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ABSTRACT Deep learning methods, such as convolution neural networks (CNNs), have achieved
remarkable success in computer vision tasks. Hence, an increasing trend in using deep learning for
electroencephalograph (EEG) analysis is evident. Extracting relevant information from CNN features is
one of the key reasons behind the success of the CNN-based deep learning models. Some CNN models
use convolutional features from different CNN layers with good effect. However, extraction and fusion of
multilevel convolutional features remain unexplored for EEG applications. Moreover, cognitive computing
and artificial intelligence experience increasing applications in all fields. Cognitive process is based on
understanding human brain cognition through signals, such as EEG. Hence, deep learning can aid in
developing cognitive systems and related applications by improving EEG decoding. The classification and
recognition of EEG have consistently been challenging due to its characteristics of dynamic time series data
and low signal-to-noise ratio. However, the information hidden in different convolution layers can aid in
improving feature discrimination capability. In this paper, we use the EEG motor imagery data to uncover
the benefits of extracting and fusing multilevel convolutional features from different CNN layers, which are
abstract representations of the input at various levels. Our proposed CNNmodel can learn robust spectral and
temporal features from the raw EEG data. We demonstrate that such multilevel feature fusion outperforms
the models that use features only from the last layer. Our results are better than the state of the art for EEG
decoding and classification.

INDEX TERMS EEG motor imagery classification, deep learning, convolution neural network, multilevel
feature fusion.

I. INTRODUCTION
Electroencephalograph (EEG) is an efficient and relatively
inexpensive technique for analyzing and studying brain elec-
trical activities by placing electrodes on the skull surface
(scalp EEG recording) or from inside the skull (intracra-
nial EEG recording) [1]. The scalp EEG is recorded with a
noninvasive technique using multiple electrodes; it also has
high temporal resolution, which makes it a feasible technique
for analysis and monitoring of the changes in brain elec-
trical activity. This data recording is massive and contains

The associate editor coordinating the review of this manuscript and
approving it for publication was Iztok Humar.

synchronous activities of neurons in different areas of human
brain.

Motor imagery (MI) is brain potentials related to MI
tasks. MI data contain EEG recordings when subjects are
asked to simply imagine moving a body part and not actu-
ally move it. Some oscillatory activities in the sensorimotor
cortex region of the brain are present as a result of these
MI tasks [2]. Machine learning techniques are often applied
to classify these oscillatory activities for recognition of MI
tasks. Many brain-computer interface (BCI)-related studies
commonly use MI tasks, such as imagining the movement of
both hands and feet [4], [5]. In this study, we use EEG MI
datasets.
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Recently, cognitive computing and artificial intelligence
are being infused in all automated systems and technolo-
gies [3]. Cognitive process allows systems to think similarly
to a human brain without requiring any human assistance
for operations. This cognitive ability is inspired by the
human brain. Automated systems that can learn human cog-
nition from inputs, such as EEG not only can improve
cognitive technology but also increase the intelligence of
other automated applications. Hence, the development of MI
decoding leads to improved cognitive computing technology.
Researchers use EEG for various applications [6]–[8], such
as brain-controlled robots, diagnosis of medical conditions
disability and epilepsy, driving automated cars, and control-
ling drones. Building automated systems based on the under-
standing and decoding of MI EEG allows transfer of human
cognitive intelligence into machines, whichmakes them pow-
erful. Therefore, improving EEG decoding and classification
is important to the field of cognitive computing and artificial
intelligence.

Conventional machine learning techniques that use
handcrafted features have been used in many important
EEG-related research areas to extract meaningful information
from EEG data. Such techniques have been used in many BCI
systems for communicating with patients affected by strokes,
for treating patients with epilepsy [7], controlling robots [6].
Machine learning has also been used for the medical anal-
ysis and interpretation of EEG signals [8]. Despite various
applications of conventional machine learning techniques in
EEG, they have failed to achieve acceptable performance
and accuracy on EEG data. However, promising results have
been obtained with the use of deep learning techniques,
which shows that automatically extracted features perform
better than handcrafted ones. These deep learning techniques
have been used in different fields, such as computer vision
and speech recognition [9], [10]. Convolution neural net-
work (CNN) can extract features that are spatially robust [11].
Other models (such as recurrent neural network (RNN),
which is particularly useful in applications that have temporal
sequences, including video and speech recognition) are also
available [12]. Some other models, such as autoencoders, are
excellent for unsupervised learning [13].

Researchers have started to apply and investigate the
potential of various deep learning models for EEG signal
analysis [14]. Limited application might be due to the rel-
atively small size of most EEG datasets compared with
image datasets, thereby making it difficult to train deep net-
works that have several thousand parameters. Deep networks
have been most successful in applications that have large
dataset sizes. However, some studies show that deep belief
network (DBN) and CNN are also useful in learning good
features from EEG and functional magnetic resonance imag-
ing data that have comparatively smaller dataset size [15].
These studies demonstrate that deep neural networks with
reduced size and parameters can be applied in EEG datasets
that usually have a smaller size. In fields such as computer
vision, pretrained deep learning models have shown good

performance [11], especially when only few training data are
available. Hence, using deep learning model that is pretrained
on related EEGdata can be beneficial. This technique can also
overcome the problem of small dataset size. However, the per-
formance and accuracy of such deep network techniques
are incomparable to other fields, such as image and speech
recognition. Therefore, a large void and a need for major
enhancement with respect to many aspects of applying deep
learning for EEG MI classification should be considered.

Deep learning models, particularly CNN, have been suc-
cessful for 2D signals, such as images; however, EEG data
are recorded from the scalp surface using a set of electrodes.
Hence, such models are time series data that are dynamic in
nature. Properties, such as low signal-to-noise ratio, make the
application of deep learning for EEG data slightly difficult.

Few studies [16]–[22] have recently used intermediate
features from CNN layers to improve classification accu-
racy. Each CNN layer contains some relevant features that
represent important information at their respective level of
abstraction of the input data. Information from low- and
high-level features represent the local and global struc-
tures of the input, respectively. EEG signals have spatial
and temporal structures; thus, the local and global features
extracted from CNN layers can be fused together to form
a robust classification model. This type of CNN model for
integrating multilayer features has yet to be explored for
EEG signals.

Therefore, in this study, we use a pretrained CNN as feature
extractor and propose a model for multilayer feature extrac-
tion and fusion for EEG MI data. We attempt to construct a
robust feature representation for EEG signals using informa-
tion hidden in CNN layers. We also show experimentally that
our framework improves the performance of conventional
CNN models using only the last layer features.

The remainder of this paper is organized as follows.
Section II presents the related studies about EEG MI clas-
sification methods and feature fusion techniques. Sections III
presents the proposed model. Section IV discusses the exper-
imental details and results. Finally, Section V presents the
conclusions.

II. RELATED STUDY
In this section, we briefly review existing methods and mod-
els for EEG MI classification. We also discuss the multilevel
feature integration methods based on CNNs.

A. EEG MI CLASSIFICATION
Many feature extraction and classificationmethods have been
used to recognize MI tasks. Filter bank common spatial
patterns (FBCSPs) [5] are popular among MI classification
techniques that use handcrafted features. FBCSP has been
the previous state of the art for MI task recognition and
has achieved excellent results [4], [5]. Feature extraction and
dimension reduction techniques, such as principal component
analysis (PCA) and independent component analysis, are also
well-known techniques used by many researchers to improve
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MI task recognition performance [23]–[25]. Support vec-
tor machine (SVM), linear discriminant analysis, and other
methods have been used as classifiers in many MI classifica-
tion studies [26]–[28].

In one study [15], Plis et al. show that using multi-
ple restricted Boltzmann machine in performing supervised
training allows DBN to learn more complex features and
perform better than other techniques. Many recent studies
have attempted to utilize the advantages of CNN for brain
signal interpretation [27]–[30]. DBN is used extensively in
several EEG studies for various applications [31]–[33]. In one
study, CNN and RNN have been combined to achieve good
performance for EEG time series data [27], [28]. DBN and
SVM have also been compared [31] for two MI classification
problems, in which DBN has shown better performance.
CNN was also used in [32], for MI task classification. RNN
and CNN were utilized in [33], wherein multidimensional
features were proposed to find cognitive events fromMI EEG
data. Deep learning models, such as autoencoders have also
been used for emotion recognition from EEG signals [34].
Many studies have converted EEG signals into images and
applied different deep learning models that are excellent at
classifying images. A new type of combined features was
proposed in [35] to preserve the spatial, spectral, and tem-
poral structures of EEG data. EEG signal from each of the
electrodes was used to estimate the power spectrum for three
selected frequency bands. The 3D electrode locations were
then mapped into 2D to form EEG images. In [30], EEG
time series data were converted into 2D images using short-
time Fourier transform. Spectral features from mu and beta
frequency bands were used and 1D CNN [35] and a stacked
autoencoder (SAE) [36] were used to achieve good perfor-
mance for MI dataset.

The aforementioned studies have attempted to utilize the
capabilities and advantages of deep learning for EEG classi-
fication; however, the performance of the models is incompa-
rable with other fields, such as image and speech recognition.
Therefore, research on designing and applying deep learning
models for EEG MI classification is necessary.

CNN has been applied successfully in many fields and has
achieved outstanding results in computer vision and speech
processing [9], [11] and has the ability to extract spatial and
temporal features through convolution process. It is com-
posed of many convolutional layers [9], where initial layers
learn low-level spatial features and the high-order layers
extracts global high-level features in a progressive manner.
Low-level features correspond to edges, boundaries, or sim-
ple properties of the object, whereas high-level ones are
learnt in deep layers of CNN, including complex shapes and
orientations of objects. CNN can learn features automatically
from raw data, thereby making it well suited for end-to-end
learning. However, it requires large amount of training data
to learn good features.

CNNs have been successful for 2D signals, such images.
However, given that EEGdata are recorded from scalp surface
using a set of electrodes, they are time series data that are

dynamic in nature. EEG recordings are prone to noise from
artifacts, such as eye blinking and muscle movement, which
do not have task-related information [37]. Hence, extracting
good features from EEG signals is complex and difficult.
Existing CNN architectures do not adapt to the dynamic
characteristics of EEG signals.

Different deep learning and machine learning architectures
have attempted to utilize several types of inputs from fre-
quency or time domain or both. Some of the deep learning
studies have used raw EEG data for end-to-end learning
approach. They have successfully extracted useful informa-
tion from EEG signals; meanwhile, CNNs have the best
performance compared with these approaches. Given that the
best performance for EEG MI data has been achieved using
CNN, we use deep CNN model as a feature extractor.

B. FEATURE FUSION IN CNN
Many studies in the image processing domain [16]–[18] have
proven that the convolutional features extracted from dif-
ferent CNN layers have different abstraction of information
pertaining to the object to be detected. High-level features
can help recognize object classes, whereas low-level ones can
help define boundaries for recognized object. Unfortunately,
although many techniques have been proposed in literature
for different domains, no definite methods or techniques
for extracting and fusing multilevel convolutional features
are available. In [19], multilayer feature maps were used to
form multiresolution images for salient object detection. The
method learned to integrate the feature maps for each reso-
lution and detected salient objects using integrated features.
The features from low-level layers were used to form edge-
aware or low-resolution feature maps, which help predict
boundaries. Hariharan et al. [20] proposed a technique based
on hyper column, which combines convolutional features
from middle layers and fully connected classification layers.

Bhattacharjee and Das [21] proposed a multi-stream CNN
using multilevel feature aggregation for human action clas-
sification from videos. They combined features at multiple
stages of the model to extract spatial and temporal features
in local and global contexts. Spatial and temporal streams
were used at local context to recognize actions, and the
fused information obtained was fed to stacked deep LSTM
networks to extract global context features.

A system based on pretrained CNN was proposed in [16]
for multilevel and multiscale feature aggregation for music
input tagging. Local audio features were extracted using
multiple CNNs. Then, audio features were captured from all
layers of the pretrained CNNs at different time scales. These
features were fused to form the global audio features for the
complete audio clip and later fed to the classifier layer for
tagging. Another research [22] used multilayer CNN features
with bag-of-features technique in obtaining additional dis-
criminative features to improve image classification.

Multilevel CNN features were also used for multimodal
biometric identification in [17], in which multimodal fusion
was utilized by using several modality-specific CNNs.
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FIGURE 1. Deep CNN architecture.

The features were extracted at all CNN layers and were then
compressed, fused together, and optimized for classification.

Another study [18] integrated multilayer CNN features
for remote sensing scene classification to improve feature
discrimination capability. Multilayer features were extracted
from different convolutional and fully connected layers of
pretrained CNNmodel. Fisher kernel coding was also applied
to form amid-level feature representation using convolutional
features, which were then fused using PCA for classification.

All of the aforementioned approaches have obtained better
performance in their specific domains by extracting and fus-
ing multilevel CNN features. As previously discussed, EEG
signals have dynamic nature due, with which it differs within
the same subject and with other subjects. MI EEG signals
also have highly subject-dependent characteristics and show
dynamic behavior locally and globally for the same subject.
These facts have encouraged us to utilize multilevel CNN
feature extraction approach on EEG signal, which has never
been applied before.

III. PROPOSED MULTILEVEL FEATURE FUSION MODEL
In this section, we describe the architecture of our proposed
multilevel feature fusionmodel and provide detailed formulas
of our information fusion learning method. Finally, we con-
struct an EEG classifier on the basis of multilevel predictions
of the proposed model.

Our proposed model consists of four components, namely,
pretraining and transfer learning, multilevel feature extrac-
tion, weight-based feature fusion, and EEGMI classification.
Figure 1 presents the model architecture.

The layers of the CNN model are based on popular CNN
architecture in computer vision known as AlexNet [9]. This
model has some blocks of convolutional andmax pooling lay-
ers and some fully connected layers at the end. EEG signals
are amultiple channel [32]; thus, we split the first convolution
layer into two. Therefore, the first convolution is performed
over time samples for each electrode, and the second is con-
ducted on all electrodes or channels. The EEG input is stored
as 2D array that has time across channels. Figure 2 shows the
first convolution layer. Thereafter, we have the max pooling
layer; the second, third, and fourth convolution max pooling
block; and the dense softmax layer.

FIGURE 2. First convolution split into two parts (The first across time, and
the second across all electrodes).

Different types of training strategies, normalization tech-
niques, and activation functions have been experimented
upon.Wemake use of the best strategies available from recent
advances in deep learning and machine learning research
on CNN. We use novel regularization strategies, namely,
dropout and batch normalization. Exponential linear units
prove to be fast and more accurate than rectified linear
units.

Training is performed in batches, and batch normalization
technique is used to improve the performance. Batch nor-
malization is also used for convolutional outputs. To further
increase the accuracy and reduce the chances of overfitting,
we use the dropout technique because it aids in obtaining
generalized results.

In this study, our deep learning model is evaluated on BCI
Competition IV dataset 2a [38].We compare the results of our
study with those of the current state-of-the-art deep learning
models in this field.

Some researchers have used electrode voltage over the
flattened scalp surface and converted the EEG signal to
topographical time series images [29]. However, research
has proven that EEG signals are correlated over time series
data [39]. Hence, in this study, we use raw EEG data as input
to CNN, which can extract spatial and temporal features.

VOLUME 7, 2019 18943



S. U. Amin et al.: Multilevel Weighted Feature Fusion Using Convolutional Neural Networks for EEG Motor Imagery Classification

The EEG signal representation as 2D array that has time steps
and channels also helps in EEG reducing data dimensionality.

We use pretrained CNNmodels because EEG BCI datasets
for MI are usually small. Cropped input, pretraining, and
transfer learning aid us to achieve good performance even on
small training data and reduce the training time.

We have limited EEG MI data to train our deep CNN
model; thus, we pretrain our model on an MI dataset called
the High Gamma dataset [40]. This dataset is a huge MI
dataset consisting of 128 electrode recordings from 20 sub-
jects, having a total of 880 and 160 trials in the training and
test sets, respectively. The four MI classes for movements
are both hands and feet and rest. In comparison with the
BCI dataset, High Gamma dataset has more training data;
thus, by pretraining our CNN model on this dataset, we can
eventually train our model on the BCI dataset without any
fear for overtraining or memorization due to small size of the
BCI dataset.

The CNN model has excellent capability to extract hierar-
chical structure of the input data. CNN represents high-order
features as a set of low-order features by extracting spatial
characteristics of the input signal.

A. CNN TRAINING
We divide the dataset, such that we randomly select eight
subject recordings for training and one for subject-specific
testing. In this manner, the system is tested without seeing the
subject beforehand and is a completely new test case for the
system. The testing performed in this manner is challenging,
and the results are generalized.

These sets are retained until complete training and testing
are over, after which we randomly select another training and
testing sets. Finally, we calculate the results by averaging the
values obtained in all phases. We use the supervised learning
strategy, in which the model maps each input sample to the
output classes. The softmax layer produces probability score
for the target classes. We use mini-batch stochastic gradi-
ent descent to optimize the parameters for the network by
using a backpropagation algorithm as a supervised learning
algorithm [36]. The softmax classification function uses the
output from the feature extraction function, such that the
CNN network can optimize both functions simultaneously.
In this manner, we can extract important features, remove
noise artifacts from the EEG data, and solve the problem of
overfitting to noise.

We use the BCI Competition IV dataset 2a (BCI dataset),
which is an EEG MI dataset that has 22 scalp electrode posi-
tions. Nine subjects are involved in the recordings completed
over two sessions. Each of the two sessions contain 288 trials,
each having a 4 s recording of MI tasks related to the imag-
ining of movements per subject. The imagined tasks consist
of thinking to move both hands and feet and the tongue [38].

We use sliding windows on the input EEG signals; this
cropped signal increases the training data to many folds [40].
Cropped training strategy helps becausemost of the EEGBCI
datasets are not large, and CNN requires a huge amount of

training data to generalize. This cropped training technique is
successfully used for object recognition. Using this training
technique increases the performance for EEG decoding.

In this study, we use a 2 s input window crop to generate
a large number of training data. For each time step, we have
one crop of each input sample in EEG data, which creates new
training examples from the original set, thereby increasing
the training set. Each window crop will use the same output
label that we have for that entire event. Hence, our CNN
uses features from all window segments of the event and can
learn global features extracted from the entire event. This
approach helps our model to learn general and not subject-
specific features.

The BCI dataset has been recorded with a sampling rate
of 256 Hz, thus, each 2 s input window has approximately
500 recorded input samples, which are given as input to the
CNN model. The first convolution is performed over time
samples for each channel. Table 1 presents the number, size
of filters, and stride. The second convolution operation is
performed over all 22 channels simultaneously. The rest of
the convolution and max pooling operations are performed
across all channels.

TABLE 1. Structure of CNN model.

The layers and filters are shown in Table 1. Complet-
ing training and testing for 90 epochs for each subject on
the cross-subject data have taken us approximately 5 h to
complete. However, completing subject-specific training has
taken only 2 h because the number of iterations is less than
the cross-subject approach.

B. MULTILEVEL FEATURE EXTRACTION
As previously described, the issue with EEG data is that they
are dynamic in nature and have low signal-to-noise ratio;
hence, extracting features manually and automatically has
not led to high accuracy results even when using successful
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FIGURE 3. Multilayer feature fusion architecture.

models, such as CNN. Thus, we propose the extraction and
fusion of multilayer features from a trained CNN model.
By combining these features, we aim to uncover domain-
specific knowledge and class-discriminative features that
CNN layers have extracted at various levels.

Most of the studies have fused the networks at the fully
connected layers or the softmax layers, but in this study
feature representations from all convolution layers are fused
using fully connected layers thereby preserving features at
each convolution level.We extract these features after pooling
layers to have compressed features without losingmeaningful
and important information. Instead of the simple concatena-
tion of convolution features the dedicated fully connected
layers have variable neurons to adjust the importance of
features extracted at various levels. The CNN model is first
pretrained before performing feature extraction. The model
is then trained on BCI dataset and then the fully connected
layers are added for feature extraction. The parameters and
weights for trained model are frozen and the fusion model is
trained with the extracted features acting as input to the fully
connected layers FC-1, FC-2, FC-3 and FC-4. We extract
trained features from the pooling layers which appear right
after the convolution layers. Pooled features are compact
form of convolution features and thus we have redundant
features removed. This would also help in reducing the
parameters as training the fully connected layers add to the
computation overhead. At last we add another fully con-
nected layer (FC-Global) for feature concatenation. By using
dedicated fully connected layers we are able to extract
local convolution features which represent the object at the
abstract level and the global level features are extracted by
applying concatenation through the FC-global layer. Hence
the features from the layers FC-1, FC-2, FC-3, and FC-4
are concatenated before being supplied to the softmax

TABLE 2. Structure of fusion model.

classification layer. The fusion model is trained and tested
with different lengths of pooling features and the best features
are stored. The whole fusion model is then jointly-optimized.

We use weight-based feature fusion to find the best size
of extracted features for fusion. This feature extraction
model is flexible and can be modified in various ways to
include or remove different layers. Figure 3 shows the multi-
level feature fusion architecture. The features extracted after
the pooling operations have different sizes, hence we used
fully connected layers to fuse these features.

C. WEIGHT-BASED FEATURE FUSION
We propose weight-based feature fusion that uses fully con-
nected layers for fusing all extracted convolutional features.
EEG channels are inputted across time samples, and the
output after convolutions is a 2D feature map. We execute
the multilayer feature extraction and fusion phase after the
execution of the feature learning phase. The first phase of
our deep CNN-based feature extraction model takes the raw
cropped input EEG signal and produces feature maps for
convolutional feature fusion. We use features from the con-
volution layers after the max pooling to reduce the feature
size without losing relevant information extracted by the
convolutional layers. Hence, the feature maps are extracted
from Pool-1, Pool-2, Pool-3, Pool-4 (max pooling) layers.
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TABLE 3. Comparison of some methods for the BCI dataset.

Each of these pooling layers represents convolution layers
In the CNN architecture at different abstract level where
initial layers represent simpler features and deeper layers
represent complex features. Hence this architecture attempts
to use different resolutions and abstractions of features at
different layers.

In order to fuse the extracted convolution features, the out-
put from each pooling layer is connected to the additional
fully connected layers, each of which has a size of 64, 128,
256, 512, or 1024. All these sizes are power of 2, which
was convenient as the final fully connected layer (FC-global)
is of size 1024. The size of the additional fully connected
layer is decided, when the fusion network is being optimized
at runtime. Any layer whose features contribute less to the
output, the corresponding fully connected layer is shrunk in
size; moreover, the more important its features, the larger
the size. The system starts with each of the fully connected
layers having 1024 size and then gradually decreases the size
of each of them trying all possible combinations within the
predetermined values. Finally, the best possible values for
the respective resolutions of FC layers are stored. Hence,
the features are weighted on the basis of the best accuracy
obtained by the fusion model. Using this weighted feature
fusion we give variable importance to the convolutional fea-
tures at different levels. Some of the researchers like [40]
have achieved different accuracy with different number of
convolution layers. Therefore we tried CNN with different
number of convolutional layers and got different results,
showing that convolution layers extract features which have
different properties and importance in achieving the results.
Hence weighted feature fusion addresses this issue and helps
us find optimized features from different CNN layers. After
we obtain the weighted CNN features, we fuse them using
a global fully connected layer with the size of 1024. Sub-
sequently, we use the softmax layer to classify the input
into respective classes. The pretrained model is trained and
optimized. After this the all the weights of the pretrained
model are frozen.We then train the additional fully connected
layers of the fusion model. Reduced learning rate is used for
training the fusion model. Greedy optimization is performed
with different size of features from all the pooling layers. The
set of features giving the best results are retained at the end
of the learning process.

TABLE 4. Performance of CNN models with different number of
convolution layers (trained from scratch).

FIGURE 4. Mean training time (h:mm) across subjects for CNN models.

IV. EXPERIMENTS AND RESULTS
For experiments, we use Intel Xeon E5-2650 2.60 Hz CPUs
with 17 cores and 64 GB RAM. For deep learning, we use
GeForce GTX 1080 GPU with 8 GB memory. CNN was
implemented using PyTorch deep learning framework and
MNE-Python for EEG data preprocessing.

As previously discussed, we use cropped training strategy
to test the performance of the CNN model. For the testing
phase, the results for all the input crops are averaged to
determine a single output per trial.

The results are better than those of the state of the art for
EEGMI classification on the same dataset. Table 3 shows the
comparison of our proposed model with the previous state-
of-the-art approaches. In [40], CNN was used with cropped
training and various selections to achieve 72.0% accuracy
on BCI Competition IV dataset 2a MI dataset. Researchers
in [30] used SAE over 1D CNN to obtain 69% accuracy on
the same MI dataset. In [33], a compact CNN-based model
named EEGNet was proposed for multiple EEG datasets,
which reached 69% accuracy. FBCSPmethod and CNNwere
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TABLE 5. Performance of fusion model at different fusion stages (pretrained).

TABLE 6. Confusion matrix for the fusion mode.

FIGURE 5. Performance of fusion model on BCI dataset.

used in [41] as a novel strategy. FBCSP algorithm was used
for data preparation and create envelope representation input
EEG signals to preserve the temporal and spatial properties
of the signal. This dataset achieved 73.4% accuracy. Our
proposed method presents an improvement in the result when
pretrained CNN model is used compared with the training
from scratch. The accuracy of the CNN model is 69.0%.
Applying pretrained model provides us 73.2% accuracy.
We achieve improvement in performance when we apply the
proposed multilayer fusion model on our pretrained CNN
model, obtaining 75.4% accuracy on the BCI dataset in com-
parison with the state-of-the-art models. The sensitivity of
the system is also improved; thus, the multilayer CNN fusion

architecture can be used as a subject-specific MI classifier.
We also test the system with cross-subject data and achieve
good specificity.

Table 4 shows the accuracies obtained when training CNN
models from scratch with different number of convolution
layers. We used CNN models starting with one convolu-
tion pooling block till models having four convolution pool-
ing blocks. Beyond four convolution layers the performance
degraded substantially. We also tried the fusion model by
considering each FC layer at a time, and with various pos-
sible combinations of the FC layers. In table 5 we show
the accuracy obtained training each FC layer and some of
their combinations which gave good result. However, the best
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result was 74.5%which was achieved by fusing all FC layers.
Table 6 presents the confusion matrix for the fusion model
which shows the overall accuracy, sensitivity and precision.
As we can see, the sensitivity of the model for hand imagery
movements is better than other classes. The performance
enhancement of the fusion model comes with degradation of
the training time, as shown in figure 4. It gives the average
training time per subject for different CNN models. The
fusion model trained from scratch took the most time. The
accuracy and loss curve for the fusion model are shown
in figure 5.

Although the preliminary results are encouraging, we still
need to overcome some issues. Deep learning requires a con-
siderable amount of training data, which is currently lacking.
We also need to acquire additional datasets to increase the
training set size. Most of the publicly available dataset have
limited size because the larger ones are expensive. We also
need to test pretrained models because they have yet to be
used for EEG classification.

V. CONCLUSION
We propose a multilevel weighted feature fusion architec-
ture based on CNN for EEG MI classification. Our method
proves that different CNN layers can extract some abstract
representations of the features. When these extracted features
are fused, the resulting combined features can improve the
overall classification accuracy. The study also shows that
deep CNNs when pretrained with similar EEG data can aid
CNN to learn small-sized datasets. Our fused framework
outperforms state-of-the-art models on subject-specific EEG
motor classification. The fused model can learn a general rep-
resentation of EEG signals; hence our system has remarkable
improvement in classification results. We achieve good accu-
racy for subject-specific data, with better sensitivity when
compared to other methods on the BCI dataset.

The architecture proposed is designed to extract spectral,
temporal features from EEG motor data while learning gen-
eral spatially invariant characteristics of MI tasks. The mul-
tilayer feature fusion methods based on CNN have yet to be
tested on other EEG datasets. Therefore, our method can also
be used for other EEG applications to improve the results.

However, we would still want to investigate the system’s
performance on other EEG MI datasets that have more data.
In the future, we also aim to study other ways of feature
aggregation to enhance the performance of our proposed
method.
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