
SPECIAL SECTION ON MOBILE SERVICE COMPUTING
WITH INTERNET OF THINGS

Received January 7, 2019, accepted January 22, 2019, date of publication January 30, 2019, date of current version April 5, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2896284

Obfuscation-Based Watermarking for Mobile
Service Application Copyright Protection
in the Cloud
SUN GUANG 1,2, F. XIAOPING1,3, J. WANGDONG1, L. FENGHUA1, AND J. YUEWEI1
1Hunan University of Finance and Economics, Changsha 410205, China
2The University of Alabama, Tuscaloosa, CO 35401, USA
3Central South University, Changsha 410012, China

Corresponding author: Sun Guang (simon5115@163.com)

This work was supported in part by the Open Foundation for the University Innovation Platform in the Hunan Province under Grant
16K013, in part by the Hunan Provincial Natural Science Foundation of China under Grant 2017JJ2016, in part by the 2016 Science
Research Project of Hunan Provincial Department of Education, under Grant 16C0269, and in part by the Accurate Crawler Design and
Implementation with a Data Cleaning Function, National Students Innovation and Entrepreneurship of Training Program, under Grant
201811532010, and in part the 2011 Collaborative Innovation Center for Development and Utilization of Finance and Economics Big Data
Property, Universities of Hunan Province.

ABSTRACT The contributions of cloud computing in the prevention of software piracy are inadequate, and
there are still rampant piratical mobile service applications in the cloud. This paper navigates mobile service
application copyright protection in the cloud and sets a watermarking example to explain it.We useMonden’s
method to obfuscate the application’s source code, remove a part of the semantics, and add it to a recovery
module. Because these obfuscation rules come from watermarks, the watermarks are mapped into the rules.
The recovery module is a recognizer to prove the watermarks when the original program is recovered.
The experimental results indicate that the obfuscated code becomes difficult to reverse engineering and the
watermarks are robust.

INDEX TERMS Cloud computing, application copyright protection, watermarking, code obfuscation.

I. INTRODUCTION
Many people have assumed that the Software-as-a-Service
(SaaS) model can completely solve the problem of software
application piracy in the cloud [1], [2]. That is because the
attacker and the codes are entirely separated by the cloud,
which should undermine the foundation of software appli-
cation piracy [3], [4]. However, according to a report issued
by the BSA, from 2015 to 2017 the worldwide unlicensed
software rate was 37 percent, and the commercial value of
unlicensed software was $46.3 billion globally.What requires
more attention is that the IDC estimates that the cloud now
delivers 22 percent of software functionality worldwide [1].
The rate of properly licensed software and the corresponding
losses are almost equal to the traditional computing environ-
ment [5],[6],[7]; that is, the contribution of cloud computing
in the prevention of piracy is very small, and there still exists
rampant piratical software applications in the cloud. The

The associate editor coordinating the review of this manuscript and
approving it for publication was Tie Qiu.

contribution of cloud computing in the prevention of software
piracy is inadequate.

Software watermarking pertains to software application
protection technology, which uses embedded information to
provide application copyrights and deter software piracy [8].
For the past few years, software watermarking has achieved a
large number of research results and has been proven to be an
effective software protection technology [9], [10]. However,
currently, this technology is out of date and focuses on the
traditional computing environment [11]–[13]. The behaviors
of software application piracy in the cloud are ‘‘new’’ to us
[14], [15]. The software watermarking technology should be
set in the ‘‘new’’ platform for development. In the cloud,
software watermarking should face appropriate cloud-based
situations such as an application installed on a server that is
remote to users and uncontrolled [16]. Applications such as
mobile service applications in the cloud are very sensitive to
their codes, and addressing the algorithm’s robustness and
code semantic hiding is complicated [17], [18]. The water-
marking approach presented in this paper uses obfuscated

38162
2169-3536
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 7, 2019

https://orcid.org/0000-0002-2207-1681

S. Guang et al.: Obfuscation-Based Watermarking for Mobile Service Application Copyright Protection in the Cloud

FIGURE 1. Framework of obfuscation-based software watermarking.

interpretation to map the watermarks to obfuscation rules to
hide the code semantics and prove copyright at the same time.

II. OBFUSCATION AND WATERMARK EMBEDDING
A framework of the software watermarking is shown in
Figure 1. The obfuscation scheme we use in this paper was
proposed by A. Monden, A. Monsifrot, and C. Thomborson
[19]–[21]. Watermark information WM consists of numbers
with radix R, and the obfuscation rule is created with the
watermark information. According to the obfuscation rule,
the program is obfuscated. The approach obfuscates the codes
presented, and at the same time, the watermark information
is mapped to the obfuscation rule. The obfuscated code is
not equivalent in function to the original code; it cannot
directly execute the obfuscated program before the semantics
are recovered. Semantic recovery requires a single module
that also performs watermark verification.

The definition of our obfuscation is as follows:
Given a program p and a code transform T which inputs

p and outputs p′, it can be said that T is a nonequivalent
semantic obfuscation of p if it meets the following conditions.

1. If p′ and p have the same input, the output is different;
2. The readability of p′ is far below p; in other words, the

cost of reverse engineering p′ is much stronger than p;
3. There exist no converse transformations from p′ to p,

or it is difficult to construct a tool to finish this converse
transformation, or the cost is very high.

In nature, T is a sequential process, there are no con-
current, competitive, synchronous operations. T is a typical
FSM (finite state machine) that can be defined a by 6-tuple
(Q,

∑
, 9,1,3, q0), where:

Q = {q0, q1, ··, qm− 1} is a state set of FSM, where m is
equal to or greater than the length of WM, and q0 is the initial
state.∑

= {C0,C1, . . . ,Cn−1} is a set of inputs, each element
is an instruction of p, and n is the number of instructions.
ψ = {Ct0,Ct1, . . . ,Ctn−1} is a set of outputs,

∑
= 9,

that is, p and p′ belong to the same programming language.
δi : 6 → Q, is a state transition function of qi to define

how to transform a certain state qi.
1 = {δ0, δ1, , δl − 1} is a set of state transition

functions, l = m ∗ n.

Q = {q0, q1, q2}, (1)

FIGURE 2. Example of watermark obfuscation and insertion.∑
= ψ = {add, sub,mul, div} , (2)

δ0(add) = δ0(sub) = δ0(mul) = δ0(div) = q1; (3)

δ1(add) = δ1(sub) = δ1(mul) = δ1(div) = q2; (4)

δ2(add) = δ2(sub) = δ2(mul) = δ2(div) = q0; (5)

1 = {δ0, δ1, δ2}, (6)

The transition function λi is defined as WM ,

WM = w0w1wk , 0 ≤ wi < R, (7)

λi :
∑
→ ψ , is a code transition function of qi to define

how to obfuscate an instruction ci3 = {λ0, λ1, . . . , λl − 1}.
3 = {λ0, λ1, ··, λl − 1}, is a set of code transition

functions.
Figure 2 shows a small example of nonequivalent semantic

obfuscation that has three statuses and four instructions.
As Figure 2 shows, if we insert a watermark ‘‘012’’ into

the codes, we can define:

λ0(add) = sub; λ0(sub) = mul; λ0(mul) = div;

λ0(div) = add; λ1(add) = add; λ1(sub) = mulx;

(8)

λ1(mul) = div; λ1(div) = sub; λ2(add) = add;

λ2(sub) = sub; λ2(mul) = div; λ2(div) = mul; (9)

All instructions were transformed differently with func-
tion λ0, one instruction was kept in λ1, and two instructions
were kept in λ2. 3 = {λ0, λ1, λ2}.
According to our obfuscation framework, inputs add, add,

sub, div, mul, add, mul, will output the series of sub, add, sub,
add, div, add, div.

The obfuscation obeys the following constraints.
1. δi : 6→ Q is a bijection; its inverse is δ−1i : Q→ 6.
2. λi :

∑
→ ψ has the corresponding bijection relation,

λi−1 : ψ →
∑

.
3. Divide δ−1i : Q → 6 into several subsets, put

the same operation number commands into an identical
subset, prescribe a constraint in which the independent vari-
able and dependent variable come from identical subsets in
function δ−1i : Q→ 6.

VOLUME 7, 2019 38163

S. Guang et al.: Obfuscation-Based Watermarking for Mobile Service Application Copyright Protection in the Cloud

III. SEMANTIC RECOVERY AND
WATERMARKS EXTRACTION
Recovering the semantic cannot set up a decompiler δ−1i :

Q → 6 and λi−1 : ψ →
∑

. For example, the following
codes implement computation p:= 1+2+3+. . .+n. Clearly,
this requires a loop statement.

let x = n
let p = 0
Loop: if x == 0
then exit
else
add p,x
sub x,1
goto loop
endif

The FSM performs the obfuscation as follows:

λ0(add) = mul, λ1(sub) = div,

δ0(add) = q1, δ1, (sub) = q2, δ1(mul) = q0, (10)

if() then else endif, goto, do not set this transform instruc-
tion, q0 is the initial state, and the obfuscated codes are as
follows:

let x = n
let p = 0
Loop: if x == 0
then exit
else
mul p,x
div x,1
goto loop
endif

The decompilation corresponding to the FSM is:

λ0−1(mul) = add; λ1−1(div) = sub;

δ0−1(mul) = q1; δ1−1(div) = q2; (11)

λ2−1(mul) = div; λ3−1(div) = sub;

δ2−1(mul) = q3; δ3−1(div) = q4 (12)

Regarding the output of FSM as input, the decompiler will
output

let x = n
let p = 0
Loop: if x == 0
then exit
else
mul p,x
div x,1
goto loop
endif

According to the output codes, the initial state is q0, and
while the final state is q2 in the first loop, in the second
loop, the initial state is q2. Obviously, the result of translating
the same loop body code into different semantics must be

FIGURE 3. Example of W−1
x .

incorrect because the initial state is different. It is essential to
obtain the correct result and that the initial state is identical
each time the decompiler executes the same loop body. There
are two methods to achieve this result:

1. λ0 = λ1 = λ1 = = λl−1
2. δ(first instruction of loop) (13)

= δ(final instruction of loop) (14)

Method 1 cancels the state transition, and method 2 converts
the state of the loop body into a return circuit to ensure that
the initial states are identical. Our study uses Akito Monden’s
‘‘dummy instruction’’ method to achieve the conversion of
the state. In the following codes, the last instruction mul x,
1 is nonsense; it only converts the last state to q0.

Let us suppose that the FSM achieved the nonequivalent
semantic obfuscation is Wx , the decompiler is W−1x , and it is
necessary to set upW−1x first to recover the obfuscated codes
and then insert the dummy instructions in the loop body.
W−1x is also a 6-tuple (Q’,

∑
′
, 9 ′,1′,3′, q0), where:

Q′ = {q0, q1, , qm′ − 1} is the set of states in W−1x ;∑
′
= 9 is the set of inputs to W−1x ;

9 ′ =
∑

is the set of outputs from W−1x ;
1′ = {δ′0, δ′1, , δ′l ′−1} is the set of state transition

functions in W−1x ;
3′ = {λ′0, λ′1, , λ′l ′ − 1} is the set of translation

functions in W−1x .
q0 is the initial state; m′ = m, l ′ = l.
∀i, jδ′i(cj) = δi(λi(cj)), namely, whenW−1x inputsCj under

the qi, the output is equal to the Wx input λi(cj) under the qi.
Figure 3 shows the W−1x built up by the Wx as follows:

Q′ = Q = {q0, q1, q2}, (15)
′∑
= 9 = {add, sub,mul, div}, (16)

δ′0(add) = δ′0(sub) = δ′0(mul) = δ′0(div) = q1; (17)

δ′1(add) = δ′1(sub) = δ′1(mul) = δ′1(div) = q2; (18)

δ′2(add) = δ′2(sub) = δ′2(mul) = δ′2(div) = q0; (19)

1′ = {δ′0, δ
′

1, δ
′

2}, (20)

ψ ′ =
∑
= {add, sub,mul, div}; (21)

38164 VOLUME 7, 2019

S. Guang et al.: Obfuscation-Based Watermarking for Mobile Service Application Copyright Protection in the Cloud

λ′0(sub) = add; λ′0(mul) = sub;

λ′0(div) = mul; λ′0(add) = div; (22)

λ′1(add) = add; λ′1(mul) = sub;

λ′1(div) = mul; λ′1(sub) = div; (23)

λ′2(add) = add; λ′2(sub) = sub;

λ′2(mul) = div; λ′2(div) = mul; (24)

q0 is also the initial state of W−1x . The model that corre-
sponds with W−1x is shown in Figure 3. W−1x cannot restore
all of the semantics; because of the loop instruction, the loop
body requires the identical initial state to translate. That is,
for any state among < qi, qj >, there exists an instruction
sequence < d1, d2 , dh > in the ∃; if h is greater
than or equal to 1, qi converts to qj, while W−1x is input to
the sequence below under the qi state. For this purpose, some
constraints are added to W−1x :
The state conversion chart of W−1x is connected, and the

shortest path of the overall situation is the shortest.
All branches of the same instruction must have the same

final state.
The watermark extraction of this scheme was realized

through testing and verified. An instruction sequence is con-
structed to traverse all states of Wx or W−1x , accessing each
state in turn, and the unchanged instruction number of the set
under the qiis equal to the value of ith bit position in WM .

IV. EXPERIMENT AND ANALYSIS
This experiment aims to test the decompilation from px to p
verify the intensity of the obfuscation and the robustness of
the watermark.

We used the Java program TicTacToe in the experiment,
and 200 successive instructions were selected randomly as
a segment. The obfuscation rules are listed in Table 1, with
a maximum of 8 states and 8 instructions transformed in
each state. For any state, the number n of the transformed
instructions means that, in this state, only n instructions are
transformed. There are 213 instructions in the Java Jasmine
format, so the inserted watermark is

WM = (213− 8)(213− 5)(213− 8)(213− 5)(213− 8)

(213− 5)(213− 6)(213− 5) (25)

We selected 20 decompiler tools (see Table 2) to test
the decompilation of the obfuscated program. The decom-
pilation results are shown in Table 2. ‘‘before’’ represents
the original program p, ‘‘after’’ represents program p′, the
symbol ‘‘×’’ indicates that the.java document cannot be
generated while decompiling. ‘‘4’’ indicates that the.java
document can be generated but the recompilation failed,
‘‘�’’ indicates that both the decompilation and recompilation
were successful, but the program after recompilation cannot
be executed correctly because the executive program and
the original program are nonequivalent in the function or the
program resources are not matched. ‘‘©’’ shows that the
decompilation and the watermarks are exacted, in addition,
the input of the restored program is equal to the output of

TABLE 1. Input/Output of the test program.

the original program. Maybe the decompiled program is not
good enough at the code level, but the input and the output are
the same; we judge that the decompilation was successful.
Once the decompilation works, the code hiding of p fails,

VOLUME 7, 2019 38165

S. Guang et al.: Obfuscation-Based Watermarking for Mobile Service Application Copyright Protection in the Cloud

TABLE 2. Results of the decompile test.

even if we can prove the watermarks, the schema is consid-
ered a fail.

We can see in Table 2 that originally, there are 200 instruc-
tions, while there are 213 instructions in the obfuscated
program. The extra 13 instructions are dummy instructions.
All the decompiler tools decompiled p. However, for p′,
JODE, the JCavajJava Decompiler, the HomeBrew Decom-
piler, Class Spy, ClassCracker, SourceAgain and WingDis
failed to generate the standard.Java document. In addition,
Jad, Front End Plus, DeJava, Decafe Pro, CavajJava Decom-
piler, DJ Java, Decompiler, NMI’s Java Class Viewer, Jshrink,
and jAscii failed to recompile. Although the decompilation
and recompilation of ocha, the SourceTec Decompiler, and
JreversePro were successful, the program could not run after
the recompilation. Only the Dava Decompiler successfully
decompiled the testing code, and the recompiled programwas
equal to the original program in function. This tool uses the
Exhaustive Attack method to decompile and no surprise to
crack the obfuscation.

To compare the applicability in the cloud between this
study and the existing watermark algorithms, the experiment
tested the existence of watermarks with existing algorithms
after obfuscating the nonequivalent semantic. Cloud users
usually require the code semantics to be hidden; if the algo-
rithm ali can extract the watermark information successfully
after the obfuscation, this means that the ali has the same
ability to prove the copyright as this scheme after hiding the
semantics. The watermark robustness of ali was not lower
than this scheme in the cloud environment. The experiment
tested 10 algorithms that are available at Sandmark, and the
program under test is in accord with the previous experiment.
The embedded information has the same watermarks. The
experimental results are shown in Table 3.

TABLE 3. Adoption test of software watermarking algorithms.

The results show that, with the exception of W1 and W9,
each algorithm successfully embedded the watermark infor-
mation. W1 and W9 are static software watermarking algo-
rithms. W1 embedded the watermark by adding or changing
the constant definition, and W9 achieved watermarking by
utilizing the initialization. The watermark information of the
two algorithms are both embedded in the data segment, and
there is no need to modify the code. The sample case of this
experiment only contains the executable code, so these two
watermarking algorithms cannot be implemented. According
to Collberg’s experiment, the two algorithms cannot handle
any obfuscated transition, and they have the worst robustness.
There is no algorithm that can extract the watermark after the
obfuscation, which demonstrates that these algorithms cannot
reach the robustness in this scheme.

V. CONCLUSIONS
Some people believe that the SaaS model greatly minimizes
software piracy because, after migrating programs from the
desktop to the Cloud, the Cloud separates the adversary
with source codes; software piracy will be more difficult
to accomplish. SaaS applications continuously require an
Internet connection and are able to gain basic control over
their applications, and thus, most likely solving the piracy
problem on its own.

We argue that the outsider threat to software copyright can
be effectively solved by the Cloud’s separation. However,
insider threats are more difficult to address. Who guards the
guards? We currently have no way to monitor the security
arrangements in the Cloud. Software distributions in the
Cloud are supposed to mark the beginning of new concerns
about security breaches, piracy abuses and access control
violations.

This study understands the new challenges of mobile
service application copyright protection in the Cloud. The
goal of our software watermarking does not change with
the Cloud; the ‘‘how’’ of software watermarking must be
considered for the Cloud environment. We use the nonequiv-
alence of semantic obfuscation to hide code semantics and
embed watermark information at the same time. We intend
to watermark the program and obfuscate the codes as well.
According to the decompilation test, only the exhaustive

38166 VOLUME 7, 2019

S. Guang et al.: Obfuscation-Based Watermarking for Mobile Service Application Copyright Protection in the Cloud

attack method can crack the 200 instructions under 8 state
transition schemes, which indicates that the scheme can
address watermark destruction.

REFERENCES
[1] Cloud Security Alliance (CSA). Top Threats to Cloud Computing:

Deep Dive. Accessed: Aug. 2018. [Online]. Available: https://cloud
securityalliance.org/artifacts/top-threats-to-cloud-computing-deep-dive/

[2] Z. Yu, C. Wang, C. Thomborson, J. Wang, S. Lian, and A. V. Vasilakos,
‘‘A novel watermarking method for software protection in the cloud,’’
Softw.-Pract. Exper., vol. 42, no. 4, pp. 409–430, 2012.

[3] H. Keiko, G. R. David, F.-M. Eduardo, and B. F. Eduardo, ‘‘An analysis
of security issues for cloud computing,’’ J. Internet Services Appl., vol. 4,
no. 10, pp. 109–114, 2013.

[4] D. G. Rosado, R. Gómez, D. Mellado, and E. Fernández-Medina, ‘‘Secu-
rity analysis in the migration to cloud environments,’’ Future Internet,
vol. 4, no. 2, pp. 469–487, 2012.

[5] J. Chen, K. Li, W.Wen, W. Chen, and C. Yan, ‘‘Software watermarking for
java program based on method name encoding,’’ in Advanced Intelligent
Systems and Informatics. 2017, pp. 865–874.

[6] Z. Chen, C. Jia, and D. Xu, ‘‘Hidden path: Dynamic software water-
marking based on control flow obfuscation,’’ in Proc. Int. Conf. Comput.
Sci. Eng. (CSE) Embedded Ubiquitous Comput. (EUC), vol. 2, Jul. 2017,
pp. 443–450.

[7] Z. Chen, Z. Wang, and C. Jia, ‘‘Semantic-integrated software water-
marking with tamper-proofing,’’ Multimed Tools Appl., vol. 77, no. 9,
pp. 11159–11178, 2017.

[8] S. Guang, X. Fan, S. Fu, Y. Song, and L. Huifang, ‘‘Software watermarking
in the cloud: Analysis and rigorous theoretic treatment,’’ J. Softw. Eng.,
vol. 9, no. 2, pp. 410–418, 2015.

[9] Y. Awasthi, P. R. Agarwal, and K. B. Sharma, ‘‘Intellectual property right
protection of browser based software through watermarking technique,’’
Int. J. Comput. Appl., vol. 97, no. 12, pp. 32–36, 2014.

[10] M. D. Preda and M. Pasqua, ‘‘Software watermarking: A semantics-based
approach,’’ Electron. Notes Theor. Comput. Sci., vol. 331, pp. 71–85,
Mar. 2017.

[11] D. A. B. Fernandes, L. F. B. Soares, J. V. Gomes, M. M. Freire, and
P. R. M. Inácio, ‘‘Security issues in cloud environments: A survey,’’ Int.
J. Inf. Secur., vol. 13, no. 2, pp. 113–170, 2014.

[12] G. Hurel, R. Badonnel, A. Lahmadi, and O. Festor, ‘‘Outsourcing mobile
security in the cloud,’’ in Monitoring and Securing Virtualized Networks
and Services. Berlin, Germany: Springer, 2014, pp. 69–73.

[13] Y.Wang, D. Gong, B. Lu, F. Xiang, and F. Liu, ‘‘Exception handling-based
dynamic software watermarking,’’ IEEE Access, vol. 6, pp. 8882–8889,
2018.

[14] N. Zong and C. Jia, ‘‘Software watermarking using support vector
machines,’’ in Proc. IEEE 39th Annu. Comput. Softw. Appl. Conf., vol. 2,
Jul. 2015, pp. 533–542.

[15] X. Rao and V. K. N. Lau, ‘‘Distributed fronthaul compression and joint
signal recovery in cloud-RAN,’’ IEEE Trans. Signal Process., vol. 63,
no. 4, pp. 1056–1065, Feb. 2015.

[16] S. Wang, X. Zhang, Y. Zhang, L. Wang, J. Yang, and W. Wang,
‘‘A survey on mobile edge networks: Convergence of computing,
caching and communications,’’ IEEE Access, vol. 5, pp. 6757–6779,
2017.

[17] M. Chen, Y. Hao, L. Hu, K. Huang, and V. Lau, ‘‘Green andmobility-aware
caching in 5G networks,’’ IEEE Trans. Wireless Commun., vol. 16, no. 12,
pp. 8347–8361, 2017.

[18] L. Zhou, ‘‘QoE-driven delay announcement for cloud mobile media,’’
IEEE Trans. Circuits Syst. Video Technol., vol. 27, no. 1, pp. 84–94,
Jan. 2017.

[19] A. Monden, A. Monsifrot, and C. Thomborson, ‘‘A framework for obfus-
cated interpretation,’’ in Proc. 2nd Workshop Australas. Inf. Secur. Data
Mining Web Intell., Softw. Internationalisation, vol. 32, 2004, pp. 7–16.

[20] S. Patel and T. Pattewar, ‘‘Software birthmark based theft detection of
JavaScript programs using agglomerative clustering and improved frequent
subgraph mining,’’ in Proc. Int. Conf. Adv. Electron. Comput. Commun.,
Bangalore, India, Oct. 2014, pp. 1–6.

[21] Z. Tian, Q. Zheng, T. Liu, M. Fan, E. Zhuang, and Z. Yang, ‘‘Software
plagiarism detection with birthmarks based on dynamic key instruction
sequences,’’ IEEE Trans. Softw. Eng., vol. 41, no. 12, pp. 1217–1235,
Dec. 2015.

SUN GUANG received the Ph.D. degree in com-
puter science from Hunan University, Changsha,
Hunan, China, in 2012. He is currently a Professor
with the Institute of Big Data, Hunan University
of Finance and Economics, Changsha. He is also a
Visiting Scholar with The University of Alabama.
His research was supported by the Open Founda-
tion for the University Innovation Platform from
the Hunan Province, China, under Grant 16K013.
His research interests include the umbrella of sen-

sor networks security, information hiding (with a focus on software water-
marking and software birthmarking), and big data analysis and visualization.

F. XIAOPING received the Ph.D. degree. He was
also a Professor, a Doctoral Tutor, and an Expert
with special government allowances from the State
Council, top talents in the Ministry of Railways,
and cross-century academic and technical leaders
in Hunan, selected for the first batch of talent
projects in the new century in Hunan. He was the
Director of the Academic Affairs Office, Chang-
sha Railway Institute, the Associate Dean of the
School of Information Engineering, and the Direc-

tor of the Automation Engineering Research Center. He is the Director of
the Office of the Degree Evaluation Committee, Central South University
(Director of the Graduate School of Academic Degrees), where he is also
the Director of the Network System Research Institute, and a Professor and
a Doctoral Tutor with the School of Information Science and Engineering.
He is currently the Vice President of Hunan Finance and Economics College.

J. WANGDONG was born in Yangzhou, Hunan,
China, in 1971. He received the B.S. degree
in mathematics from Hunan Normal University,
in 1993, and the M.S. degree in computer appli-
cations from Guangxi Normal University, in 2005.
From 2005 to 2014, he was an Associate Professor
with the Information Management Department.
Since 2015, he has been an Associate Professor
with the Institute of Big Data, Hunan University
of Finance and Economics. His research interests

include machine learning and data mining for big data.

L. FENGHUA was born in Hengyang, Hunan,
China, in 1997. From 2017 to 2018, she was a Stu-
dent Assistant with the school’s innovation train-
ing laboratory. She has presided over the national
college student innovation and entrepreneurship
training program project accurate crawler design
and implementation with data cleaning function,
and she has participated in the college project
approval. Since 2015, she has been studying infor-
mation management and information systems with

the Hunan University of Finance and Economics. Her research interests
include data visualization applications, computer programming, data anal-
ysis, data collection, and other big data applications. She has received the
Second Prize from the Hunan University Student Computer Programming
Competition, in 2017, and the Bronze Prize from the Hunan University
Students Entrepreneurship Competition, in 2018.

J. YUEWEI was born in Changchun, Jilin, China,
in 1997. She is currently pursuing the B.S. degree
in information management and systems from
the Hunan University of Finance and Economics.
At school, she helped to finish this paper. Mean-
while, she has published an article in the Journal of
Lanzhou Institute of Technology. In addition, many
of her works have been published in the school
newspaper.

VOLUME 7, 2019 38167

	INTRODUCTION
	OBFUSCATION AND WATERMARK EMBEDDING
	SEMANTIC RECOVERY AND WATERMARKS EXTRACTION
	EXPERIMENT AND ANALYSIS
	CONCLUSIONS
	REFERENCES
	Biographies
	SUN GUANG
	F. XIAOPING
	J. WANGDONG
	L. FENGHUA
	J. YUEWEI

