
Received December 1, 2018, accepted January 11, 2019, date of publication January 30, 2019, date of current version February 20, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2896104

Parameter Self-Adaptation in an Ant Colony
Algorithm for Continuous Optimization
ASHRAF M. ABDELBAR 1 AND KHALID M. SALAMA2
1Department of Mathematics and Computer Science, Brandon University, Brandon, MB R7A 6A9, Canada
2School of Computing, University of Kent, Canterbury CT2 7NZ, U.K.

Corresponding author: Ashraf M. Abdelbar (abdelbara@brandonu.ca)

This work was supported in part by the Brandon University Research Council.

ABSTRACT ACOR is a well-established ant colony optimization algorithm for continuous-domain opti-
mization. We present an approach for the dynamic adaptation of the ACOR algorithm’s controlling parame-
ters, focusing on the search width parameter, based on using several pre-specified parameter configurations,
which we call personalities. Before an ant starts to generate a candidate solution, it stochastically adopts
a personality based on the relative past success of different personalities. The success of a personality
is measured, in turn, by the survival rate of the previous solutions generated by the ants adopting that
personality. The premise of our approach is that some personalities will be more appropriate than others for
different phases of the search. In addition, our adaptive approach can accommodate solution recombination,
the use of whichwithinACOR was recently explored in the previouswork. It allows the frequency of applying
recombination and the type of recombination operator to be dynamically adapted, by having one or more
recombination personalities among the competing personalities. We evaluate these proposals experimentally
on two applications: 1) training feedforward neural networks for classification using 65 benchmark datasets
from the University of California Irvine repository and 2) optimizing several popular synthetic benchmark
continuous-domain functions. Our experimental results indicate that our proposals perform better than the
standard ACOR on both applications, to a statistically significant extent.

INDEX TERMS Collective intelligence, evolutionary computation, adaptive algorithm, optimization meth-
ods, ant colony optimization.

I. INTRODUCTION
ACOR [1] is a well-established Ant Colony Optimization
(ACO) [2] algorithm for continuous-domain optimization.
In this paper, we present an approach for the dynamic self-
adaptation of the algorithm’s controlling parameters, focus-
ing on the search width parameter ξ . Our proposal falls
in the general area of automated parameter tuning [3]–[8],
a category in which there has been considerable interest in
the literature. Such techniques can be broadly classified into
offline and online approaches. Offline approaches optimize
an algorithm’s parameters before the algorithm is deployed,
and include methods such as iterated local search [4], [5],
iterated race algorithms [9], [10], evolutionary computation
[11]–[13], and even ACO algorithms [14]–[16].

On the other hand, online approaches operate during an
algorithm’s execution and modify the algorithm’s parame-

The associate editor coordinating the review of this manuscript and
approving it for publication was Sabah Mohammed.

ters while it is running. Stützle et al. [8] note that online
approaches ‘‘may also be useful to reach the best performance
in dependence of the stage of the search,’’ and that ‘‘allowing
parameters to change online may increase an algorithm’s
robustness.’’

One taxonomy of online parameter tuning techniques was
presented by Eiben et al. [3], and Stützle et al. [8] have
presented an excellent survey, organized around Eiben’s tax-
onomy, of online parameter tuning methods that have been
applied to (discrete) ACO. Eiben’s taxonomy is based on
three categories: pre-scheduled, adaptive, and self-adaptive
approaches.

Pre-scheduled approaches allow an algorithm’s parameters
to be modified, deterministically or stochastically, based on
the number of iterations or the amount of CPU-time elapsed.
The Incremental ACOR [17] algorithm’s strategy of gradually
increasing archive size can be considered to fall within this
category, as the increase in the size of the search archive
follows a specific schedule based on the iteration number.

18464
2169-3536
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 7, 2019

https://orcid.org/0000-0002-7921-1892

A. M. Abdelbar, K. M. Salama: Parameter Self-Adaptation in an Ant Colony Algorithm

Other examples of pre-scheduled approaches that have been
applied to discrete ACO can be found in [18]–[20].

Adaptive methods modify an algorithm’s parameters based
on statistical measures of the algorithm’s dynamic behavior.
Examples of adaptive methods that have been applied to
discrete ACO can be found in [21]–[27].

Self-adaptive approaches are those in which the algorithm
modifies its own parameters at run-time. Examples of self-
adaptive approaches applied to discrete ACO include sev-
eral different methods [28]–[31] with a common theme of
associating pheromone traces with values of discrete ACO
parameters, such as α, β, and ρ, and using the usual ACO
roulette wheel probabilistic-action rule to choose between
parameter values based on the associated pheromone traces.
Our ACOR-P approach (see Section III) falls within this
category. In ACOR, the role of pheromone is played by the
solution archive, and our approach uses information extracted
from the archive to choose between parameter settings (per-
sonalities) based on roulette wheel selection.

Other self-adaptive approaches that have been applied to
discrete ACO include several methods that have used differ-
ent flavors of Evolutionary Algorithms (EA) to adapt ACO
parameters [32]–[34]. A Particle Swarm Optimization (PSO)
approach [35] and an artificial fish-swarm approach [36] have
also been considered, as have approaches based on local
search in parameter space [37], and those based on multiple
cooperating colonies with different parameter configurations
for each colony [38]. The reader is referred to [8] for a more
comprehensive discussion.

To our knowledge, our work is the first self-adaptive
approach to be proposed in the context of ACOR. Our pro-
posed approach uses several pre-specified parameter config-
urations, which we call personalities. Before an ant starts
to generate a candidate solution, it first adopts a personal-
ity, or parameter configuration. The choice of which person-
ality to adopt is stochastic and based on how successful each
personality has been in the past. The success of a personality p
is measured, in turn, by the success rate with which solutions
generated by previous p-personality ants have succeeded in
securing a place in the archive. The premise of our approach
is that some personalities will bemore appropriate than others
for different phases of the search process.

Our approach allows personalities to compete. Personal-
ities that are more effective for a particular phase of the
search will be deployed more often. As the search drifts
towards a different phase, previously effective personalities
will become less effective as others emerge and dominate.
This adaptation and competition among personalities will
make the algorithm more responsive to different phases of
the search process.

In [39], we explored the incorporation of recombination
within the ACOR algorithm. In the present work, we propose
an approach for dynamically adapting the frequency of apply-
ing recombination and the type of recombination operator by
having one or more recombination personalities among the
competing personalities.

In [40], we proposed an approach, which we now call
ACOR-D, in which the ACOR algorithm’s search width
parameter ξ is reduced over time according to a pre-
determined exponential decay schedule. At the start of
the algorithm, or after a stagnation-reset (see Section II),
the search width ξ is set to an initial value ξ0, and then
is reduced by a fixed factor in each iteration. It can be
argued that ACOR-D falls into the category of pre-scheduled
approaches because of the fixed decay schedule. On the other
hand, it can also be argued that the mechanism of resetting the
value of ξ to ξ0 in the case of stagnation is an example of an
adaptive strategy.

Our experimental evaluation is based on two applica-
tions: 1) training feedforward neural networks for classifica-
tion, using 65 benchmark datasets from the UCI repository;
2) optimizing several synthetic continuous-domain bench-
mark functions that are popular in the evolutionary compu-
tation community.

In summary, the contributions of the present work can be
categorized as follows:

1) We introduce an approach, called ACOR-P, for the
self-adaptation of the ACOR algorithm’s controlling
parameters. The present work focuses on the search
width parameter ξ , but our approach can be generalized
to other parameters as well.

2) In [39], we presented the ACOR-R algorithm, which
augments ACOR with a mechanism for the recom-
bination of solutions from the archived population,
with the probability of deployment of recombination
being fixed and specified by a user-supplied parameter.
We follow up, in the present work, by considering
how the probability of recombination can be dynam-
ically adapted by incorporating one or more recom-
bination operators within the framework of ACOR-P.
We allow the frequency of recombination and the type
of recombination operator to be dynamically adapted
based on the past performance of each operator.
We present the ACOR-PR algorithm, which includes
a single recombination operator, and the ACOR-PR2
algorithm, which includes two competing recombina-
tion operators corresponding to uniform crossover and
single-point crossover.

3) We present an extensive experimental evaluation on
two applications: a) neural network training using
65 datasets; and b) optimizing several synthetic
continuous-domain benchmark functions using 9 func-
tions and 10 values for the number of dimensions
for each function. Our experimental evaluation com-
pares the following four algorithms to standard ACOR:
ACOR-P, ACOR-PR, ACOR-PR2, and ACOR-D. The
first three are introduced in the present work, while
ACOR-D was introduced in [40]. In that work,
ACOR-D was evaluated on neural network training
using 36 datasets. The experimental evaluation in the
present work increases the number of neural net-
work datasets from 36 to 65, and also evaluates

VOLUME 7, 2019 18465

A. M. Abdelbar, K. M. Salama: Parameter Self-Adaptation in an Ant Colony Algorithm

ACOR-D on the benchmark continuous optimization
functions.

The paper is organized as follows. We begin in Section II
with a broad overview of Ant Colony Optimization (ACO)
and a review of the ACOR algorithm. Section III presents
our competing personalities approach, while Section IV
describes how personalities encoding recombination opera-
tors can be accommodated within the competing personalities
approach. We then describe our experimental methodol-
ogy in Section V, followed by our experimental results in
Section VI. Finally, Section VII presents some final discus-
sion and describes some potential future work.

II. REVIEW OF THE ACOR ALGORITHM
Ant Colony Optimization (ACO) [2] is a general-purpose,
biologically motivated, population-based optimization meta-
heuristic, based on a collection (called a colony) of fairly
primitive processing elements (called ants), each operating
autonomously and communicating with the others indirectly
through shared data structures. ACO algorithms usually have
a central data structure, analogous to pheromone informa-
tion in natural ant colonies, that represents the time-evolving
collective wisdom of the group. In each iteration, each ant
typically generates a candidate solution, making use of the
central pheromone data structure in some way in its solution
construction. After all ants have generated their solutions,
a subset of those solutions is then used to update the central
data structure in some way.

ACO has been applied to a wide variety of domains
[41]–[44], including supervised learning using various learn-
ing models, such as classification rules [29], [45]–[50], deci-
sion trees [51], [52], and various types of Bayesian network
classifiers [53]–[57].

While the majority of research on ACO has focused on
discrete (combinatorial) optimization problems [58], ACO
methods for continuous problem domains have also been
investigated [59]–[61]. In this paper, we focus on the ACOR
algorithm [59], which has been applied to a number of con-
tinuous optimization problems [1], [59], including neural
network training [60], [62]–[64].

Suppose the ACOR algorithm is to be applied to
an optimization problem over n real-valued variables
V1,V2, . . . ,Vn. The central data structure, analogous to
pheromone information in natural ants, that is maintained
by ACOR is an archive A of L previously-generated can-
didate solutions. Each element sa in the archive, for a =
1, 2, . . . ,L, is an n-dimensional, real-valued vector, sa =
(sa,1, sa,2, . . . , sa,n). For example, sa,j refers to the value
of the j-th variable in the a-th solution in the archive.
The archive is sorted by solution quality, so that Q(s1) ≥
Q(s2) ≥ . . . ≥ Q(sL). Each solution sa in the archive
has an associated weight ωa that is related to Q(sa), so that
ω1 ≥ ω2 ≥ . . . ≥ ωL .
Each iteration of the ACOR algorithm has the following

two phases: solution construction and pheromone update.
In the solution construction phase, each ant probabilistically

constructs a solution based on the solution archive A (repre-
senting pheromone information). The solution archive A is
initialized with L randomly generated solutions, where the
size L is a user-supplied parameter of the ACOR algorithm.
Then, in the pheromone update phase, the m constructed
solutions (where m is the number of ants) are added to A,
resulting in the size of A temporarily being L + m. The
archive A is then sorted by solution quality, and the m worst
solutions are discarded, so that the size ofA returns to being L.
The heart of the algorithm is the solution construction phase.
In this phase, each ant i generates a candidate solution si,
where si is an n-dimensional vector, and si,j represents an
assignment to the j-th variable Vj. In constructing its solution
si, ant i is influenced by one of the L solutions in the archiveA.
The ant first probabilistically selects one of the L solutions in
the archive according to:

Pr(select sa) =
ωa∑L
r=1 ωr

(1)

Thus, the probability of selecting the a-th solution is propor-
tional to its weight ωa. Recall that the archive A is sorted by
quality, so that solution sa has rank a, with the best solution
having a rank of 1. The weights ωa that are used in Eq. (1)
are constructed in each iteration as:

ωa = g(a; 1, qL) (2)

where g is the Gaussian function:

g(y;µ, σ) =
1

σ
√
2π

e−
(y−µ)2

2σ2 (3)

Thus, Eq. (2) assigns the weight ωa to be the value of the
Gaussian function with argument a, mean 1.0, and standard
deviation (qL). The value of q is a user-supplied parameter
of the algorithm, where smaller values of q cause the better-
ranked solutions to have higher weights ω (and thus make the
algorithm more exploitative), while larger values of q result
in a more uniform distribution.

Let sa be the solution of A that is selected by ant i according
to Eq. (1) in a given iteration. Ant i then generates each
solution element si,j by sampling the Gaussian probability
density function (PDF):

si,j ∼ N (sa,j, σa,j) (4)

whereN (µ, σ) represents the Gaussian PDFwithmeanµ and
standard deviation σ .
In Eq. (4), sa,j represents the value that the solution sa

assigns to variable Vj, and the standard deviation σa,j is
computed according to:

σa,j = ξ

L∑
r=1

| sa,j − sr,j |
L − 1

(5)

where ξ is a user-supplied parameter of the algorithm. The
effect of Eq. (5) is that the average distance from sa to other
solutions in the archive, for the j-th dimension, is computed
and then multiplied by ξ . The parameter ξ plays a role in

18466 VOLUME 7, 2019

A. M. Abdelbar, K. M. Salama: Parameter Self-Adaptation in an Ant Colony Algorithm

Algorithm 1 Pseudo-code of ACOR.
1:algorithm ACOR(n,Q) F n : number of dimensions; Q : fitness function (Q : Rn 7→ R)
2: for t = 1→ Imax do
3: if t = 1 OR Stagnation () then
4: for r = 1→ L do F L = |A|
5: Initialize sr (r-th element of archive A) with a randomly-generated n-dimensional vector
6: Compute Q(sr)
7: end for
8: Sort Archive A according to Q
9: end if
10: for i = 1→ m do F m : number of ants
11: Select sa according to Eq. (1)
12: for j = 1→ n do
13: Compute σa,j according to Eq. (5) F Eq. (5) uses the search width parameter ξ
14: Generate si,j according to Eq. (4)
15: end for
16: Compute Q(si)
17: end for
18: Add s1, . . . , sm to archive A F A temporarily grows to size L + m
19: Sort Archive A according to Q
20: Remove bottom m elements from A F A shrinks back to size L
21: end for
22:return best solution in Archive A
23:end algorithm

ACOR similar to that of the evaporation rate in other ACO
algorithms. The higher the value of ξ , the less the search
is biased towards the area of the search space around the
solutions stored in the archive, and the slower the algorithm
will converge. Once each ant has constructed its solution,
the archive A is updated as described previously, and the
process repeats.

If the top solution in the archive remains unchanged for
Istag iterations, then the algorithm is said to be stagnated.
When this happens, the archive is re-initialized with random
solutions, although a record is maintained of the best solution
encountered thus far. The algorithm terminates when the total
number of iterations reaches Imax .
In all, besides Istag and Imax , the ACOR algorithm has the

following four user-supplied parameters: m, L, q, and ξ . The
parameter m determines the number of ants; the parameter L
determines the number of solutions stored in the archive A;
the parameter q controls the extent to which the top solutions
in the archive will dominate solution construction (Eq. 2); and
the search width parameter ξ influences the degree of diver-
sity in solution construction (Eq. 5). Table 1 shows the ACOR
parameter settings that we use in our experimental evaluation,
which follow the parameter settings of [1]. Algorithm 1 sum-
marizes the ACOR algorithm in pseudocode.

Liao et al. [17] have considered a variant of ACOR, called
Incremental ACOR (IACOR), which allows the archive size
L to gradually increase over time. In the same work [17], they
presented another variation, IACOR-LS, that incorporates
local search within the IACOR framework. Kumar et al. [65]

TABLE 1. Parameter settings used in experimental evaluation.

have investigated and evaluated a wide array of optimizers for
IACOR-LS’s local search step.

III. MULTIPLE COMPETING PERSONALITIES
Our proposal, called ACOR-P, aims to allow the ACOR
algorithm to respond and be more closely coupled to the
progress of the search. We specify a set of personalities 9 =
{ψ1, ψ2, . . . , ψ|9|}, where each personality is a full or partial
specification of algorithm parameter values. In this section,

VOLUME 7, 2019 18467

A. M. Abdelbar, K. M. Salama: Parameter Self-Adaptation in an Ant Colony Algorithm

each personality simply specifies a value of the search width
parameter ξ . In our experimental evaluation, we use 14 per-
sonalities corresponding to the following evenly spaced val-
ues of ξ :

{0.93, 0.88, . . . , 0.68, . . . , 0.28} (6)

Each element of the archive will now have an associated
field φ that records the personality that was used to generate
it. Let ς (ψ) denote the number of elements of the archive that
were generated by personality ψ . Note, of course, that∑

ψ∈9

ς (ψ) = L (7)

When an ant starts to generate a candidate solution, it first
probabilistically adopts a personality according to the roulette
wheel probabilistic-action rule:

Pr(select ψ) =
u(ψ)∑

ψ ′∈9 u(ψ ′)
(8)

where u denotes the utility of personality ψ , which is a
measure of the past performance of personality ψ . We define
the function u as:

u(ψ) = ς (ψ)+ θ (9)

where θ is a small constant, similar in role to a Laplace
correction, that prevents a personality from ever having a zero
probability of adoption.

One of the elements of 9 is distinguished as the default
personality, denoted ψ̂ . When the archive is randomly ini-
tialized, either at the start of the computation or after a
stagnation-reset, all the elements of the archive are considered
as having been generated by the default personality ψ̂ . Thus,
immediately after initialization, the adoption probability of
ψ̂ is:

Pr(select ψ̂) =
L + θ

L + θ |9|
(10)

and the adoption probability of any other personality ψ 6= ψ̂
is:

Pr(select ψ) =
θ

L + θ |9|
(11)

Table 1 summarizes the parameter settings that we use
in our experimental evaluation for ACOR-P. Note that the
default personality for ACOR-P corresponds to the search
width setting (ξ = 0.68) that is used with standard ACOR
in our experimental evaluation. With these parameter settings
(θ = 2.5 and |9| = 14), the adoption probabilities imme-
diately after population initialization would be 74% for the
default personality and 2% for each of the other 13 personal-
ities. Algorithm 2 summarizes ACOR-P in pseudocode.

The premise of ACOR-P is that a personality that is effec-
tive at a particular point in the search will produce solutions
of relatively high quality, which will be more likely to find
a place in the archive and to survive in the archive longer
before being displaced. As the algorithm progresses, search

conditions may change, and a previously less-effective per-
sonality can become more effective. As the relative qual-
ity of solutions produced by that personality improves,
its representation in the archive will increase, in turn
improving its probability of adoption. The Laplace constant
(θ in Eq. 9) ensures that no personality will ever die out
completely.

The process of constructing a candidate solution in ACOR
can be viewed as sampling a probability distribution that is
indirectly specified by the solution archive and the algorithm
parameters. The m solutions constructed in each iteration
are all produced by sampling the exact same probability
distribution. In ACOR-P, solutions constructed by different
personalities are produced by sampling slightly different dis-
tributions, thus promoting search diversity. Because of the
Laplace constant θ , even poorly-performing personalities will
still be adopted occasionally, thus promoting search diversity
even further.

It is worth emphasizing that the run-time per iteration of
each of the three algorithms (ACOR, ACOR-D, and ACOR-P)
is roughly the same. The run-time of ACOR is dominated
by fitness function evaluations, and each of these three algo-
rithms constructs and evaluates the fitness of exactly m solu-
tions per iteration.

IV. MULTIPLE PERSONALITIES WITH RECOMBINATION
A. INCORPORATING RECOMBINATION WITHIN
MULTIPLE PERSONALITY FRAMEWORK
In [39], we presented an approach called ACOR-R, which
incorporates recombination within the ACOR framework.
In ACOR-R, recombination is deployed with a probabil-
ity that is fixed and specified by a user-supplied param-
eter. In the present work, we allow the probability of
applying recombination to be dynamically adapted by gen-
eralizing the ACOR-P multiple competing personalities
approach to produce an approach we call ACOR-PR, which
incorporates recombination within the multiple personality
approach. Here, as in Section III, we apply multiple person-
alities, corresponding to the values of ξ indicated in Eq. (6).
We add an additional personality that corresponds to the
application of recombination, for a total of 15 personalities.
If the personality corresponding to recombination is adopted,
then a recombination operator is used to construct a candi-
date solution instead of ACOR’s usual solution construction
mechanism. In the present work, we use uniform crossover as
the recombination operator in ACOR-PR.

When the recombination personality is adopted, two par-
ents are selected from the ACOR solution archive. One parent
sa is selected by applying Eq. (1) in the usual ACOR way
(i.e. rank-proportionate selection). The second parent sb is
randomly selected from the archive with uniform distribution.
A single offspring sc is then generated by uniform crossover;
each solution element sc,j is set equal to sa,j with 50% proba-
bility, and to sb,j with 50% probability, for j = 1, . . . , n. The
generated offspring sc then becomes one of them constructed

18468 VOLUME 7, 2019

A. M. Abdelbar, K. M. Salama: Parameter Self-Adaptation in an Ant Colony Algorithm

Algorithm 2 Pseudo-code of ACOR-P. This algorithm builds on Algorithm 1; lines that were added are marked with a plus
sign next to the line number.

1:algorithm ACOR-P(n,Q) F n : number of dimensions, Q: fitness function (Q : Rn 7→ R)
2: for t = 1→ Imax do
3: if t = 1 OR Stagnation () then
4: for r = 1→ L do
5: Initialize sr with a randomly-generated n-dimensional vector
6: Compute Q(sr)
+++7: Set φ(sr) = ψ̂ F ψ̂ : default personality
8: end for
9: Sort Archive A according to Q

+++10: Compute u(ψ) according to Eq. (9) for all ψ ∈ 9
11: end if
12: for i = 1→ m do
+++13: Select a personality ψ according to Eq. (8)
14: Select sa according to Eq. (1)
+++15: Set ξ as specified by personality ψ F ξ is used in Eq. (5) in line 17
16: for j = 1→ n do
17: Compute σa,j according to Eq. (5)
18: Generate si,j according to Eq. (4)
19: end for
20: Compute Q(si)
+++21: Set φ(si) = ψ
22: end for
23: Add s1, . . . , sm to archive A
24: Sort Archive A according to Q
25: Remove bottom m elements from A
+++26: Compute u(ψ) according to Eq. (9) for all ψ ∈ 9
27: end for
28:return best solution in Archive A
29:end algorithm

solutions that compete with each other and with the existing L
solutions for a place in the archive. If the generated offspring
succeeds in finding a place in the population, it is considered
to have been constructed by the recombination personality.

Note that when the recombination personality is selected,
ACOR’s standard solution generation mechanism (Eqs. 1-5)
is not applied, and the parameter ξ does not play a role in
solution generation; thus, no value of ξ is needed when the
recombination personality is selected.

Based on our parameter settings (summarized in Table 1),
the initial adoption probabilities would be 71.15% for the
default personality and 1.92% for each of the other 14 person-
alities, including the recombination personality. Algorithm 3
summarizes ACOR-PR in pseudocode.

In the present work, we select a specific recombination
operator, uniform crossover with the second parent chosen by
uniform distribution. But, of course, any other recombination
operator could be used in its place within the ACOR-PR
algorithm.

Of course, some applications will benefit from the use
of recombination more than others. ACOR-PR allows the
frequency of applying recombination to adapt dynamically

based on the relative quality of past solutions constructed by
recombination, without the user having to externally specify
a fixed probability of applying recombination.

Recombination is a fundamentally different approach to
solution construction than ACOR’s usual solution construc-
tion mechanism, so the use of recombination promotes search
diversity. The selection of the second parent by uniform
distribution further promotes diversity.

It is again worth emphasizing that ACOR-PR performs
the same number of fitness function evaluations per itera-
tion as ACOR-P and ACOR. In each iteration, m solutions
are constructed and evaluated; each solution may be con-
structed either by recombination with a randomly-selected
population element or by ACOR’s usual solution construction
mechanism.

B. MULTIPLE RECOMBINATION PERSONALITIES
The multiple personality approach can accommodate more
than one recombination personality corresponding to differ-
ent flavors of recombination. Here, we consider an approach,
called ACOR-PR2, which incorporates:

VOLUME 7, 2019 18469

A. M. Abdelbar, K. M. Salama: Parameter Self-Adaptation in an Ant Colony Algorithm

Algorithm 3 Pseudo-code of ACOR-PR. This algorithm builds on Algorithm 2; lines that were added are marked with a plus
sign next to the line number.

1:algorithm ACOR-PR(n,Q) F n : number of dimensions, Q: fitness function (Q : Rn 7→ R)
2: for t = 1→ Imax do
3: if t = 1 OR Stagnation () then
4: for r = 1→ L do
5: Initialize sr with a randomly-generated n-dimensional vector
6: Compute Q(sr)
7: Set φ(sr) = ψ̂
8: end for
9: Sort Archive A according to Q
10: Compute u(ψ) according to Eq. (9) for all ψ ∈ 9
11: end if
12: for i = 1→ m do
13: Select a personality ψ according to Eq. (8)
14: Select sa according to Eq. (1)
+++15: if ψ specifies recombination then
+++16: Select sb with uniform distribution
+++17: Generate si by applying recombination operator to sa and sb
+++18: else F else: ψ specifies a value of ξ
19: Set ξ as specified by personality ψ
20: for j = 1→ n do
21: Compute σa,j according to Eq. (5)
22: Generate si,j according to Eq. (4)
23: end for
+++24: end if
25: Compute Q(si)
26: Set φ(si) = ψ
27: end for
28: Add s1, . . . , sm to archive A
29: Sort Archive A according to Q
30: Remove bottom m elements from A
31: Compute u(ψ) according to Eq. (9) for all ψ ∈ 9
32: end for
33:return best solution in Archive A
34:end algorithm

• the 14 ξ personalities of Eq. (6),
• a personality corresponding to recombination with uni-
form crossover, as described in Section IV-A,

• a personality corresponding to recombination with clas-
sical single-point crossover.

In the case of single-point crossover, the two parents are
selected as in Section IV-A, one by rank-proportionate selec-
tion according to Eq. (1), and the other by uniform distri-
bution. A crossover point is then randomly selected with a
uniform distribution, and a single offspring is produced by
single-point crossover. Based on our parameter settings (sum-
marized in Table 1), the initial adoption probabilities would
be 69.81% for the default personality and 1.89% for each of
the other 15 personalities, including the two recombination
personalities.

In the present work, we use single-point crossover as
the second competing operator, but, in general, any other
recombination operator could have been used.

A drawback of ACOR-PR is the need to specify a specific
recombination operator. ACOR-PR2 somewhat alleviates this
situation by allowing two recombination operators to be spec-
ified, which then compete, with the better-suited operator
being deployed more often. This can, of course, be gener-
alized to having more than two recombination personalities
specifying different competing recombination operators.

The availability of different recombination operators fur-
ther promotes search diversity because each operator con-
structs solutions in a different way.

V. EXPERIMENTAL METHODOLOGY
Our experimental evaluation compares standard ACOR
against our proposed extensions in the context of the fol-
lowing two problem domains: training feedforward neural
networks for classification, and optimizing several synthetic,
continuous-domain benchmark functions popular in the evo-
lutionary computation community.

18470 VOLUME 7, 2019

A. M. Abdelbar, K. M. Salama: Parameter Self-Adaptation in an Ant Colony Algorithm

A. NEURAL NETWORK TRAINING
Feedforward neural networks (FFNN) are a popular and
well-established method for pattern classification. The most
common FFNN architecture is a three-layer topology with
full connectivity between layers. The external input to the
network feeds into the first layer, called the input layer. The
input layer consists of fan-out units which feed into the next
layer, called the hidden layer. Finally, the output of the hidden
layer feeds into the final layer, called the output layer, whose
output becomes the external output of the network.

Each neuron i is a simple circuit, which receives r inputs
o1, . . . , or , and produces a single output oi:

oi = h

 r∑
j=1

wijoj + bi

 (12)

where each input oj is the output of a unit in the previous layer,
wij denotes a real-valued weight between unit j and neuron i,
bi denotes a weight associated with neuron i itself, called the
neuron’s self-bias, and h is a nonlinear activation function,
often chosen to be the sigmoid function:

h(x) =
1

1+ e−x
(13)

Note that input units do not have self-biases. After an input
pattern x is presented to the network, the output of the
network is observed and is referred to as the actual output
vector y′. A discrepancy function E is used to compare the
target output y to the actual output y′, resulting in a scalar error
value. A common discrepancy function is the simple sum of
squared error:

E =
∑
p∈P

Ep (14)

where P is the set of patterns, and

Ep =
1
2

k∑
i=1

(yi − y′i)
2 (15)

where k is the number of classes.
In pattern classification applications, the target vector y is

k-dimensional, where k is the number of classes. For a pattern
with class label k̂:

yi =

{
1 if i = k̂
0 otherwise

(16)

The weights and self-biases of a given FFNN are col-
lectively referred to as the network’s weight vector w. For
example, a FFNNwith 4 neurons in the input layer, 5 neurons
in the hidden layer, and 3 neurons in the output layer would
have a weight vector of 43 real numbers. If the weight vector
for a given network is fixed, then the output of the network
is a function of its input, and the total error E of the network
is a mathematical function of the dataset. On the other hand,
if the dataset is fixed, then the error E is a function of the
weight vectorw. When training a neural network, two distinct
datasets are used: a training set and a test set. While a training

algorithm (such as ACOR or any of our proposed variants)
is running, it only has access to the training set, and seeks
to minimize the error E of the network on the training set.
Once the algorithm terminates, its accuracy on the previously-
unseen test set is computed, and reported as the algorithm’s
predictive accuracy. ACOR has previously been applied to
the training of three-layer feedforward networks [60].
When applying ACOR (or any of our proposed variants)

to neural network training, a candidate solution consists of
a value of the neural network’s weight vector. In the pseu-
docode presented in Algorithms 1-3, nwould be the length of
the network’s weight vector, and the fitness functionQwould
consist of instantiating a neural network with the weight
vector under evaluation, and obtaining the training set error.
Once the algorithm terminates, the best weight vector is then
evaluated on the test set to obtain the algorithm’s predictive
accuracy.
Ideally, the number of neurons in the hidden layer should

be tuned for each dataset individually. However, for con-
venience and standardization, we set the number of hidden
neurons, in our experiments, to be the sum of the number of
input neurons and output neurons.
Before being presented to the network, the dataset under-

goes some preprocessing. Any duplicate instances are
removed from the dataset before the partitioning into cross-
validation folds (see below). Continuous attributes are scaled
to the range [0, 1], and any missing values are set to the
mean value for that attribute. Each categorical attribute, with
c category labels, is converted to c numeric attributes, where
one of the numeric attributes has a value of 1, and each of the
other (c − 1) attributes has a value of 0. Any missing values
for a categorical attribute are set to the mode for that attribute.
If the dataset has k possible classes, then the network will
have k external outputs, whose target values are set according
to Eq. (16).

We use 65 datasets from the University of California Irvine
(UCI) Machine Learning Repository. Table 2 shows some
important characteristics of these datasets.

Our experiments employ the stratified 4-fold cross-
validation procedure. This means that a dataset is divided into
fourmutually exclusive partitions (folds), with approximately
the same number of instances and roughly the same class
distribution in each fold. Each algorithm under evaluation is
run four times; each time, a different fold is used as the test
set, and the other three are used as the training set. Because
the algorithms under evaluation in this work are stochastic,
the entire process is then repeated 10 times. Performance on
each of the test set folds is recorded, and the average test set
performance, aggregated over the four folds and 10 repeti-
tions, is reported as representative of the performance of each
algorithm under evaluation.

B. SYNTHETIC BENCHMARK FUNCTIONS
In addition to neural network training, we also evalu-
ate our proposed algorithms on nine synthetic bench-
mark continuous-domain functions which are popular

VOLUME 7, 2019 18471

A. M. Abdelbar, K. M. Salama: Parameter Self-Adaptation in an Ant Colony Algorithm

TABLE 2. Characteristics of the datasets used in experimental evaluation.

18472 VOLUME 7, 2019

A. M. Abdelbar, K. M. Salama: Parameter Self-Adaptation in an Ant Colony Algorithm

TABLE 3. Synthetic continuous-optimization benchmark functions used in experimental evaluation.

in the evolutionary computation community, specifically,
the sphere, Rosenbrock, Rastrigin, Griewank, ellipsoid, Ack-
ley, Weierstrass, expanded-Schaffer, and happy cat functions.
Table 3 shows the definition of each of these functions, as well
as each function’s initialization range and search range. In our
experiments, we use 10 different settings for the number of
dimensions d , varying from 10 to 10000. Specifically, we use
the following settings:

d ∈ {10, 50, 100, 200, 400, 600, 800, 1000, 5000, 10000}
(17)

Each algorithm under evaluation is applied to each of the
nine functions for each of the 10 dimensionalities. In each
case, the algorithm is run 100 times, and the average over
the 100 runs is taken as representative of the algorithm’s per-
formance. When applying ACOR to a benchmark function f ,
a candidate solution would simply consist of an assignment
to a d-dimensional vector. In Algorithms 1-3, n would be
equal to d , and the fitness functionQwould consist of simply
evaluating the formula for the function f .

C. ALGORITHMS UNDER EVALUATION
Our experimental evaluation compares the following algo-
rithms using the parameter settings shown in Table 1:
1) Standard ACOR, treated as the control method,
2) ACOR-P, the multiple competing personalities

approach,
3) ACOR-PR, which includes a single recombination per-

sonality corresponding to uniform crossover,

4) ACOR-PR2, which includes two recombination per-
sonalities corresponding to uniform crossover and
single-point crossover,

5) ACOR-D, the approach presented in [40] and men-
tioned earlier in Section I, in which ξ is gradually
reduced over time according to a fixed exponential
decay schedule.

The premise of ACOR-D is that different values of the search
width parameter ξ will be best-suited for different phases
of the search process. Early in the search process, when
the archive is likely populated with lower-quality solutions,
larger values of ξ will favor exploration and are more appro-
priate, as we do not wish the search to remain confined to the
vicinity of the randomly initialized candidate solutions used
to seed the archive. Later, as the quality of the archived solu-
tion improves, we might wish for the search to be intensified
in the vicinity of the archived solutions; thus, a smaller search
width will favor exploitation and would be more appropriate.
At the start of the algorithm, or after a stagnation-reset, ξ is
set to an initial value ξ0. Then, in each iteration t , ξ is reduced
according to:

ξt = ξt−1 · e (18)

where 0 < e < 1 is a constant that is determined based on ξ0,
ξ ′, and Imax , as follows:

e =
(
ξ ′

ξ0

) 1
Imax

(19)

VOLUME 7, 2019 18473

A. M. Abdelbar, K. M. Salama: Parameter Self-Adaptation in an Ant Colony Algorithm

TABLE 4. Predictive accuracy (%) results for neural network training.

18474 VOLUME 7, 2019

A. M. Abdelbar, K. M. Salama: Parameter Self-Adaptation in an Ant Colony Algorithm

TABLE 5. Results for the synthetic continuous optimization benchmark
functions.

where ξ0 and ξ ′ are two algorithm parameters, and Imax is
the maximum number of iterations. In [40], ACOR-D was
evaluated on the problem of neural network training using

TABLE 6. Pairwise comparison of each of the four proposed algorithms
against the control method (ACOR).

TABLE 7. Results of Wilcoxon signed-rank tests, with the
Holm-Bonferroni correction, for the neural network training results,
comparing each algorithm to the control method (ACOR).

TABLE 8. Results of Wilcoxon signed-rank tests, with the
Holm-Bonferroni correction, for the synthetic benchmark results,
comparing each algorithm to the control method (ACOR).

36 datasets. In the present work, we extend the previously
reported results for ACOR-D on neural network training
by increasing the number of datasets to 65, and also eval-
uate ACOR-D on the benchmark continuous optimization
problems.

Although the primary purpose of our experimental eval-
uation is to determine the extent to which our proposed
algorithms improve on ACOR, we also carry out a follow-up
experiment in which we compare the best performing of our
proposed variations to twowidely-used non-ACO algorithms.
For neural network training, we compare performance on a
subset of the datasets to the popular Back-Propagation (BP)
learning algorithm. For the synthetic benchmark functions,
we compare performance on a subset of the functions and a
subset of the dimensionalities to cNrGA [66], a recent state-
of-the-art genetic algorithm.

VI. EXPERIMENTAL RESULTS
Table 4 shows the average test set predictive accuracy for
the algorithms under evaluation for each of the datasets, and
Table 5 shows the average results for the algorithms for the
benchmark functions for each value of the number of dimen-
sions. In both tables, the best result in each row is shown in
boldface. The penultimate row reports the number of wins
for each algorithm, i.e. the number of cases for which each
method had, or tied for, the best performance (where a case
is a dataset when dealing with neural network training and is

VOLUME 7, 2019 18475

A. M. Abdelbar, K. M. Salama: Parameter Self-Adaptation in an Ant Colony Algorithm

TABLE 9. Neural Network Predictive Accuracy (%) Results for ACOR and
ACOR-PR, compared to BP.

TABLE 10. Results for the synthetic continuous optimization benchmark
functions for ACOR and ACOR-PR, compared to cNrGA.

a function-dimension pair when dealing with the benchmark
functions). The final row reports the average rank for each
algorithm. The average rank for a given algorithm a for a
given set of cases is obtained by first computing the rank of a
on each case individually, and then averaging the individual
ranks across all cases. Note that the lower the value of the
rank, the better the algorithm.

For both application domains, the best average rank is
obtained by ACOR-PR; however, all four of our proposed
algorithms have a better average rank than the control algo-
rithm (standard ACOR).
ACOR is an established algorithm, and we are treating it

as the control method; thus, it is interesting to compare each
algorithm to it, in isolation from the others. Table 6 shows
pair-wise comparisons between each of the four proposed
algorithms against the control method (ACOR). In each com-
parison, the table reports the number of wins (i.e. the number
of cases in which the non-control algorithm performed bet-
ter), the number of losses (i.e. the number of cases in which
the control algorithm performed better), and the average rank
for the non-control algorithm. Note that in the pair-wise
comparisons, each of the proposed algorithms performs better
than the control method in terms of both the number of wins
and the average rank, for both application domains.

We analyze the statistical significance of the neural net-
work results as follows. We apply a (two-tailed) Wilcoxon
signed-rank test, at the 0.05 threshold, to compare ACOR,
as the baseline method, to each of the four other methods,
using the Holm-Bonferroni correction to control the family-
wise error, and we report these results in Table 7. We
also apply the same methodology to analyze the statistical
significance of the results on the continuous optimization
benchmark problems, and we report the results in Table 8.
Tables 7-8 indicate that all four proposed algorithms perform
better than the baseline ACOR to a statistically significant
extent, on both application domains.

As mentioned in Sect. V-C, we carry out a follow-up
experiment in which we compare performance to two popular
non-ACO algorithms. For neural network training, we com-
pare the performance of ACOR and ACOR-PR (the best
performing of our proposed variations) to BP on a subset of
the datasets (specifically the 20 datasets listed in Table 9).
These results are shown in Table 9, and indicate that the
best performance is obtained by ACOR-PR with 10 wins
and an average rank of 1.7, versus 6 wins and an average
rank of 2.25 for BP. For the synthetic benchmark functions,
we compare performance to cNrGA on 24 of the function-
dimensionality pairings (as listed in Table 10). Table 10
indicates that cNrGA and ACOR-PR have comparable per-
formance. Both algorithms have 11wins each (with 2wins for
ACOR), but cNrGA has a slightly better average rank (with
an average rank of 1.67 versus 1.75 for ACOR-PR).

VII. CONCLUSION & FUTURE WORK DIRECTIONS
A. CONCLUSION
We have presented an approach for the dynamic adaptation
of the ACOR algorithm’s control parameters, focusing in the
present work on the search width parameter ξ , although our
approach can be generalized to adapt other parameters as
well, as discussed in Section VII-B.

Our proposed ACOR-P algorithm, detailed in Section III,
is based on the idea of multiple competing personalities.

18476 VOLUME 7, 2019

A. M. Abdelbar, K. M. Salama: Parameter Self-Adaptation in an Ant Colony Algorithm

Specifically, a fixed set of personalities is pre-specified,
where each personality is a full or partial specification of the
algorithm’s parameters. The probability that a given personal-
ity will be used to generate a solution depends on the success
rate of other solutions previously generated by the same
personality. In the present work, each personality specifies
a value of ξ .
In the ACOR-PR proposal presented in Section IV,

ACOR-P is generalized to allow each personality to either
specify a value of ξ or to specify that recombination should
be employed instead of ACOR’s usual solution construction
mechanism. In the ACOR-PR2 proposal, we allow two per-
sonalities to specify that recombination should be employed,
with each personality specifying a different type of recombi-
nation operator.

We also include extended results for theACOR-D proposal,
which was presented in [40] and is a simpler alternative to
ACOR-P; in ACOR-D, ξ starts off at a specified value and
then gradually decays over time, similar to inertial decay
in PSO. In that previous work, results were reported for
ACOR-D for neural network training on 36 datasets. In the
present work, extended results were reported for neural net-
work training on 65 datasets, as well as for the synthetic
benchmark functions.

All four approaches (ACOR-P, ACOR-PR, ACOR-PR,
and ACOR-PR2) perform better than standard ACOR to a
statistically significant extent on both neural network training
and the benchmark continuous optimization functions.

B. FUTURE WORK DIRECTIONS
Although we have focused on search width in the present
work, the multiple personalities approach can be general-
ized to the other parameters as well. Let us consider how
the multiple personalities approach might be generalized to
adapt the q and L parameters, in addition to the ξ parameter.
In this case, three sets of personalities would be defined, each
specifying values for one of the three parameters. The utility
of each personality (whether a ξ -personality, q-personality, or
L-personality) would be judged separately by its past per-
formance, and the roulette wheel equation (Eq. 8) would be
applied three times, once for each of the three parameters.
When adapting the archive size L, the physical size of the
archive would be the largest value of L in any of the specified
personalities, but the logical value of L would be limited to
the size specified by the adopted personality. Thus, if we have
a physical archive size of 1000, but the adopted personality
specifies L = 120, then only the first 120 solutions in the
sorted archive would be considered in solution generation.

For the sake of computational efficiency, the ω function
(Eq. 2) should be pre-computed and pre-stored for each pair-
ing of settings of q and L. For example, if we have 15 q
personalities and 10 L personalities, then we would pre-
compute 150 ω tables before the start of the computation.

Making ACOR’s parameters more self-adaptive in this way
can make the algorithm more responsive to the different
phases of the search, and, by enhancing search diversity,

can potentially help avoid premature convergence and search
stagnation.

ACKNOWLEDGMENT
The authors would like to thank the anonymous reviewers for
their useful comments.

REFERENCES
[1] T. Liao, K. Socha, M. A. Montes de Oca, T. Stützle, and M. Dorigo,

‘‘Ant colony optimization for mixed-variable optimization problems,’’
IEEE Trans. Evol. Comput., vol. 18, no. 4, pp. 503–518, Aug. 2014.

[2] M.Dorigo and T. Stützle,Ant ColonyOptimization. Cambridge,MA,USA:
MIT Press, 2004.

[3] A. Eiben, Z. Michalewicz, M. Schoenauer, and J. Smith, ‘‘Parameter
control in evolutionary algorithms,’’ in Parameter Setting in Evolutionary
Algorithms, F. J. Lobo, C. F. Lima, and Z. Michalewicz, Eds. Berlin,
Germany: Springer, 2007, pp. 19–46.

[4] F. Hutter, H. H. Hoos, K. Leyton-Brown, and T. Stützle, ‘‘ParamILS:
An automatic algorithm configuration framework,’’ J. Artif. Intell. Res.,
vol. 36, pp. 267–306, Oct. 2009.

[5] P. Lin, J. Zhang, and M. A. Contreras, ‘‘Automatically configuring ACO
using multilevel ParamILS to solve transportation planning problems with
underlying weighted networks,’’ Swarm Evol. Comput., vol. 20, pp. 48–57,
Feb. 2015.

[6] F. J. Lobo, C. F. Lima, and Z. Michalewicz, Parameter Setting in Evolu-
tionary Algorithms. Berlin, Germany: Springer, 2007.

[7] P. Pellegrini, M. Birattari, and T. Stützle, ‘‘A critical analysis of parameter
adaptation in ant colony optimization,’’ Swarm Intell., vol. 6, pp. 23–48,
Mar. 2012.

[8] T. Stützle et al., ‘‘Parameter adaptation in ant colony optimization,’’ in
Autonomous Search, Y. Hamadi, E. Monfroy, and F. Saubion, Eds. Berlin,
Germany: Springer, 2012, pp. 191–215.

[9] M. Birattari, T. Stützle, L. Paquete, and K. Varrentrapp, ‘‘A racing algo-
rithm for configuring metaheuristics,’’ in Proc. Genetic Evol. Comput.
Conf. (GECCO), 2002, pp. 11–18.

[10] M. Birattari, Z. Yuan, P. Balaprakash, and T. Stützle, ‘‘F-race and iterated
F-race: An overview,’’ in Experimental Methods for the Analysis of Opti-
mization Algorithms, T. Bartz-Beielstein, M. Chiarandini, L. Paquete, and
M. Preuss, Eds. Berlin, Germany: Springer, 2010, pp. 311–316.

[11] C. Ansótegui, M. Sellmann, and K. Tierney, ‘‘A gender-based genetic
algorithm for the automatic configuration of algorithms,’’ inPrinciples and
Practice of Constraint Programming (LectureNotes in Computer Science),
vol. 5732. Berlin, Germany: Springer, 2009, pp. 142–157.

[12] A. S. Fukunaga, ‘‘Automated discovery of local search heuristics for
satisfiability testing,’’ Evol. Comput., vol. 16, no. 1, p. 31–61, 2008.

[13] M. Oltean, ‘‘Evolving evolutionary algorithms using linear genetic pro-
gramming,’’ Evol. Comput., vol. 13, no. 3, pp. 387–410, 2005.

[14] K. M. Salama, A. M. Abdelbar, A. M. Helal, and A. A. Freitas, ‘‘Instance-
based classification with ant colony optimization,’’ Intell. Data Anal.,
vol. 21, no. 4, pp. 913–941, 2017.

[15] K. M. Salama, A. M. Abdelbar, and I. M. Anwar, ‘‘Data reduction for
classification with ant colony algorithms,’’ Intell. Data Anal., vol. 20, no. 5,
pp. 1021–1059, 2016.

[16] K. M. Salama and A. M. Abdelbar, ‘‘Using ant colony optimization to
build cluster-based classification systems,’’ in Proc. Int. Conf. Swarm
Intell. (ANTS), 2016, pp. 210–221.

[17] T. Liao, M. A. Montes de Oca, D. Aydin, T. Stützle, and M. Dorigo,
‘‘An incremental ant colony algorithm with local search for continuous
optimization,’’ in Proc. Genetic Evol. Comput. Conf. (GECCO), 2011,
pp. 125–132.

[18] D. Merkle and M. Middendorf, ‘‘Prospects for dynamic algorithm control:
Lessons from the phase structure of ant scheduling algorithms,’’ in Proc.
GECCO Workshop Next Ten Years Scheduling Res., 2001, pp. 121–126.

[19] D. Merkle, M. Middendorf, and H. Schmeck, ‘‘Ant colony optimization
for resource-constrained project scheduling,’’ IEEE Trans. Evol. Comput.,
vol. 6, no. 4, pp. 333–346, Aug. 2002.

[20] B. Meyer, ‘‘Convergence control in ACO,’’ in Proc. Genetic Evol. Comput.
Conf. (GECCO), 2004, pp. 1–12.

[21] Z. Cai, H. Huang, Y. Qin, and X. Ma, ‘‘Ant colony optimization based on
adaptive volatility rate of pheromone trail,’’ Int. J. Commun., Netw. Syst.
Sci., vol. 2, no. 8, pp. 792–796, 2009.

VOLUME 7, 2019 18477

A. M. Abdelbar, K. M. Salama: Parameter Self-Adaptation in an Ant Colony Algorithm

[22] S. Chusanapiputt, D. Nualhong, S. Jantarang, and S. Phoomvuthisarn,
‘‘Selective self-adaptive approach to ant system for solving unit commit-
ment problem,’’ in Proc. Genetic Evol. Comput. Conf. (GECCO), 2006,
pp. 1729–1736.

[23] Z. Hao, H. Huang, Y. Qin, and R. Cai, ‘‘An ACO algorithm with adaptive
volatility rate of pheromone trail,’’ in Proc. Int. Conf. Comput. Sci., 2007,
pp. 1167–1170.

[24] O. Kovářík andM. Skrbek, ‘‘Ant colony optimization with castes,’’ inProc.
Int. Conf. Artif. Neural Netw., 2008, pp. 435–442.

[25] Y. Li and W. Li, ‘‘Adaptive ant colony optimization algorithm based on
information entropy: Foundation and application,’’ Fundamenta Informat-
icae, vol. 77, no. 3, pp. 229–242, 2007.

[26] Z. Li, Y.Wang, J. Yu, Y. Zhang, andX. Li, ‘‘A novel cloud-based fuzzy self-
adaptive ant colony system,’’ in Proc. Int. Conf. Natural Comput., vol. 7,
Oct. 2008, pp. 460–465.

[27] M. Randall and J. Montgomery, ‘‘Candidate set strategies for ant
colony optimisation,’’ in Proc. Int. Conf. Swarm Intell. (ANTS), 2002,
pp. 374–381.

[28] M. Randall, ‘‘Near parameter free ant colony optimisation,’’ in Proc. Int.
Conf. Swarm Intell. (ANTS), 2004, pp. 374–381.

[29] D. Martens, M. D. Backer, R. Haesen, J. Vanthienen, M. Snoeck, and
B. Baesens, ‘‘Classification with ant colony optimization,’’ IEEE Trans.
Evol. Comput., vol. 11, no. 5, pp. 651–665, Oct. 2007.

[30] M. Förster, B. Bickel, B. Hardung, and G. Kókai, ‘‘Self-adaptive ant colony
optimisation applied to function allocation in vehicle networks,’’ in Proc.
Genetic Evol. Comput. Conf. (GECCO), 2007, pp. 1991–1998.

[31] M. Khichane, P. Albert, and C. Solnon, ‘‘An ACO-based reactive frame-
work for ant colony optimization: First experiments on constraint sat-
isfaction problems,’’ in Proc. Int. Conf. Learn. Intell. Optim., 2009,
pp. 119–133.

[32] M. Pilat and T. White, ‘‘Using genetic algorithms to optimize ACO-TSP,’’
in Proc. Int. Conf. Swarm Intell. (ANTS), 2002, pp. 282–287.

[33] D. Gaertner and K. L. Clark, ‘‘On optimal parameters for ant colony
optimization algorithms,’’ in Proc. Int. Conf. Artif. Intell., 2005,
pp. 83–89.

[34] B. A. Garro, H. Sossa, and R. A. Vazquez, ‘‘Evolving ant colony system
for optimizing path planning in mobile robots,’’ in Proc. Electron., Robot.
Automot. Mech. Conf., Sep. 2007, pp. 444–449.

[35] Z.-F. Hao, R.-C. Cai, and H. Huang, ‘‘An adaptive parameter con-
trol strategy for ACO,’’ in Proc. Int. Conf. Mach. Learn., Aug. 2006,
pp. 203–206.

[36] W. Ling and H. Luo, ‘‘An adaptive parameter control strategy for ant
colony optimization,’’ in Proc. Int. Conf. Comput. Intell. Secur., Dec. 2007,
pp. 142–146.

[37] D. Anghinolfi, A. Boccalatte, M. Paolucci, and C. Vecchiola, ‘‘Perfor-
mance evaluation of an adaptive ant colony optimization applied to single
machine scheduling,’’ in Proc. Int. Conf. Simulated Evol. Learn., 2008,
pp. 411–420.

[38] L. Melo, F. Pereira, and E. Costa, ‘‘MC-Ant: A multi-colony ant algo-
rithm,’’ in Proc. Int. Conf. Artif. Evol., 2009, pp. 25–36.

[39] A. M. Abdelbar and K. M. Salama, ‘‘Does the ACOR algorithm benefit
from the use of crossover?’’ in Proc. Int. Conf. Swarm Intell. (ANTS), 2018,
pp. 342–350.

[40] A. M. Abdelbar and K. M. Salama, ‘‘An extension of the ACOR algo-
rithm with time-decaying search width, with application to neural net-
work training,’’ in Proc. IEEE Congr. Evol. Comput. (CEC), Jul. 2016,
pp. 2360–2366.

[41] I. D. I. D. Ariyasingha and T. G. I. Fernando, ‘‘Performance analysis of
the multi-objective ant colony optimization algorithms for the traveling
salesman problem,’’ Swarm Evol. Comput., vol. 23, pp. 11–26, Aug. 2015.

[42] C. Mao, L. Xiao, X. Yu, and J. Chen, ‘‘Adapting ant colony optimization to
generate test data for software structural testing,’’ Swarm Evol. Comput.,
vol. 20, pp. 23–36, Feb. 2015.

[43] K. V. Narasimha, E. Kivelevitch, B. Sharma, and M. Kumar, ‘‘An
ant colony optimization technique for solving min–max multi-depot
vehicle routing problem,’’ Swarm Evol. Comput., vol. 13, pp. 63–73,
Dec. 2013.

[44] A. Swarnkar, N. Gupta, and K. R. Niazi, ‘‘Adapted ant colony optimization
for efficient reconfiguration of balanced and unbalanced distribution sys-
tems for loss minimization,’’ Swarm Evol. Comput., vol. 1, pp. 129–137,
Sep. 2011.

[45] R. S. Parpinelli, H. S. Lopes, and A. A. Freitas, ‘‘Data mining with an ant
colony optimization algorithm,’’ IEEE Trans. Evol. Comput., vol. 6, no. 4,
pp. 321–332, Aug. 2002.

[46] K. M. Salama, A. M. Abdelbar, and A. A. Freitas, ‘‘Multiple pheromone
types and other extensions to the Ant-Miner classification rule dis-
covery algorithm,’’ Swarm Intell., vol. 5, nos. 3–4, pp. 149–182,
2011.

[47] K. M. Salama, A. M. Abdelbar, F. E. B. Otero, and A. A. Freitas,
‘‘Utilizing multiple pheromones in an ant-based algorithm for continuous-
attribute classification rule discovery,’’ Appl. Soft Comput., vol. 13, no. 1,
pp. 667–675, 2013.

[48] F. E. B. Otero, A. A. Freitas, and C. G. Johnson, ‘‘A new sequen-
tial covering strategy for inducing classification rules with ant colony
algorithms,’’ IEEE Trans. Evol. Comput., vol. 17, no. 1, pp. 64–76,
Feb. 2013.

[49] F. E. B. Otero and A. A. Freitas, ‘‘Improving the interpretability of classi-
fication rules discovered by an ant colony algorithm: Extended results,’’ in
Proc. Genetic Evol. Comput. Conf. (GECCO), 2013, pp. 73–80.

[50] N. K. Sreeja and A. Sankar, ‘‘A hierarchical heterogeneous ant colony
optimization based approach for efficient action rulemining,’’ SwarmEvol.
Comput., vol. 29, pp. 1–12, Aug. 2016.

[51] U. Boryczka and J. Kozak, ‘‘An adaptive discretization in the ACDT
algorithm for continuous attributes,’’ inProc. Int. Conf. Comput. Collective
Intell. (ICCI), 2011, pp. 475–484.

[52] F. E. B. Otero, A. A. Freitas, and C. G. Johnson, ‘‘Inducing decision trees
with an ant colony optimization algorithm,’’ Appl. Soft Comput., vol. 12,
no. 11, pp. 3615–3626, 2012.

[53] K. M. Salama and A. A. Freitas, ‘‘Learning Bayesian network classifiers
using ant colony optimization,’’ Swarm Intell., vol. 7, no. 2, pp. 229–254,
2013.

[54] K. M. Salama and A. A. Freitas, ‘‘Ant colony algorithms for construct-
ing Bayesian multi-net classifiers,’’ Intell. Data Anal., vol. 19, no. 2,
pp. 233–257, 2015.

[55] K. M. Salama and A. A. Freitas, ‘‘Clustering-based Bayesian multi-net
classifier construction with ant colony optimization,’’ inProc. IEEECongr.
Evol. Comput. (CEC), Jun. 2013, pp. 3079–3086.

[56] K.M. Salama andA.A. Freitas, ‘‘Extending theABC-miner Bayesian clas-
sification algorithm,’’ in Proc. Int. Workshop Nature Inspired Cooperation
Strategies Optim. (NICSO), 2013, pp. 1–12.

[57] K. M. Salama and A. A. Freitas, ‘‘Classification with cluster-based
Bayesianmulti-nets using ant colony optimisation,’’ SwarmEvol. Comput.,
vol. 18, pp. 54–70, Oct. 2014.

[58] M. Dorigo and T. Stützle, ‘‘Ant colony optimization: Overview and recent
advances,’’ in Handbook of Metaheuristics, M. Gendreau and J.-Y. Potvin,
Eds. New York, NY, USA: Springer, 2010, pp. 227–263.

[59] K. Socha and M. Dorigo, ‘‘Ant colony optimization for continuous
domains,’’ Eur. J. Oper. Res., vol. 185, no. 3, pp. 1155–1173, 2008.

[60] K. Socha and C. Blum, ‘‘An ant colony optimization algorithm for contin-
uous optimization: Application to feed-forward neural network training,’’
Neural Comput. Appl., vol. 16, pp. 235–247, May 2007.

[61] S. Tsutsui, ‘‘Ant colony optimisation for continuous domains with aggre-
gation pheromones metaphor,’’ in Proc. Int. Conf. Recent Adv. Soft Com-
put. (RASC), 2004, pp. 207–212.

[62] K. M. Salama and A. M. Abdelbar, ‘‘Learning neural network structures
with ant colony algorithms,’’ Swarm Intell., vol. 9, no. 4, pp. 229–265,
2015.

[63] A. M. Abdelbar and K. M. Salama, ‘‘A gradient-guided ACO algorithm
for neural network learning,’’ in Proc. IEEE Swarm Intell. Symp. (SIS),
Dec. 2015, pp. 1133–1140.

[64] A. M. Abdelbar, I. El-Nabarawy, D. C. Wunsch, II, and K. M. Salama,
‘‘Ant colony optimization applied to the training of a high order neural
network with adaptable exponential weights,’’ in Applied Artificial Higher
Order Neural Networks for Control and Recognition, M. Zhang, Ed.
Hershey, PA, USA: IGI Global, 2016, pp. 362–374.

[65] U. Kumar, S. Soman, and Jayadeva, ‘‘Benchmarking NLopt and state-of-
the-art algorithms for continuous global optimization via IACOR,’’ Swarm
Evol. Comput., vol. 27, pp. 116–131, Apr. 2016. [Online]. Available:
https://ieeexplore.ieee.org/document/7942005

[66] Y. F. Lou and S. Y. Yuen, ‘‘Non-revisiting genetic algorithm with adap-
tive mutation using constant memory,’’ Memetic Comput., vol. 8, no. 3,
pp. 189–210, 2016.

18478 VOLUME 7, 2019

A. M. Abdelbar, K. M. Salama: Parameter Self-Adaptation in an Ant Colony Algorithm

ASHRAF M. ABDELBAR received the B.Sc.
degree in computer science from The American
University in Cairo, Egypt, in 1991, and the
M.Sc. and Ph.D. degrees in computer science
from Clemson University, USA, in 1994 and 1996,
respectively. From 1996 to 2013, he was a Faculty
Member with The American University in Cairo.
He is currently a Professor with the Department
of Mathematics and Computer Science, Brandon
University, and has served as Chair of the depart-

ment. He has published more than 100 papers in various subareas of artifi-
cial intelligence, including Bayesian belief networks, neural networks, and
swarm intelligence. He was a recipient of the INNS Young Investigator
Award. He has served on the ACM Membership Activities Board and on
the CIPS Computer Science Accreditation Council. He has served as a
Program Evaluator for ABET. He has been coaching student teams for the
ACM International Collegiate Programming Contest (ICPC), since 1998; his
teams have advanced to the ICPC World Finals five times over the course of
his career to date.

KHALID M. SALAMA received the B.Sc. degree
from the Faculty of Computer Science and Infor-
mation Systems, Ain Shams University, Egypt,
in 2007, the M.Sc. degree from the Depart-
ment of Computer Science and Engineering, The
American University in Cairo, Egypt, in 2010, and
the Ph.D. degree from the School of Computing,
University of Kent, U.K., in 2014. Since 2015, he
has been a Technical Consultant for building data,
advanced analytics, and machine learning solu-

tions. He is currently a Research Fellow with the Computational Intelligence
Research Group, School of Computing, University of Kent. He has published
more than 25 papers in various subareas of artificial intelligence, including
Bayesian belief networks, neural networks, and swarm intelligence. His
research interests include the applications of evolutionary and swarm algo-
rithms in the field of data mining and machine learning.

VOLUME 7, 2019 18479

	INTRODUCTION
	REVIEW OF THE ACOR ALGORITHM
	MULTIPLE COMPETING PERSONALITIES
	MULTIPLE PERSONALITIES WITH RECOMBINATION
	INCORPORATING RECOMBINATION WITHIN MULTIPLE PERSONALITY FRAMEWORK
	MULTIPLE RECOMBINATION PERSONALITIES

	EXPERIMENTAL METHODOLOGY
	NEURAL NETWORK TRAINING
	SYNTHETIC BENCHMARK FUNCTIONS
	ALGORITHMS UNDER EVALUATION

	EXPERIMENTAL RESULTS
	CONCLUSION & FUTURE WORK DIRECTIONS
	CONCLUSION
	FUTURE WORK DIRECTIONS

	REFERENCES
	Biographies
	ASHRAF M. ABDELBAR
	KHALID M. SALAMA

