IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received December 30, 2018, accepted January 17, 2019, date of publication January 29, 2019, date of current version February 27, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2896003

A Combination Method for Android Malware
Detection Based on Control Flow Graphs and
Machine Learning Algorithms

ZHUO MA“1:2, HAORAN GE', YANG LIU', MENG ZHAO!, AND JIANFENG MA'2

!'School of Cyber Engineering, Xidian University, Xi’an 710071, China
2Shaanxi Key Laboratory of Network and System Security, Xi’an 710071, China

Corresponding author: Zhuo Ma (mazhuo @mail.xidian.edu.cn)
This work was supported in part by the National Natural Science Foundation of China under Grant U1764263 and Grant 61872283,

in part by the Natural Science Basic Research Plan in the Shaanxi Province of China under Grant 2016JM6074, and
in part by the China 111 Project under Grant B16037.

ABSTRACT Android malware severely threaten system and user security in terms of privilege escalation,
remote control, tariff theft, and privacy leakage. Therefore, it is of great importance and necessity to detect
Android malware. In this paper, we present a combination method for Android malware detection based on
the machine learning algorithm. First, we construct the control flow graph of the application to obtain API
information. Based on the API information, we innovatively construct Boolean, frequency, and time-series
data sets. Based on these three data sets, three detection models for Android malware detection regarding
API calls, API frequency, and API sequence aspects are constructed. Ultimately, an ensemble model is
constructed for conformity. We tested and compared the accuracy and stability of our detection models
through a large number of experiments. The experiments were conducted on 10010 benign applications and
10683 malicious applications. The results show that our detection model achieves 98.98% detection precision
and has high accuracy and stability. All of the results are consistent with the theoretical analysis in this paper.

INDEX TERMS Control flow graph, application programming interface, machine learning, malware

detection.

I. INTRODUCTION
Android has become the first choice for many handset mak-
ers and other intelligent devices. According to Gartner [1],
the global sales of Android-powered smart phones ranked
first in 2017, accounting for 84.1% of all smart phone sales.
However, the Android system is often attacked by mali-
cious software. In 2017, Symantec [2] intercepted an average
of 24,000 mobile phone malwares per day. In contrast to other
platforms, Android allows for installing applications from
unverified sources, such as third-party markets, which makes
it easier for a malicious code developer to attack it. According
to statistics, 17% of all Android applications are malware [3].
It is essential and of great importance to stop the proliferation
of malwares on Android markets and smart phones.

The Android platform provides several security measures,
most notably the Android permission system to prevent mali-
cious software. To perform a certain task that needs Android

The associate editor coordinating the review of this manuscript and
approving it for publication was Lin Bai.

permission, such as the location permission, each app has to
explicitly request permission from the user during installation
time or running time. However, without better understanding
of Android permission, the users usually grant permission
to unknown applications. As a consequence, the permission
system can hardly guarantee realistic security.

Nowadays, a large number of researchers and companies
began research on android malware. In industry, several com-
panies have developed mobile anti-virus software and detec-
tion machines for Android malware detection. Among which
Google introduced the latest machine learning modules
and technologies which have significantly improved Google
Play’s security detection capabilities. While in academia,
there are many articles on Android malware detection at
conferences, in journals and on the Internet. Many are about
an overview of Android security. For example, Enck ez al. [4]
elaborated on the Android system security model and the
development of secure applications. Others are about Android
malware. For example, Zhou and Jiang [5] systematically
researched more than 1200 malicious software discovered

2169-3536 © 2019 IEEE. Translations and content mining are permitted for academic research only.

VOLUME 7, 2019

Personal use is also permitted, but republication/redistribution requires IEEE permission.

21235

See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0001-6023-2864

IEEE Access

Z. Ma et al.: Combination Method for Android Malware Detection

from August 2010 to October 2011 and established data
sets about malware installation methods, malicious behav-
ior activation method and attack payloads; DroidRanger [6]
extracted malicious features through a manual analysis of
known malwares and used heuristic rules to detect unknown
malware. Many articles are about analysis and discussion of
specific issues. For example, in order to solve the privacy
leakage, McGill University designed a real-time monitor-
ing system AppAudit [7] to monitor Android applications
and detect whether there is a privacy leak in the appli-
cation. As for vulnerabilities existing in Android systems,
Felt et al. [8] analyzed the Android malware and found that
there were loopholes in the Android platform, and con-
ducted an in-depth study of the vulnerability; ComDroid [9]
researched Android communication vulnerabilities, and ini-
tially solved the vulnerability of intentional information theft
and forgery. Machine learning algorithms have been proved
to be reliable and accurate in many problems [10], [11], and
have also been used to detect Android malware. For exam-
ple, McLaughlin ef al. [12] constructed a malware detection
system by using a convolutional neural network algorithm to
analyze the application’s byte code sequence.

In this paper, we present a machine learning method for
Android malware detection which can automatically detect
known and unknown types of malware if it belongs to the
malware types that we have analyzed. In our methods, we first
de-compile the Android application and construct the control
flow graph (CFG) from the source code. Then we extract
Application Program Interface (API) calls from the CFG
and build three different types of API data sets:Boolean
data sets, frequency data sets and chronological data sets.
We build 3 detection models: API Usage Detection Model,
API Frequency Detection Model and API Sequence Detec-
tion Model based on the data sets using machine learning
methods.

The experiment with 10010 benign applications from
AndroZoo [13] and 10683 malwares from Android Malware
Dataset (AMD) [14], [15] shows that our methods are effec-
tive: the API Usage Detection Model detects 95% of the
malware samples with a false-positive rate of 6.2%. The
API Frequency Detection Model detects 97% of the malware
samples with a false-positive rate of 9.1%. The API Sequence
Detection Model detects 99% of the malware samples with a
false-positive rate of 2.9%. So far, our methods are the first
to construct chronological datasets of the Android applica-
tion using static detection methods and the Long Short-Term
Memory (LSTM) algorithm to build the detection model.

In summary, the contributions of this paper are as follows:

1) We extracted system APIs from the application’s con-
trol flow graph and built 3 different data sets. Compared to
extracting APIs directly from the application source code,
this method reduces the number of redundant APIs which will
reduce the analysis time and improve detection efficiency.

2) We build 3 different detection models using machine
learning algorithms based on each data sets. Machine learning
methods can predict the type of data according to its training

21236

model. Thus, not only can we detect known malwares, but
unknown malwares can also be detected.

3) We propose a method to build chronological API data
sets using statical analysis methods and use LSTM to analyze
them. Compared to traditional data sets: Boolean data sets,
frequency data sets, and chronological API data sets are more
accurate in characterizing an application.

The rest of this paper is organized as follows.
Section 2 introduces the control flow graph construc-
tion and gives an overview of our detection architec-
ture. Section 3 presents our three detection models: API
usage detection model, API frequency detection model and
API sequence detection model. Evaluation and comparison
of these three detection models are presented in section
4. Section 5 discusses related works and future works.
Section 6 concludes the paper.

Il. PRELIMINARIES

A. CFG CONSTRUCTION

We use FLOWDROID to do this job. FLOWDROID is an
open source framework which performs the statical taint
analysis for Android applications. It builds a precise model
of the Android’s lifecycle, allowing the analysis to properly
handle callbacks invoked by the Android framework, while
context, flow, field and object-sensitivity allow the analysis
to reduce the number of false alarms [16]. The CFG builds
the android application for accomplishing the taint analysis
based on our method, but the taint analysis is useless for us
as our aim is not at privacy leak. So, we modified the source
code of FLOWDROID, replacing the taint analysis with our
method.

A control flow graph represents all the flows of control
that may arise during program execution [17]. In our meth-
ods, CFG is a directed graph G = (N, E, entry) presented
in figure 1(a), while figure 1(b) represents the corresponding
source code, where N is a node set, and each API in the pro-
gram (including system API and user-defined API) represents
one node; E is the edge set and E = {< nj,ny > |nl,n2 €
N and n2 may be executed immediately after nl} ; and entry
is the entry node of the program. Each java application has an
entry function main (), so, we can treat main() as an entry of
a Java application. Each corresponding Android application
contains onCreate () in a package android.app.Application
which can be used as an entry function of an Android
application.

As Figure 1(a) shows, one circle represents an element of
node set N ; an arrow represents the calling relation. For exam-
ple, an arrow from a() to b() means a() calls b() in the source
code shown in Figure 1(b). So, corresponding to this graph,
CFG will be represented as (N, E, entry) where the node set
N = {dummyMainMethod(), a(), b(), c(), d(), €(), f O, g0},
the edge set E = {< dummyMainMethod(),a() >
, < dummyMainMethod(), b() >, < dummyMainMethod(),
c) >,< a(),b) >,< a(,d)) >,< b(),e() >,<
bO,fO >, < 0,80 >,< c(,fO >} and the entry is

VOLUME 7, 2019

Z. Ma et al.: Combination Method for Android Malware Detection

IEEE Access

dummyMainMethod()
09 5 ()
O

d0 <0) 20
(a)

public class MainActivity extends ActionBarActivity {
protected void conCreate(Bundle savedInstance State){

a(); b0;c():}
public void a(){

b(:d0; 3
public void b(){

e}
public void c(){

20; f0;

(b)
FIGURE 1. A simple CFG and its source code. (a) a CFG. (b) source code.

dummyMainMethod() which is an alias for onCreate() in
order to relate to the Java main() method.

B. INFORMATION EXTRACTION

Usually, malicious applications use dangerous APIs to
achieve certain targets. For example, privacy leaking will
happen by using SMS APIs to get private information and
sending them though a network with network APIs. This
kind of malware can be detected by analyzing the usage
of APIs. However, some malicious behavior will use nor-
mal APIs many times. For example, DOS attack will hap-
pen by constantly using network APIS. Thus, by analyzing
the frequency of APIs, these kinds of malwares will be
detected. Although this type of information helps to detect
malware, it is not accurate enough. A benign application
will use the same APIs intermittently during the applica-
tion lifetime which makes it difficult to detect by analyzing
the frequency. However, by analyzing the order of APIs,
we can easily solve this problem. What’s more, by ana-
lyzing the chronological API sequence, we will obtain its
behavior.

Therefore, in our methods, we focus on three kinds of
information in an application: the usage of APIs (which
APIs the application uses), the API frequencies (how many
times the application uses APIs) and API sequence (the order
the application uses APIs). All of this information can be
extracted from CFG and will be presented in the following
forms.

1) APl USAGE FORM

In this form, the information will be presented as a set
K ={API,,API,,APL5...API, .. .}.

VOLUME 7, 2019

FIGURE 2. Detection architecture.

2) API FREQUENCIES FORM

In this form, we use a set of key value pairs F = {<
APL,fi >, < APhL,f, > ... < APIl,,f, > ...},where API,
indicates one APl in set K, and f,, indicates the times that API,
appears in CFG to express the information.

3) API SEQUENCE FORM

A chronological API sequence R = {ry,ra, ..., r, ...} (each
r represents an API) which means if i < j, API; will be called
earlier than API; in the executed path of the application used
to express the information.

C. DETECTION ARCHITECTURE AND OVERVIEW

The architecture of our detection architecture is shown
in Figure 2. In our methods, we train 3 detection model based
on the features in CFG (section 2.2): API Usage Detection
Model, API Frequency Detection Model and API Sequence
Detection Model.

1) TRAINING STAGE

The data we train for this stage are the key set K =
{API,,API>,API3 ...API, ...}. The key value pair F = {<
APL,fi >, < AP, f» > ... < APIl,,f, > ...} and API
sequence R = {ry, r2, ..., 1, ...} of CFGs are extracted from
malicious applications and benign applications. We train a 2-
class classification model for different data sets with different
algorithms.

2) DETECTION STAGE

For each new arrived APK, the CFG will be constructed and
K, F and R will be obtained based on the CFG. We use
the three models to classify the K, F and R. If the result of
the classification is malicious, we consider that the APK is
malicious.

Ill. MALWARE DETECTION

We use the three detection models to detect malware. In the
rest of this section, we introduce the methods to build the
three models in detail and how to detect malware with the
models.

A. API USAGE DETECTION MODEL

1) DATASET Construction

In our CFG, the node set N contains all of the nodes of
CFG and each node is presented as an API. So, we can get

21237

IEEE Access

Z. Ma et al.: Combination Method for Android Malware Detection

the API usage of CFG simplify by traversing its node set.
For example, in the CFG shown in Figure 1, the node set
N = A{dummyMainMethod(), a(), b(), c(), (), €(), f), gO}.
After we traverse this set, we obtain the API’s usage set
K = {dummyMainMethod, a, b, c,d, e, f, g} (we only take
the API name into considerarion).

As the number of user-defined APIs are infinite and the
user-defined APIs will always call the system API to accom-
plish a certain task, we remove the user-defined APIs during
analysis and only the system APIs remain (here the sys-
tem API in our methods is the API that Java Developer’s
Kit (JDK) and Software Development Kit (SDK) contain).
The total number of system APIs is a constant. Let § =
{API,, API,, ...API,} be the total system API set (suppose
the total number of system APIs is m). There are two meth-
ods to obtain S : first, looking it up in the JDK and SDK
documents and collecting the system APIs manually; second,
using the self-learning methods. In our methods, we choose
the second method.

2) SELF-LEARNING METHODS

We build a Boolean data set based on S and K. In the
Boolean data sets, the attributes are the APIs in set S plus
a classification label, and the value is a matrix of 0 and 1
(we use 0 to indicate that the API does not appear in set
K while 1 indicates that it appears. As for the classification
value, O represents benign and 1 represents malicious). For
example, assuming S = {a, b, ¢, d, e, f, type}, K1 = {a, ¢, f}
and is extracted from a malicious CFG, K, = {b,d, e}
and is extracted from a benign CFG, then the vector of
Ky will be {1,0,1,0,0,1, 1} and the vector of K, will be
{0,1,0,1,1,0,0}.

In each CFG, we can obtaina K = {API|,API,, ...API,};
obviously, K € §. With the number of CFG increasing,
we will get numerous K. We combine all of these K together
and remove the duplicated APIs. In this way, the total system
API set S is obtained.

3) TRAINING STAGE

Discrete and with each attribute having only 2 values, our
data sets can be analyzed with a decision tree algorithm.
C4.5 is an algorithm used to generate a decision tree which
can be used for classification. In the top ten algorithms of data
mining, the C4.5 algorithm ranks first [18]. So, we choose
the C4.5 algorithm to train a 2-class classification model.
In the training stage, we build a decision tree based on
the Boolean data sets. There are 2 classes in our data sets
(malicious and benign), and each attribute has 2 kinds of
values (0 or 1). Assume the data set is D, and the class set
is C(C = {malicious, benign}). In the first step, we calculate
the information gain ratio of each attribute in S and choose the
attribute with the largest value as the root of the tree. Then,
we partition D into corresponding subsets D1, D, based on the
value of the chosen attribute. We apply the same procedure
recursively to each subset until each subset belongs to the
same class. After the recursion is done, a decision tree is built.

21238

4) TESTING STAGE

To test whether an incoming K is malicious or benign, we use
the decision tree built during the training stage to test: Let
K = {APL,API,...API,, ...}. Suppose the root of the
tree is attribute API;, we choose one branch of the tree
root according to the value of API} in set K. We apply the
same procedure recursively to each subset and finally the
classification result of K will come out.

B. API FREQUENCY DETECTION MODEL

1) DATA SET CONSTRUCTION

Identically, we only construct the data sets of system APIs.
Since our CFG is a directed graph [19], we use the BFS
(breadth-first search) algorithm [20] to traverse its node.
The result of each traversal is stored in a key-value pair
form where the key is the node represented as API and the
value includes the frequencies where the node appears. As an
example in figure 1, suppose the frequencies set is F' = {<
APL,fi >, < APDL,f, > ... < APL,, f, > ...}. After first
traversal, we got a(), b(), c(),so F = {< a,1 >, < b,1 >
, < ¢, 1 >}, after the second traversal, d(), b(), e(), f(), f() and
g() come out, therefore F is updated to {< a,1 >, < b,2 >
,<c, 1> <d, 1 > <e 1>, <f,2 >} Wetake the same
methods to update F until the traversal finishes and finally
F=l<al><b2><cl><d1><el>,<
f,2>,<g 1>}

We built frequencies datasets based on F and S (the whole
system API set). In the data sets, the attributes are the same
as Boolean data sets but the attribute values are no longer 0
and 1. The attribute value is a matrix of 0 and an integer
number indicates the frequencies of the API. For example,
assuming S = {a,b,c,d,e,f,type}, F1 = {< a,10 >,
< ¢,50 >, < f,25 >} and is extracted from a malicious
CFG; F, = {< b,20 >, < d,15 >,< ¢,22 >} and is
extracted from a benign CFG, then the corresponding vector
of Vi will be {10, 0, 50, 0, 0, 25, 1} and the vector of V; will
be {0, 20,0, 15,22, 0, O}(here O indicates benign CFG and
1 indicates malicious CFG).

2) TRAINING STAGE

As each attribute value in our data set is a continuous integer,
it will be complicated for the decision tree algorithm to build
the model. However, DNN (deep neural network) is able to
learn patterns in the numerical vectors form and can classify
or cluster raw input. Therefore, we use the DNN algorithm
instead. In this stage, a 2-class classification model is trained
with the DNN algorithm based on the training sets. That is,
for each vector V = {f1, f2, .. .fn, label}. The algorithm will
calculate and update the coefficients based on input fj to make
the results of the label equal to the input label.

3) TESTING STAGE

For each vector V, we calculate the classification result
with input f; and the coefficients trained in the training
stage, and compare the result with the input label. We use

VOLUME 7, 2019

Z. Ma et al.: Combination Method for Android Malware Detection

IEEE Access

Layer m Output 1

FIGURE 3. A DNN neural and network.

standard classification metrics such as Precision, Recall and
F-measure to test the performance of the model.

4) THE DNN APPROACH

DNN is part of the broad field of Al, which is the science
and engineering of creating intelligent machines that have the
ability to achieve goals like humans do [21]. Figure 4 shows
a single DNN neural and the expanding network.

The top of Figure 3 shows a single DNN neural. In the
DNN network, each DNN neuron maintains state and passes
it to the next neural. The output state is calculated with the
input, weights values and bias which satisfy z = Y W; xf;+b
plus an activation function o (z) where f; is the input and o (z)
is the output state. An h-layer DNN network is shown in
the button of Figure 4. DNN network will calculate a proper
W and b to make the output equal to or very close to the
sample output as much as possible during training. In other
words, given a V = {f1, f>, .. .fu, label}. DNN will calculate
the label based on {fi,f,...f,} using some mathematical
formula expressed with W and b, i.e. z = Y W; x fi+b. After
each calculation step, W and b will be updated to a proper
value to make the calculated label equal to or very close to
the input label.

After the training is done, we can predict the output for an
input {f1, >, . . . fn, label}. By comparing the output with the
input label, we know whether the prediction is correct.

C. API SEQUENCE DETECTION MODEL

In fact, an application will call a set of APIs sequentially
to accomplish a certain function. These chronological API
sequences are the best for characterizing an application. In the
rest of the manuscript, we introduce how we construct and
analyze the chronological API sequences.

Figure 4 shows the process how we construct an API
sequence. In FLOWDROID, each API is represented as a
class MethodOrMethodContext. The edge of CFG is pre-
sented as two APIs: source API and target API, which are
stored in an array. When FLOWDROID analyzes an applica-
tion, it will store the edge in the order that the API appears in

VOLUME 7, 2019

CFG Routes

dummyMainMethod()
Q

dummyMainMethod() > a() > d()
dummyMainMethod() > a() > b() > e()
—>| dummyMainMethod() > a() > b() > f()
dummyMainMethod() > b() > e()
dummyMainMethod() > b() > ()
dummyMainMethod() > ¢() > f()
dummyMainMethod() > ¢() > 20

FLOWDROID DFS Take the last node

Edge array Final sequence

dO>e()>f0)>e(>f0>f0>20

1.dummyMainMethod() > a()
2.dummyMainMethod() > b() —
3.dummyMainMethod() > ¢()

9.dummyMainMethod() > g()

FIGURE 4. Route construction process.

the application. So, the edges in the array are chronological.
We use DFS (depth-first search) [22] to traverse the array.
In each traversal, we obtain a route of APIs call a sequence.
After all the traversala are done, a set of the route is obtained.
We take the last API of each route in order and combine
them to form a chronological route. Let us take the CFG
in figure 1 as an example; after the traversal is done, we get
7 routes:

o dummyMainMethod() > a() > d()
o dummyMainMethod() > a() > b() > e()
o dummyMainMethod() > a() > b() > f()
o dummyMainMethod() > b() > e()
o dummyMainMethod () > b() > f()
o dummyMainMethod() > c() > f()
o dummyMainMethod() > c() > g()

1) ROUTE CONSTRUCTION

Then, we take the last API in each route in order, combine
them together and we get a chronological route of the CFG
ie.d() > e)) > fO > e > fO > f(Q. Here, we need to
point out that:

1) In general, the last API in each route is the system API,
as user-defined APIs will always call the system APIs. This
means the chronological route of the CFG is formed from
system APIs.

2) The edges in the array are chronological, and when
we use the DFS algorithm to traverse the array, the earlier-
called API should be traversed earlier. The final route is
chronological, and corresponding to our example, a() is called
earlier than b(), b() is called earlier than c(), and d() is called
earlier than b(). ..

2) ROUTE DIGITIZING

Let R = {APIy,API,, APIs, . .., API,} be the chronological
route of CFG, and let S be the whole system API set as any
API} in R must be an element of S. We use the index of API};
in S to present API;. For example, assuming R = {a, ¢, ¢, d}
and S = {a, b, ¢, d, e, f}, then we can translate R into digital
form {1, 5, 3, 4} (the index of the first element in S is 1).

21239

IEEE Access

Z. Ma et al.: Combination Method for Android Malware Detection

3) DATA SET CONSTRUCTION

We build a chronological data sets with R, S and the
class the corresponding CFG belongs to. That is, assuming
Ry = {a,b,c,f} and is extracted from a malicious CFG
and Ry = {e, e, a, b} and is extracted from a benign CFG,
S = {a,b,c,d,e,f}, then the vector of Ry in our data set
is {1,2,3,6,1} and the vector of R; is {5, 5, 1,2, O}(here
0 indicates benign and 1 indicates malicious). We split the
data sets into training sets and tests sets based on the split
ratio.

4) TRAINING STAGE

We use the LSTM algorithm to train a 2-class classifier
based on the training set. That is, for each input vector
R = {r1,r, ...y, label}. The algorithm will calculate and
update the coefficients based on the input rk to make the result
equal to or close to the input label.

5) TESTING STAGE

For each input R = {r|, r, ..., ry, label} in the testing set,
we calculate the classification result with input r; and the
coefficients trained during the training stage, and compare
the result with the input label. We use standard classification
metrics such as Precision, Recall and F-measure to test the
performance of the model.

6) THE LSTM APPROACH

LSTM is a recurrent neural network (RNN) architecture that
has been designed to address the vanishing and exploding gra-
dient problems of conventional RNNs. Unlike feed forward
neural networks, RNNs have cyclic connections making them
powerful for modeling sequences [23]. Thus, our methods use
LSTM for malware detection from an API sequence.

Our LSTM network is trained to maximize the probabil-
ity of having a classification result O or 1 on the training
data set. Which means, it learns a probability distribution
{Pr(label = O|ry,rp, ..., 1) Pr(label = 1|ri,r, ..., 1)}
which maximizes the probability.

Figure 5 shows how we use LSTM to train our datasets.
The left is a single LSTM cell. The state of an LSTM cell
will be passed to the next cell together with the input data to
calculate the new state of the next cell. This is the way that
historical information is passed on and maintained in a single
LSTM block and why LSTM can process sequential datasets.

After expanding a single LSTM cell by layer, a series of
LSTM cells form a one layer LSTM network shown in the
middle of Figure 5. A hidden vector Ht and a cell state vector
St is maintained in each cell and will be passed to the next
cell to calculate its state. In our methods, one LSTM cell
represents an API in a route vector. Therefore, one layer of
the LSTM network consists of 1 (where 1 is the length of the
route) LSTM cell.

By unfolding a layer LSTM network, we obtain a
multi-layer LSTM network shown in Figure 5. In our meth-
ods, we choose different numbers of layers to test its

21240

Single LSTM Cell One Layer LSTM Networks.

| } |
|

. | | -1 I, }
| a |

@17 @ @ e
| | —]
} } S, S S S;‘
| L

———————————————————————————————

@ysr - s@g @™
s s

g e |

FIGURE 5. API sequence detection model with LSTM.

performance. We use the hidden state of the previous layer as
the input of each corresponding LSTM cell in the next layer.

In the multi-layer LSTM network, each LSTM cell will
do the following things with the input data(r;) and the out-
put of previous cells(H;_1) during training: 1) calculate and
maintain its states S;; 2) calculate output H;. The calculation
is done by using some gate function (in the LSTM network,
there are three gates in each cell, i.e. the input, output and
forget gates that provide continuous analogues of write, read
and reset operations for the cell). Each gating function is
parameterized by a set of weights to be learned.

The whole process of the training stage is to calculate
proper weight values to make the output equal to or very close
to the sample output as much as possible with the input data
of the training data set. In our methods, the input data is the
API sequence and the output is the class (0 or 1) that the API
sequence belongs to.

After training is done, we can predict whether the API
sequence is malicious or benign.

D. COMBINATION METHOD
The most widely used method for model combination is
Boosting, a machine learning ensemble meta-algorithm for
improving accuracy, which converts weak learners to strong
ones. As is discussed above, each of the detection models can
respectively extract API features and give prediction results.
However, the performance in Sec.IV shows that the three
detection models are far better than weak learners. Thus,
we adopt soft voting to implement the combination method.
To implement the combination detection, we extract three
kinds of dataset, the API usage data, the API frequency data
and the API sequence data, from Android package files. The
result generated by a model is either 1 or 0 which represents
a malicious or benign prediction. The classification accuracy
of each model is used as its weight and the weighted sum of
three models serve as the final detection result. The package

VOLUME 7, 2019

Z. Ma et al.: Combination Method for Android Malware Detection

IEEE Access

100.00%
90.00%
80.00%
70.00%
60.00%
50.00%
40.00%
30.00%
20.00%

10.00%
0.00% = ol al ol o [m! ol = = ol =
1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th average

OFPR 290% 430% 330% 280% 320% 5.30% 3.50% 230% 280% 3.20% 3.36%
Precision 97.23% 95.94% 96.90% 97.33% 96.96% 95.07% 96.60% 97.78% 97.35% 97.00% 96.81%
ORecall 95.94% 9575% 97.17% 9632% 96.13% 96.42% 9387% 95.75% 96.89% 97.45% 96.17%
OF-score 9658% 95.85% 97.03% 96.82% 96.54% 95.74% 95.22% 96.76% 97.12% 97.22% 96.49%

FIGURE 6. Accuracy of API usage detection model.

file whose weighted sum is more than half of the total weight
will be predicted malicious, otherwise benign.

IV. PERFORMANCE EVALUATION
Our experiment is carried out with 10010 benign applications
from AndroZoo [13] and 10683 malwares from AMD [14],
[15]. In order to ensure the accuracy of malicious and benign
applications, we send each sample application to the common
4 anti-virus scanners (McAfee, 360 Security Guard, Kingsoft
Antivirus, Norton). We flag the application as malicious when
it is detected by one or more of these scanners. In the rest of
this section, we show evaluations of each detection model.
Since all of our detection models are classification models,
we use standard classification metrics such as False Posi-
tive Rate (FPR), Precision, Recall and F-measure. FPR =
FPI:_—PTN(FP stands for false positive) shows the ratio between
the number of wrongly detected benign applications and
the total number of the benign applications; Precision =
%,(TP stands for true positive) shows the percentage of
malware among all of the applications detected; Recall =

e being detected; and F — score = 2xPrecisionxRecall

TP+FN . Precision+Recall 18
the harmonic mean of the two.

A. API USAGE DETECTION MODEL
We first split the total data into 10 parts, each of which
consists of 1000 sets of benign API usage data and 1060 sets
of malicious API usage data without repetition (constructed
from benign and malicious applications respectively). In our
10 iterations of cross validation one part of the dataset serves
as the test data and the other are the training data.

We do the same process to construct the test sets. The
performance with different split ratios is shown in Figure 5.

In total, the model performs well as the average precision
of API usage model is 96.81% with a worst F-score of 95.22%
and a worst FPR of 5.30%. From the result we can obtain our
detection model to detect malware with great feasibility.

B. API FREQUENCY DETECTION MODEL

To test the model, we first vary the number layers with
4000 sets of training data and 2000 test data. The ratio of
malicious and benign applications is 1:1 in both of the dataset.
Table 1 presents that the FPR comes to a low level when there
are 8 hidden layers. With the number of layers increasing to
16 and 32, there is no obvious improvement in precision and

VOLUME 7, 2019

100.00%
90.00%
80.00%
70.00%
60.00%
50.00%
40.00%
30.00%
20.00%
10.00%

0.00% = o ol - - o o - = =

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th average

OFPR 310% 190% 270% 3.40% 150% 2.30% 350% 260% 210% 120% 2.43%
Precision 97.07% 98.18% 97.45% 96.78% 98.58% 97.81% 96.74% 97.53% 98.00% 98.85% 97.70%
ORecall 96.89% 96.70% 97.17% 96.32% 9821% 96.79% 98.02% 96.70% 96.89% 97.45% 97.11%
OF-score 96.98% 97.43% 97.31% 96.55% 98.39% 97.30% 97.38% 97.11% 97.44% 98.15% 97.40%

FIGURE 7. Accurancy of the API frequency detection model.

100.00%
90.00%
80.00%
70.00%
60.00%
50.00%
40.00%
30.00%
20.00%
10.00%

0.00% =
1st

- 2nd - 3rd N 4th - Sth 6th 7th - 8th 9th ﬁlOlh :verage
COFPR 240% 150% 1.70% 120% 190% 210% 180% 140% 070% 180% 1.65%

Precision 97.76% 98.59% 98.39% 98.87% 9821% 98.05% 9830% 98.68% 99.34% 98.30% 98.45%
ORecall 98.87% 98.96% 98.30% 99.25% 98.49% 99.72% 98.40% 98.96% 98.77% 98.21% 98.79%
OF-score 98.31% 98.78% 98.35% 99.06% 98.35% 98.88% 9835% 98.82% 99.05% 98.25% 98.62%

FIGURE 8. Accuracy of different split ratios.

recall. It is appropriate to set the number of layers to 8 in this
model.

We carry out the same experiments on our API frequency
dataset constructed from the same Android applications as the
API usage detection model does.

As is shown in Figure 7, the average precision reaches
97.70% with a worst F-score of 96.55% and a worst FPR
of 3.50%. In average, the API frequency detection model
successfully reduces the FPR compared with API usage
detection model, which means fewer benign applications are
predicted as malware.

C. API SEQUENCE DETECTION MODEL
In Table 1, we also vary the value of layer numbers of API
sequence model. Similarly, 8 layers are suitable.

Figure 8 provides the result of the similar experiment we
have done in other two models. The average precision of API
usage model is 98.45% with a worst F-score of 98.25% and a
worst FPR of 2.40%. In total, the performance is fairly stable
with respect to different values.

D. COMBINATION AND COMPARISON OF THREE MODELS
In this section, we utilize a voting classifier to combine these
three models. Table 2 provides the FPR, precision, recall and
F-score in average of the ensemble model along with three
sub-models.

We compare the performance of these ensemble model and
three sub-models from two aspects: accuracy and resource
consumption. In the resource consumption test, we use a
windows resource monitoring tool Perfmon to monitor the
CPU and memory consumption when the models run.

1) ACCURACY COMPARISON
As illustrated in Table 2, the API sequence model has the
best result Among these sub-models while the API usage

21241

IEEE Access

Z. Ma et al.: Combination Method for Android Malware Detection

TABLE 1. The accuracy of DNN and LSTM with variation of layer numbers.

API Frequency Detection Model

API Sequence Detection Model

layers FPR Precision Recall F-score FPR Precision Recall F-score

4 6.20% 94.72% 98.23% 96.44% | 7.60% 95.64% 99.67% 97.60%

8 2.50% 97.84% 98.56% 98.20% | 0.70% 99.61% 99.82% 99.70%

16 2.50% 98.02% 99.28% 98.65% | 2.40% 98.67% 100.00% 99.30%

32 1.70% 97.80% 99.50% 98.64% | 0.50% 99.78% 100.00% 99.80%
TABLE 2. Comparison of model accuracy. The 10600 malicious samples and 10000 benign samples
we selected respectively come from AMD and AndroZoo.

model FPR precision recall F-score o
emble model T58% — 95.15% 98507 05 08% We have tested each sample.to the common 4 antl.v%rus
API usage model 336% 9681% 96.17% 96.49% scanners :McAfee, 360 Security Guard, Kingsoft Antivirus
API frequency model 2.43% 97.70% 97.11% 97.40% and Norton to ensure the reliability. From TABLE 3, we can
API sequence model 1.65% 98.45% 98.79% 98.62%

detection model has the worst. However, all models per-
form well with each F-score value over 96% and FPR under
4%. Based on these three sub-models, the ensemble model
successfully makes a slight improvement that the precision
reaches 99.15% with the FPR of 1.58%.

2) RESOURCE CONSUMPTION COMPARISON

Perfmon obtains the resource that all of the applications
consume, including our models. In order to get our model’s
resource consumption, we used Perfmon to monitor the appli-
cation’s resource consumption when there are no model runs.
Then, the accurate model’s resource consumption is obtained
by the model’s resource consumption minus the application
resource consumption.

4 screenshots in Figure 11 show the result. The sub-
figure (a) shows the application’s resource consumption
when there are no models running. Obviously, the CPU
consumption is around O and the memory consumption is
around 17%. The sub-figure (b) shows the API usage detec-
tion model resource consumption. From the result we can
obtain that the CPU and memory consumption is stable with
around 27% CPU consumption and 20% memory consump-
tion (actually 3%). The sub-figure (c) and (d) show the API
frequency model and API sequence model resource consump-
tion. In these two sub-figures, the CPU consumption is high
in the beginning, then it goes down and becomes stable.
We know that in the model constructing stage there are more
computing steps, that is why the consumption is higher in the
beginning. After the model is constructed, the testing stage
does less computing and becomes stable.

In total, after the model is constructed, our detection model
consumes little and has a stable resource, which allows it to
be applied to mobile devices as well.

E. COMPARISON WITH OTHER METHODS

In order to prove our detection methods are effective, we com-
pare our methods with other well-known detection methods
by experiment. Table 1 shows the experiment result.

21242

obtain that our ensemble detection model has the highest
accurate rate.

TABLE 3. Comparison with other methods.

tool name feature algorithm F-score FPR
our combination API C45DNNLSTM 98.98% 1.58%
method
Mclaughlin [12] opcode CNN 89.50% 6.72%
DroidDetective [24] permission K-map 87.67% 7.67%
Yerima [25] APl and Random forest ~ 97.42% 4.33%
permission

V. RELATED WORKS

Numerous methods have been proposed to detect android
malwares. And which can be basically divided into two cate-
gories

A. STATIC DETECTION METHODS

Static methods is the first approach proposed to detect
android malwares. Among which, many use permission based
methods: Mahindru and Singh [26] detect malwares based on
the dynamic permissions methods; Adrienne et al. [27] build
a tool to detect over privilege in compiled Android applica-
tions; AndroidLeaks [28] automatically finds potential leaks
of sensitive information based on maps of permissions and
APIs. Although simple and efficient, the permission based
methods are not practical as modern Android applications
must request the permission before installing. What’s more,
the permissions should be granted in application running
time.

Thus, API based approaches have been proposed.
DREBIN [29] build a SVM detection model based on
APIs and many other information of an application.
R-PackDroid [30] detects ransom wares based on system API
package. Fan et al. [31] build a detection system based on
the API log information. Although they are accurate and
efficient, the analyzed APIs are extracted from either source
code or from de-compiled files. Compared to APIs extracted
from CFG (as our methods do), they contains many redundant

VOLUME 7, 2019

Z. Ma et al.: Combination Method for Android Malware Detection

IEEE Access

14:02:06 14:03:50 140530 14:07:10 14:08:50 14:10:30 14:12:10 14:13:50 14:15:30 14:17:10 14:18:44

13:44:49 1346:35 134815 134055 135135 135315 13:5455 13:56:35 135815 135055 14:01:27

L= B I 2N &5 s | 16:40 & Bl — #h o I ey | 16:40

25 BB WA S =5 2% HE HEH x EE WA UES 2] R % AN

I 1.0 % Committed Bytes | = Memory \\DESKTOP-E4SE... |v 10 % Committed Bytes In .. — Memory \\DESKTOP-E4SE...

17 1.0 9% User Time Total - Processor \\DESKTOP-E4SE. Ica 10 % User Time _Total Processor \\DESKTOP-E4SE.
(@) (b)

9:57:40 9:59:20 10:01:00 10:02:40 10:04:20 10:06:00 10:07:40 10:0%:20 10:11:00 10:12:40 10:14:16

= 31652 F 52396 &b/ 47038 k| 88860 4 16:40
5 B :7:) e =/ = nE HEHL

v 10 9% Committed Bytes In ... — Memory \\DESKTOP-E4SE
i 10 9% User Time Total Processor \DESKTOP-EASE.

(©)

FIGURE 9. Comparison of the resource consumption.

APIs. In our methods, we also analyze the APIs, but we
extracted them from CFG of the application.

Many approaches focus on the structure features of CFG.
Gascon et al. [32] build a structural feature map based on
function call graphs and use a linear SVM to analyze them.
Cesare and Xiang [33]construct a malware signature by the
set of control flow graphs and detect with feature match-
ing techniques. Kruegel ef al. [34] detect worm applications
based on the structural of the CFG of a worm application
and use graph coloring technique to classify the structures.
Although these methods performs well, the structure of a
CFG is complex. Besides the features database should be
huge enough to cover all the features and be updated regularly
and what’s more they can only detect known type malwares.
So, in our methods, we only extracted APIs from CFG and let
machine learning methods do the analyzing job.

Machine learning methods have advantages in detecting
unknown malwares. Hou er al [35]develop an intelligent
malware detection system using cluster-oriented ensemble
classifiers. Atici et al. [36] construct a CFG in grammar

VOLUME 7, 2019

8:47:20 848:55 B:50:15 851:35 85255 85415 8:55:35 85655 B5&15 &59:35 %00:55 902115 9:04:05

= 1 i [—— & B ey | 16:40
ST RE W HES] pe xE SN

|¥ 10 % Committed Bytes In ... —— Memory \\DESKTOP-E4SE.

,7 10 % User Time _Total - Processor \\DESKTOP-E4SE.

forms and use various classification methods to analyze them.
DroidScribe [37] builds a classification models based on run-
time behavior. McLaughlin et al. [12] utilize CNN to build an
android malware detection system based on opcode sequence
from a disassembled program. Though, these methods per-
forms well, they cannot detect the chronological features of
applications. The chronological features may help to under-
stand what an application does.

B. DYNAMIC DETECTION METHODS

TaintDroid [38] tracks the sensitive information of an
application in real time to protect the privacy of the users.
DroidScope [39] monitors application behaviors at three dif-
ferent platform layers. Chen et al. [40] generate API CFG
based on the real-time behaviors of software and use data
mining methods to analyze them. Although able to detect
malwares at runtime, they cannot be deployed in the smart
phone to detect malwares directly. Besides, in order to get
as much information as possible, one should trigger all the
application functions manually.

21243

IEEE Access

Z. Ma et al.: Combination Method for Android Malware Detection

VI. CONCLUSIONS
In this paper, we present methods to detect Android mal-
wares. We de-compile the android applications and construct
the CFG of each application. We construct 3 kinds of sys-
tem API data sets: API usage data sets (indicates which
API the CFG contains), API frequency data sets (indicates
how many times the CFG uses corresponding API) and API
sequence data sets (indicates what the API sequence appear-
ing in CFG is) sets based on the CFG. As far as I know,
we are the first to construct the API sequence data sets of
an android application. For each data sets, we build a 2-class
classification model and use the model to detect whether the
incoming application is malicious. We evaluate the accuracy
of each model using standard classification metrics - Preci-
sion, Recall and F-score - and compare the performance of
these three model. With the combination method, an ensem-
ble model is constructed and achieves 98.98% detection
precision.

In the future we would but are not limited to do the
following works:

o Addressing the malicious APIs position in source code.
In DeepLog [23], Du et al. build a workflow model
for anomaly log detection and with which the uses can
diagnose the anomaly. Inspired by this approach, we can
build an APIs workflow to diagnose malwares and find
the root cause of malicious behavior.

o Detecting the malicious families that malwares belong
to. In this paper, the models we build are 2-class clas-
sification models, which means we can only determine
whether the application is malicious or not. In the future,
we will build a multi-class classification model to deter-
mine which malicious family the application belong to
if detected malicious.

ACKNOWLEDGMENT
The authors would like to thank the editor and the anonymous
referees for their constructive comments.

REFERENCES

[1] Gartner. (2017). Worldwide Sales of Smartphones Grew 9 Percent
in First Quarter of 2017. [Online]. Available: https://www.gartner.
com/newsroom/id/3725117

[2] Symantec. (2018). 2018 Internet Security Threat Report. [Online]. Avail-
able: https://www.symantec.com/security-center/threat-report

[3] Symantec, “Internet security threat report,” Cupertino, CA, USA,
Tech. Rep., 2015, vol. 20.

[4] W. Enck, M. Ongtang, and P. McDaniel, ‘“‘Understanding Android secu-
rity,” IEEE Security Privacy, vol. 7, no. 1, pp. 50-57, Jan./Feb. 2009.

[5] Y. Zhou and X. Jiang, “Dissecting Android malware: Characterization
and evolution,” in Proc. IEEE Symp. Secur. Privacy (SP), May 2012,
pp. 95-109.

[6] Y.Zhou,Z. Wang, W. Zhou, and X. Jiang, ‘““Hey, you, get off of my market:
Detecting malicious apps in official and alternative Android markets,”
in Proc. Annu. Netw. Distrib. Syst. Secur. Symp., 2012, vol. 25, no. 4,
pp. 50-52.

[7] M. Xia, L. Gong, Y. Lyu, Z. Qi, and X. Liu, “Effective real-time Android
application auditing,” in Proc. IEEE Symp. Secur. Privacy (SP), May 2015,
pp- 899-914.

[8] A. P. Felt, M. Finifter, E. Chin, S. Hanna, and D. Wagner, “A survey of
mobile malware in the wild,” in Proc. 1st ACM Workshop Secur. Privacy
Smartphones Mobile Devices, Oct. 2011, pp. 3-14.

21244

[9]

(10]

(11]

[12]

[13]

(14]

[15]

[16]

[17]

(18]
[19]
(20]

[21]

[22]

(23]

(24]

(25]

(26]

(27]

(28]

(29]

(30]

(31]

(32]

(33]

A. P. Felt, H. J. Wang, A. Moshchuk, S. Hanna, and E. Chin, “Permission
re-delegation: Attacks and defenses,” in Proc. USENIX Security Symp.,
vol. 30, 2011, p. 88.

Z. Ma, Y. Liu, Z. Wang, H. Ge, and M. Zhao, “A machine learning-
based scheme for the security analysis of authentication and key agreement
protocols,” in Proc. Neural Comput. Appl., Dec. 2018, pp. 1-13.

Z. Ma, X. Wang, R. Ma, Z. Wang, and J. Ma, “Integrating gaze tracking
and head-motion prediction for mobile device authentication: A proof of
concept,” Sensors, vol. 18, no. 9, p. 2894, 2018.

N. McLaughlin ef al., “Deep Android malware detection,” in Proc. 7th
ACM Conf. Data Appl. Secur. Privacy, Mar. 2017, pp. 301-308.

K. Allix, T. F. Bissyandé, J. Klein, and Y. Le Traon, ‘“AndroZoo:
Collecting millions of Android apps for the research community,” in
Proc. IEEE/ACM 13th Work. Conf. Mining Softw. Repositories (MSR),
May 2016, pp. 468—471.

Y. Li, J. Jang, X. Hu, and X. Ou, “Android malware clustering through
malicious payload mining,” in Research in Attacks, Intrusions, and
Defenses, M. Dacier, M. Bailey, M. Polychronakis, and M. Antonakakis,
Eds. Cham, Switzerland: Springer, 2017, pp. 192-214.

F. Wei, Y. Li, S. Roy, X. Ou, and W. Zhou, “Deep ground truth analysis of
current android malware,” in Detection of Intrusions and Malware, and
Vulnerability Assessment, M. Polychronakis and M. Meier, Eds. Cham,
Switzerland: Springer, 2017, pp. 252-276.

S. Arzt et al., “‘Flowdroid: Precise context, flow, field, object-sensitive and
lifecycle-aware taint analysis for Android apps,” ACM SIGPLAN Notices,
vol. 49, no. 6, pp. 259-269, 2014.

J.-W. Jo and B.-M. Chang, ‘““Constructing control flow graph for Java by
decoupling exception flow from normal flow,” in Computational Science
and Its Applications—ICCSA, A. Lagand, M. L. Gavrilova, V. Kumar,
Y. Mun, C. J. K. Tan, and O. Gervasi, Eds. Berlin, Germany: Springer,
2004, pp. 106-113.

X. Wuetal., “Top 10 algorithms in data mining,” Knowl. Inf. Syst., vol. 14,
no. 1, pp. 1-37, 2008.

B. A. Farbey, ““Structural models: An introduction to the theory of directed
graphs,” J. Oper. Res. Soc., vol. 17, no. 2, pp. 202-203, Jun. 1966.

A. Bundy and L. Wallen, ‘““Breadth-first search,” in Catalogue of Artificial
Intelligence Tools. Berlin, Germany: Springer, 1984, p. 13.

V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer, “Efficient processing of
deep neural networks: A tutorial and survey,” Proc. IEEE, vol. 105, no. 12,
pp. 2295-2329, Dec. 2017.

R. Tarjan, “Depth-first search and linear graph algorithms,” SIAM J. Com-
put., vol. 1, no. 2, pp. 146-160, 1972.

M. Du, F. Li, G. Zheng, and V. Srikumar, “Deeplog: Anomaly detection
and diagnosis from system logs through deep learning,” in Proc. ACM
SIGSAC Conf. Comput. Commun. Secur., Nov. 2017, pp. 1285-1298.

S. Liang and X. Du, “‘Permission-combination-based scheme for Android
mobile malware detection,” in Proc. IEEE Int. Conf. Commun. (ICC),
Jun. 2014, pp. 2301-2306.

S. Y. Yerima, S. Sezer, and I. Muttik, “High accuracy Android mal-
ware detection using ensemble learning,” IET Inf. Secur., vol. 9, no. 6,
pp. 313-320, Nov. 2015.

A.Mahindru and P. Singh, “Dynamic permissions based Android malware
detection using machine learning techniques,” in Proc. 10th Innov. Softw.
Eng. Conf., Feb. 2017, pp. 202-210

A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner, “Android permis-
sions demystified,” in Proc. 18th ACM Conf. Comput. Commun. Secur.,
Oct. 2011, pp. 627-638.

C. Gibler, J. Crussell, J. Erickson, and H. Chen, “Androidleaks: Auto-
matically detecting potential privacy leaks in Android applications on
a large scale,” in Proc. Int. Conf. Trust Trustworthy Comput., 2012,
pp. 291-307.

D. Arp, M. Spreitzenbarth, M. Hiibner, H. Gascon, and K. Rieck, “Drebin:
Effective and explainable detection of Android malware in your pocket,”
in Proc. Netw. Distrib. Syst. Secur. Symp., 2014, pp. 23-26.

D. Maiorca, F. Mercaldo, G. Giacinto, C. A. Visaggio, and F. Martinelli,
“R-PackDroid: API package-based characterization and detection of
mobile ransomware,” in Proc. Symp. Appl. Comput., Apr. 2017,
pp. 1718-1723.

C.-1. Fan, H.-W. Hsiao, C.-H. Chou, and Y.-F. Tseng, ‘“Malware detection
systems based on API log data mining,” in Proc. IEEE 39th Annu. Comput.
Softw. Appl. Conf., Jul. 2015, pp. 255-260.

H. Gascon, F. Yamaguchi, D. Arp, and K. Rieck, *“Structural detection of
Android malware using embedded call graphs,” in Proc. ACM Workshop
Artif. Intell. Secur., Nov. 2013, pp. 45-54.

S. Cesare and Y. Xiang, ““Malware variant detection using similarity search
over sets of control flow graphs,” in Proc. IEEE 10th Int. Conf. Trust, Secur.
Privacy Comput. Commun., Nov. 2011, pp. 181-189.

VOLUME 7, 2019

Z. Ma et al.: Combination Method for Android Malware Detection

IEEE Access

[34]

[35]

[36]

[37]

[38]

[39]

[40]

C. Kruegel, E. Kirda, D. Mutz, W. Robertson, and G. Vigna, ‘“Polymorphic
worm detection using structural information of executables,” in Recent
Advances in Intrusion Detection, A. Valdes and D. Zamboni, Eds. Berlin,
Germany: Springer, 2006, pp. 207-226.

S. Hou, L. Chen, E. Tas, I. Demihovskiy, and Y. Ye, “Cluster-oriented
ensemble classifiers for intelligent malware detection,” in Proc. IEEE 9th
Int. Conf. Semantic Comput., Feb. 2015, pp. 189-196.

M. A. Atici, S. Sagiroglu, and I. A. Dogru, “Android malware analy-
sis approach based on control flow graphs and machine learning algo-
rithms,” in Proc. 4th Int. Symp. Digit. Forensic Secur. (ISDFS), Apr. 2016,
pp. 26-31.

S. K. Dash et al.,, “Droidscribe: Classifying Android malware based
on runtime behavior,” in Proc. IEEE Secur. Privacy Workshops (SPW),
May 2016, pp. 252-261.

W. Enck et al., “TaintDroid: An information-flow tracking system for
realtime privacy monitoring on smartphones,” ACM Trans. Comput. Syst.,
vol. 32, no. 2, p. 5, 2014.

L. K. Yan and H. Yin, “Droidscope: Seamlessly reconstructing the OS and
Dalvik semantic views for dynamic Android malware analysis,” in Proc.
21st USENIX Conf. Secur. Symp., 2012, pp. 569-584.

Z.-G. Chen, H.-S. Kang, S.-N. Yin, and S.-R. Kim, “Automatic ran-
somware detection and analysis based on dynamic API calls flow graph,”
in Proc. Int. Conf. Res. Adapt. Convergent Syst., 2017, pp. 196-201.

ZHUO MA received the B.S. degree in computer
science and technology, and the M.S. and Ph.D.
degrees in computer architecture from Xidian Uni-
versity, in 2003, 2006, and 2010, respectively,
where he is currently an Associate Professor with
the School of Cyber Engineering. He has pub-
lished over 20 journal and conference papers. His
research interests include information security and

cryptography.

VOLUME 7, 2019

HAORAN GE received the B.S. degree in com-
puter science and technology from Xidian Uni-
versity, in 2017, where he is currently pursuing
the master’s degree with the School of Cyber
Engineering. His research interests include system
security and machine learning.

YANG LIU received the B.S. degree in computer
science and technology from Xidian University,
in 2017, where he is currently pursuing the mas-
ter’s degree with the School of Cyber Engineering.
His research interests include formal analysis of
protocols and deep learning neural networks.

MENG ZHAQO received the B.S. degree in infor-
mation security from Jinan University, in 2016.
She is currently pursuing the master’s degree with
the School of Cyber Engineering, Xidian Univer-
sity. Her research interests include blockchain and
access control.

JIANFENG MA received the B.S. degree in com-
puter science from Shaanxi Normal University,
in 1982, and the M.S. and Ph.D. degrees in com-
puter science from Xidian University, in 1992 and
1995, respectively, where he is currently a Pro-
fessor with the School of Computer Science and
Technology. He has published over 150 jour-
nal and conference papers. His research interests
include information security, cryptography, and
network security.

21245

	INTRODUCTION
	PRELIMINARIES
	CFG CONSTRUCTION
	INFORMATION EXTRACTION
	API USAGE FORM
	API FREQUENCIES FORM
	API SEQUENCE FORM

	DETECTION ARCHITECTURE AND OVERVIEW
	TRAINING STAGE
	DETECTION STAGE

	MALWARE DETECTION
	API USAGE DETECTION MODEL
	DATASET Construction
	SELF-LEARNING METHODS
	TRAINING STAGE
	TESTING STAGE

	API FREQUENCY DETECTION MODEL
	DATA SET CONSTRUCTION
	TRAINING STAGE
	TESTING STAGE
	THE DNN APPROACH

	API SEQUENCE DETECTION MODEL
	ROUTE CONSTRUCTION
	ROUTE DIGITIZING
	DATA SET CONSTRUCTION
	TRAINING STAGE
	TESTING STAGE
	THE LSTM APPROACH

	COMBINATION METHOD

	PERFORMANCE EVALUATION
	API USAGE DETECTION MODEL
	API FREQUENCY DETECTION MODEL
	API SEQUENCE DETECTION MODEL
	COMBINATION AND COMPARISON OF THREE MODELS
	ACCURACY COMPARISON
	RESOURCE CONSUMPTION COMPARISON

	COMPARISON WITH OTHER METHODS

	RELATED WORKS
	STATIC DETECTION METHODS
	DYNAMIC DETECTION METHODS

	CONCLUSIONS
	REFERENCES
	Biographies
	ZHUO MA
	HAORAN GE
	YANG LIU
	MENG ZHAO
	JIANFENG MA

