II. MATERIALS AND METHODS
A. STUDY AREA
Two typical areas were selected in this study with different
terrains and land covers to fully understand the underlying
surface characteristics in these two areas. Figure 1 shows the
false color image of these two areas derived from Landsat-8
OLI reflectance data.

Study area A comprises the Peñarora mountain region,
which is located in Segovia, Spain. The latitude and longitude
of this area are 40◦N to 41◦N and 4◦W to 3◦W, respectively.
The variation in the elevation range is from 687 m to 2414 m.
More than 80% of this area is covered by vegetation, which
is mainly composed of forests and croplands. The climate is
Mediterranean subtropical, with temperatures ranging from
−17.0◦C to 39.7◦C. The annual mean temperature of this
area is 11.5◦C, and the annual precipitation is approxi-
mately 464 mm.

Study area B is located northwest of Beijing, China and
includes the districts of Haidian and Changping. The coor-
dinate range for this area is from 39◦N to 40◦N and 115◦E
to 116◦E. Most of this area has a flat terrain, except for
the western mountainous districts. The climate is typically
a semihumid continental monsoon climate, with an annual
mean temperature ranging from 10◦C to 12◦C and mean
precipitation ranging from 450 mm to 550 mm. This study
area contains four kinds of land cover: vegetation, crop-
lands, impervious surfaces (including buildings and roads)
and water; the area is mainly characterized by vegetation in
the western regions and impervious surfaces in the eastern
regions.

For a more detailed discussion on LST downscaling, three
subareas were also selected: subarea 1 in study area A, which
is the Santillana reservoir and is marked as a water region
with a maximum surface cover of 1052 ha; subarea 2 in study
area B, which is dominated by forests and is regarded as a
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FIGURE 1. Geolocation of the study area with false color images generated from Landsat 8 data (R: band 5;
G: band 4; B: band 3). (a) Study area A in Segovia, Spain, (b) study area B in Beijing, China, (c) subarea 1 in the water
region, (d) subarea 2 in the vegetation region, and (e) subarea 3 in the impervious surface region.

vegetation region; and subarea 3 in study area B (i.e., Xicheng
District), which has high-rise buildings and crisscross roads
and can be described as an impervious surface region.

B. DATA PREPARATION
1) LANDSAT DATA
The Landsat 8 Operational Lad Imager (OLI) and TIRS
image were acquired at the USGS Earth Resources Observa-
tion and Science (EROS) Center Science Processing Archi-
tecture and were retrieved with USGS Earth Explorer (http://
earthexplorer.usgs.gov/) with the resolution of 30 m
and 100 m, respectively. In this study, two Landsat tiles
(WRS-2 Path 201 / Row 32 and Path 123 / Row 32) are
applied to cover the selected study areas in Segovia and
Beijing. The Landsat land surface reflectance products with
bands 2-7 and the processed spectral indices are served as one
of the input variables for downscaling MODIS LST product
from 990 m to 90 m.

2) ASTER DATA
The LST at finer resolution was derived from the ASTER,
which is a sensor aboard the Terra satellite launched on
December 18, 1999. The ASTER LST products (AST08),
available from the NASA Earthdata Search (https://
search.earthdata.nasa.gov/) with a spatial resolution of 90 m,
were generated from the Temperature/emissivity Separa-
tion (TES) algorithm with the accuracy of about 1.5 K [52].
The ASTER LST will be served as the reference data to
validate the performance of the MTVRF model at the finer
scale.

3) MODIS DATA
The MODIS products, which were acquired on 22 June 2016
for study area A and 24 July 2014 for study area B, derive
from another sensor aboard the Terra satellite. Because the

same satellite platform is used for both the ASTER and
MODIS sensors, discrepancies caused by geometric obser-
vation deviations in the LST products tend to be neglected.
The concurrent data also eliminate observed time differences
between the ASTER and MODIS LST products. Although
the LSTs of MODIS can be generated by a generalized
split-window (GSW) algorithm [53] and TES algorithm [54],
we have no alternative but to use GSW-based sensors LSTs
because of the unavailability of TES-based LSTs due to
science data quality issues. The collection 6MOD11A1 LSTs
are tile-based global products that provide per-pixel temper-
ature and emissivity values, with a resolution of 1 km and an
accuracy of approximately 1 K [55], [56]. These GSW-based
LST products were registered into WGS 84/UTM Zone
30 N for study area A and WGS 84/UTM Zone 50 N
for study area B, with a resampling interval of 990 m.
It is noteworthy that there is a deviation between ASTER
TES-based LSTs and MODIS GSW-based LSTs because
different algorithms are used to generate the LST products.
Fortunately, a simple linear regression has been used to
remove any systematic LST discrepancies between different
sensors [57]. This linear regression model was first estab-
lished for ASTER and MODIS LST products at coarser res-
olutions. Subsequently, the MODIS LST products at coarser
resolution were converted using this simple linear regression
and then were applied to MTVRF model training instead
of original MODIS LST products. Figure 2 shows a scat-
ter plot and linear regression relationship between ASTER
and MODIS LSTs at a 990-m resolution. The determination
coefficient (R2) is 0.93 in study area A and 0.90 in study
area B within the 95% confidence interval, which shows a
significant correlation between the ASTER and MODIS LST
products. The RMSE is 1.82 K in study area A and 1.07 K
in study area B. There are about 60-70% of points whose
RMSEs range from −1 to 1 K, which indicates that this
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FIGURE 2. The scatter plot and linear regression relationship between LST
products from MODIS and ASTER in study areas A and B.

conversion may be suitable to evaluate the accuracies of the
downscaled LSTs.

4) SRTM DATA
The digital elevation model (DEM) data are derived from
The NASA’s Shuttle Radar Topography Mission (SRTM),
which is a joint effort between NASA, the National Bureau
of Defense (NIMA), Germany and the Italian space agency.
The SRTM DEM data, with a spatial resolution of 90 m,
were also registered to WGS 84/UTM Zone 30 N and WGS
84/UTM Zone 50 N. Subsequently, the aspect, slope and
hill-shade were calculated by the spatial analysis module of
ARCGIS 10.2. Those terrain factors were spatially aggre-
gated to a resolution of 990 m by spatial averaging to the
resolution of the MODIS LST for the RF model training.

C. METHODOLOGY
1) MTVRF
The RF is an integrated machine learning algorithm that
evolved from the bagging algorithm [58]–[60]. As a nonlinear
statistical ensemble regression method, the RF is constructed
by a set of uncorrelated classification and decision regression
trees. Every bootstrap sample is selected from the training
set, and the features used are extracted randomly from all
features in a certain proportion of the set while training each
mode of the tree [61]. The results of RF training turn out to be
the voting output for all decision trees. The RF promises to
obtain almost all desired results with high adaptability to the
data and the parameters used, and there is no need to adjust
the parameters tediously, as is done in the SVM. The RF
is regarded as one of the best machine learning algorithms
today and has been widely used in various fields involving
remote sensing image processing, such as remote sensing
image classification, feature recognition and spatial down-
scaling [62]–[65].

The predictor variable datasets in the RF downscaling
algorithm are intended to reflect the spatial variation in LSTs
efficiently over different regions. In TsHARP and the basic
RF model, only minority variables of the highest correla-
tion with LST like vegetation coverage are qualified to be
introduced into the model. Nevertheless, these variables may
have weak performances due to the complexity of land cover
and further impede the effects while being tested on other
regions. In this paper, MTVRF will make a trade-off between
algorithm complexity and the number of input variables on
the premise of the insensitivity to multicollinearity, which
pledges the robustness of the result for missing and nonequi-
librium data and has a satisfactory prediction for thousands
of inputs. In addition, MTVRF also could avoid over-fitting,
which improves the generalization of the model, thus it could
depict the complicated surface status and applied to other
regions with acceptable results.

According to the statistical correlation between LST and
biophysical parameters, four main kinds of predictor vari-
ables were introduced into the MTVRF downscaling model
to improve the generalization ability. The input variables are
listed as follows:

a). Surface reflectance of visible, near infrared and short-
wave infrared bands, which contains plenty of vegetation
cover and soil moisture conditions.

b). Typical spectral indices, which may be sensitive to
specific land cover types. For example, the NDVI, vegetation
fraction, and SAVI satisfactorily indicate the vegetation den-
sity and biomasses, while the NDBI is trained to recognize
impervious surface more precisely, other spectral indices like
NDDI, NMDI and MNDWI are used to fit the relationship
between land surface temperatures and soil moisture which
has a great impact on LST variation.

c). Terrain factors, including the DEM and its derivatives,
such as aspect, slope and hill-shade of the study area, are
assumed to have a significant correlation with LST in moun-
tainous areas.
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FIGURE 3. Schematic of the MTVRF land surface temperature downscaling procedure.

d). Land classification map, which is regarded as the pre-
dictor to promote the recognition of the land cover’s influence
on LSTs in different regions.

2) STEPS OF THE DOWNSCALING MODEL
The specific steps for the developed MTVRF LST downscal-
ing model are shown in Figure 3 and summarized as shown
below:

(1) The input variables should be aggregated to match the
coarse resolution of the product to be downscaled. In this
study, image data form Landsat 8 OLI and SRTM, with res-
olutions of approximately 30 m and 90 m, respectively, were
first aggregated to 990 m (i.e., the same as that of the LST
data from MODIS) using a spatial averaging method, where
the statistical relationship between the explanatory variables
and LST can be established at a coarse level.

(2) At the 990-m level, the MTVRF regression model
between LST and explanatory variables can be expressed as:

LSTc = F
(
(ρi)c , (Si)c , (TFi)c , (LC)c

)
(1)

where the subscript c represents the variable with a coarser
resolution, subscript i represent the i-th variable, ρ repre-
sents the reflectance, S represents the spectral index, TF rep-
resents the terrain factor and LC represents the land cover
type. The function F (·) indicates a nonlinear relationship
between converted MODIS LST and these variables.

(3) It is worth noting that the residual temperature cal-
culated from the difference between the original LST with
a coarser resolution and the simulated LST (LSTc) is
intended to correct the prediction ME, as the RF regression

cannot explain all spatiotemporal variations in the LST
distribution [51].

This is called the model error:

1LSTc = LSTo − LSTc (2)

where the subscript o indicates the original MODIS LST
converted by ASTER.

(4) The trained model is subsequently used on a finer
scale (90 m) given the scale invariance in the relationship
between LST and other variables. The model error after
resampling was allocated for each pixel at a finer resolution.
Thus, the final downscaled LST at a 90-m resolution can be
worked out as follows:

LSTf = F
(
(ρi)f ,

(
Si
)
f ,
(
TFi

)
f , (LC)f

)
+1LSTc (3)

where the subscript f refers to the variable with a finer
resolution.

One of the most important parameters of RF model is
out-of-bag error, of which out-of-bag (OOB) samples means
about one-third of samples that were not participated inmodel
training. The OOB samples in each tree served as a testing
dataset to ensure an unbiased estimation of error. Therefore,
there is no need to execute cross-validation or use a single
testing dataset to obtain the unbiased estimation of error,
since the unbiased estimation could be established during the
generation process of model. Averagely, the size of training
dataset is about 10000 of each study areas.

The key parameters of RF model which brought out
the best regression result, the number of decision trees
(n_estimators) and the maximum number of features to be
split (max_features), are traversed according to OOB error
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FIGURE 4. Random forest variable importance scores averaged across two study areas.

estimates, and the best results turn out that n estimators is
200 and max_features is 9.

The performance of the MTVRF downscaling model is
compared with (1) the basic RF model proposed by Hutengs
and Vohland [51], where the reflectance values of the NIR
and red bands, DEM and land use map are selected as input
variables, and (2) the TsHARPmethod, which is based on the
linear relationship between LST and NDVI.

D. ERROR EVALUATION
The downscaling results were evaluated by R2, ME and
RMSE, which are commonly used as measurable indicators
for fitting problems. The expressions are given as follows:

R2 = 1−

∑n
i=1 (LSTe − LSTr )

2∑n
i=1

(
LSTe − LSTr

)2 (4)

ME =

n∑
i=1
(LSTe − LSTr )

n
(5)

RMSE =

√√√√1
n

n∑
i=1

(LSTe − LSTr )2 (6)

where LSTe refers to the estimated LST from MTVRF,
LSTr represents the reference ASTER LST, and n represents
the total number of samples involved in the estimation.

III. RESULTS AND ANALYSIS
A. IMPORTANCE OF THE SELECTED VARIABLES
Figure 4 shows the importance ranking of the input variables
calculated by the MTVRF in two study areas. It is worth
mentioning that this importance score gives a relative ranking
regarding the contribution of the input variables, but it is not
equivalent to the correlation coefficient. The contributions
of the terrain factors, especially for the DEM and slope,
are shown to be greater than those of any other variable

TABLE 1. Downscaling statistics for the MTVRF model, basic RF model
and TsHARP method.

in both areas. This implies that there are large topographic
effects on solar incident radiation and longwave surface cool-
ing along mountainous surfaces. In addition, study area A,
which is terrain-dominated, shows a significant inconsis-
tency between the DEM and other kind of variables, while
the importance scores in study area B show homogeneous
variations because of the flat landscape.

For study area A, which is largely covered by hills with
elevations ranging from ∼616-2409 m, the spatial distribu-
tion of LSTs is almost entirely controlled by these terrain
factors and vegetation fraction correlated factors, such as the
red band and NMDI. For study area B, the scene acquired
over the downtown area, with a complicated landscape and
relatively flat terrain, has a DEM that becomes less important
than that in study area A and a classification map that has a
higher weight. The NDBI, which is regarded as the indicator
of buildings and roads in cities, also shows higher importance.

Because these importance scores vary with the number of
input variables, which means that these importance scores
would change when input variables are added or removed,
they may give evidence for the selection of input variables
with a higher correlation. For further analysis, quantified
analyses should be performed to evaluate the downscaling
effect of the MTVRF.

B. DOWNSCALING PERFORMANCE UNDER
DIFFERENT TERRAIN CONDITIONS
The LST downscaling performance of the RF model from
990m to 90m is shown in Table 1, all three models improve
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FIGURE 5. Spatial distribution of LSTs for study area A. (a) 990-m MODIS LST, (b) 90-m ASTER LST, (c) 90-m downscaled
TsHARP LST, (d) 90-m downscaled basic RF LST, and (e) 90-m downscaled MTVRF LST.

the resolution of LSTs from 990 m to 90 m with satisfac-
tory accuracies. On average, the best downscaling results are
acquired from the MTVRF model, followed by the basic RF
model and the TsHARP method.

For study area A, as shown in Figure 5, the ME and
RMSE of the downscaled LSTs for the MTVRF model are
−0.05 and 2.67 K, respectively. The accuracy is improved
by approximately 20% compared to the basic RF model,
with a RMSE of 3.32 K, and by approximately 26% com-
pared to the TsHARP method, with a RMSE of 3.62 K.
The satisfactory results of the MTVRF model may account
for the introduction of multiple spectral indices and terrain
factors, especially for the DEM, which is related to the large
topographic influence on land surface patterns. As shown
in Figure 5, the detailed texture described by the MTVRF
model (Figure 5e) cannot be found in the same spot by
using the basic RF model (Figure 5d) and TsHARP method
(Figure 5c) because of the impact of terrain factors. Further-
more, the TsHARP method, which is reported as performing
well on the full cover of natural vegetation, has a better
downscaling result than the basic RF model in the study area.

For study area B, as shown in Figure 6, the best downscal-
ing results are also obtained by theMTVRFmodel, with aME
and RMSE of −0.03 and 2.10 K, respectively. The accuracy
is improved by approximately 2% compared to the basic RF
model, with a RMSE of 2.14 K, and by approximately 3%
compared to the TsHARP model, with a RMSE of 2.16 K.

With the introduction of NDBI, which identify impervious
surfaces well, the spatial pattern in the MTVRF model is
more robust and detailed. However, the complexity of the land
cover types may result in a problem of mixed pixels, and flat
plains may neglect the importance score for terrain factors,
especially for DEM.

As shown in Figures 7 and 8, most errors in these three
methods are distributed from −5 to 5 K. The downscal-
ing accuracy for LSTs is highest when using the MTVRF
model, followed by the TsHARPmethod and basic RFmodel.
Although there are some underestimations (overestimations)
in the maximum (minimum) LST because of the deviation
between the downscaled LST and referenced ASTER LST,
we can still draw the conclusion that the MTVRF model out-
performs the TsHARP and basic RF models when success-
fully downscaling LSTs under different terrain conditions.

C. DOWNSCALING PERFORMANCE FOR
DIFFERENT LAND COVER TYPES
To fully evaluate the downscaling performances for differ-
ent land cover types, three kinds of subareas (i.e., vegeta-
tion, water and imperious surfaces) are extracted from study
areas A and B.

As shown in Table 2, the downscaled LSTs in the vegeta-
tion regions show the most satisfactory results, with RMSEs
of 2.80 K, 1.91 K and 1.92 K for the three downscaling mod-
els, followed by the impervious surfaces and water regions.
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FIGURE 6. Spatial distribution of LSTs for study area B. (a) 990-m MODIS LST, (b) 90-m ASTER LST, (c) 90-m downscaled
TsHARP LST, (d) 90-m downscaled basic RF LST, and (e) 90-m downscaled MTVRF LST.

FIGURE 7. Distribution of the LST errors between the estimated and
reference LSTs for study area A. (a) 90-m downscaled basic RF LST,
(b) 90-m downscaled TsHARP LST, and (c) 90-m downscaled MTVRF LST.

In Figure 9, large improvements in theMTVRFmodel over
the water region can be seen from the spatial distribution
of LST errors in Figures 9a-9c, where obvious underestima-
tions of the water surface and overestimations around the

FIGURE 8. Distribution of the LST errors between the estimated and
reference LSTs for study area B. (a) 90-m downscaled basic RF LST,
(b) 90-m downscaled TsHARP LST, and (c) 90-m downscaled MTVRF LST.

water region appeared when using the TsHARP method,
which can be attributed to the insensitivity of water to the
NDVI or other vegetation factors. In addition, the accuracy
of the basic RF model is also inferior to the MTVRF model
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TABLE 2. Downscaling statistics for vegetation, water and impervious
surfaces using three downscaling methods.

FIGURE 9. Spatial distributions of LST differences over water regions by
using the (a) basic RF model, (b) TsHARP model, (c) MTVRF model and
(d) the referenced ASTER LST.

due to the simple depiction of the surrounding environment.
As shown in Figures 5 and 6, the MEs are close to zero
when the regression models trained for the total area are used
to predict the same location. However, MEs may appear in
subareas with single land cover types because of the different
underlying attributes. The MEs in Table 2 show that larger
MEs appear over the water region when using the TsHARP
method and basic RF model, while the ME is close to zero
when using the MTVRF model, which proves its adequate
robustness over water regions. Additionally, the MTVRF
model retains the homogeneity of water surface temperatures
because of the MNDWI, which plays a crucial role in water
recognition.

From Figure 10, which shows the predictions over the
vegetation region, good accuracies remain, and the ME and
RMSE of the three models do not change too much because
of the general similarity of the underlying situation between
the total study area and subarea covered with vegetation.
In addition, the loss of spatial details for the MODIS LST
at a coarser resolution are restored clearly by the MTVRF
model, which can be seen from the spatial distribution of
LST differences in Figure 10c, where more detailed LST
variations derived from terrain factors are reserved. It can also
be concluded that the TsHARP method performs better than
the basic RF model, as vegetation is controlled.

In Figures 11a-11c, there are few differences in the spatial
distribution of LST differences among the three models over

FIGURE 10. Spatial distributions of LST differences over vegetation region
by using (a) basic RF model, (b) TsHARP model, (c) MTVRF model and
(d) the referenced ASTER LST.

FIGURE 11. Spatial distributions of LST differences over impervious
surfaces by using (a) basic RF model, (b) TsHARP model, (c) MTVRF model
and (d) the referenced ASTER LST.

urban areas with complex land cover types and mixed pixel
problems. The difficulty in constructing the stable relation-
ship between LST and land parameters weakens the perfor-
mance of the downscaling models. The RMSEs of the three
models all range from 2 to 3 K. However, together with the
results in Table 2, supplemental proof shows the robustness
of the MTVRF model when being trained in impervious
surfaces, with the lowest ME of approximately 0.29 K.

D. ROBUSTNESS EVALUATION FOR THE MTVRF MODEL
The RF downscaling model and other nonlinear regressions
are trained separately for each region, which may lead to
concerns regarding overfitting problems, as they are not gen-
eralized enough to downscale LSTs for other regions when
the same area is utilized for training and prediction. For
this reason, the MTVRF model trained over study area A
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TABLE 3. Downscaling statistics for various regions.

is intended to downscale the LSTs in study area B, and
vice versa. The results from the training model tested over
different regions are summarized in Table 3; compared with
the results in Table 1, the RMSE increases by∼0.46 K for the
downscaled LSTs in study areaA, and the RMSE increases by
∼0.01 K in study area B. The same experiment was tested on
the other two downscaling models, and in general, the results
were not better than those of the MTVRF model, which
means that the basic RF model and TsHARP method are
more regionally restricted. The major decrease in the predic-
tion accuracies of the basic RF model and TsHARP method
compared with that of the MTVRF can be attributed to
the differences in underlying surface characteristics between
the two areas, as a simple regression relationship, such as the
LST-NDVI, cannot be directly relocated from one area (such
as a downtown area) to another (such as a mountainous area).

By training separately and evaluating mutually in both
study areas, the slight decrease in the prediction accuracies
seems to be acceptable to support our conclusions, which
further proves that the MTVRF model is robust enough to
downscale LSTs in various regions with few overfitting prob-
lems. Therefore, theMTVRFmodel may lead to better results
not only in a single region but also in various regions with
satisfactory accuracies.

IV. DISCUSSION
TheMTVRFmodel is shown to have a nonlinear relationship
between LSTs and other land surface parameters. Downscal-
ing results for study area A and study area B show evi-
dence that the MTVRF model works better than the basic
RF model and TsHARP algorithm when downscaling LSTs
in any region with simple or complex land surfaces. The
detailed experiments on vegetation, water and impervious
surfaces give further proof that the MTVRF model yields
the best downscaling results for these three kinds of regions
with comprehensive input variables. Indeed, this comparison
seems to be unfair between the MTVRF model with more
variables and TsHARP aswell as the basic RFmodel with less
variables input, but it drives the promising method that with
adequate input variables introduced, the downscaling model
could keep region insensitivity and accuracy could also be
ensured.

However, there are still some limitations in our research.
First, the discrepancy between the ASTER and MODIS LST
products has a negative effect on the evaluation of the down-
scaling results. The ASTER TES-based LST and MODIS

GSW-based LST are generated from different algorithms,
which may lead to concerns regarding the accuracy of the
reference dataset to validate the downscaled results. The ideal
solution to overcome this problem seems to use the same
algorithm, such as the TES algorithm for both MODIS
and ASTER. Fortunately, Hulley and Hook (2011) have
tried to generate consistent LST products between ASTER
and MODIS [66]. The new product (MOD21) generated
by the TES algorithm has been reported to be released in
MODIS Collection 6 [56], [67]. However, this new prod-
uct is unavailable now due to data quality issues accord-
ing to the announcement of the Land Processes Distributed
Active Archive Center (LP DAAC). Thus, the compromise
is that a simple linear regression is established between the
ASTER TES-based LSTs and MODIS GSW-based LSTs to
avoid algorithm differences. The determination coefficients
of 0.93 for study area A and 0.90 for study area B within the
95% confidence interval prove good correlations between the
LSTs from ASTER and MODIS; therefore, the comparison
between these two products appears to be meaningful. For
future studies, the cross-validation with ASTER LSTs will
not be necessary. It is recommended to acquire in situ LSTs
on the ground at the time of the satellite overpass to give a
more accurate validation of the downscaling performance.

Second, the primary superiority of the RF model com-
pared to other nonlinear regressions and its insensitivity to
multicollinearity allows for as many predictor variables as
need to be added into the RF model without selection. The
importance score gives a relative ranking among the input
variables to show the near or far relationships between the
input variables and LST. As shown in Figure 4, the vegetation
indices and terrain factors are more dominant than the other
kind of variables, with almost coverage over the vegeta-
tion and mountainous regions in study area A; in contrast,
the impervious surface indices seem to be more correlative,
as the artificial materials comprising the downtown region
cover study area B. This may give the indication regarding the
selection of the input variables. However, the introduction of
too many variables causes complexity in the MTVRF model.
The number of input variables should be selected rationally
rather than as much as possible.

In addition, limited by the specific area or data scene
availability, the MTVRF model has not been evaluated for
long periods of time, and only several subareas in the study
area dominated by different land cover types were tested
to support the robustness of the model. To supplement this
method, mutual validations have been conducted for the train-
ing models in the two study areas, and acceptable results have
proven the robustness of the MTVRF to a certain extent.

V. CONCLUSIONS
In this paper, the performance of random forest regression
model based on the relationships between multitype predic-
tor variables, including surface reflectance, spectral indices,
terrain factors and land classification maps, and land surface
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temperature has been comprehensively discussed to down-
scale MODIS LSTs from 990 m to 90 m and evaluated by
ASTER LST products (90 m) with RMSE and ME. Both
the visual comparison and statistical measures prove that
the MTVRF model achieves a desired downscaling result
either on regions with single types like vegetation, water as
well as impervious surface, or on the complicated underlying
surfaces, which can be validated by the comparison with the
basic RF model and TsHARP method.

The appropriate nonlinear model should be chosen to fit
the correlation between LST and other biophysical variables.
Random forest regressions, given their great tolerance to
multicollinearity, can address high-dimension datasets with-
out overfitting. This meets the requirement of the regression
downscaling model to train all related variables and deter-
mine the desired result. The relative correlations, given by
the importance scores calculated by the RF model, guide
the variable selection. The TsHARP method, which uses the
vegetation fraction as the input variable, usually has an ideal
result in regions with high vegetation; the single indicator
always results in a substantial amount of loss in the spatial
pattern. In this paper, the MTVRF model and two other
downscaling methods were applied to downscale LSTs under
various surface conditions. Satisfactory results were obtained
for the MTVRF model, with a RMSE of 2.67 K in Segovia
and 2.10 K in Beijing, which outperformed the other two
methods, with a RMSE of 3.32 K in Segovia and 2.14 K
in Beijing for the basic RF model and a RMSE of 3.62 K
in Segovia and 2.16 K in Beijing when using TsHARP. The
RMSEs of the MTVRF model are 2.80 K, 1.91 K and 1.92 K
for water, vegetation and impervious surfaces, respectively,
which are still lower than those of the basic RF model
and TsHARP method. In addition, the robustness evaluation
for the downscaling model gives further evidence about the
superiority of our MTVRF, with a reduced RMSE while
simultaneously predicting LSTs by using the downscaling
model trained in other regions. That is, the MTVRF is less
likely to be limited in the study site where it is trained. From
the above results, it can be deduced that the MTVRF model
outperforms the TsHARP method and basic RF model when
downscaling LST under different terrain conditions and for
land cover types.

In addition, theMTVRFmodel provided us with an indica-
tion for the selection of predictor variables in different kinds
of regions. While being trained in mountainous areas, terrain
factors, such as DEMs, would play a significant role in the
description of LST variations, while areas with single land
cover types that are being trained and targeted spectral indices
with higher importance scores should be considered, such as
the NDVI for vegetation regions and NDBI for impervious
surfaces. Future studies will concentrate on the introduction
of geographical information (e.g., latitude and longitude),
temporal information (e.g., Julian days), and other surface
status information (e.g., net surface shortwave radiation, soil
moisture and wind velocity) to further improve the general-
ization ability of our MTVRF model.

APPENDIX
The brief introduction of spectral indices in the MTVRF
model is listed as following:
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