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ABSTRACT A fractional order moments-based detector is proposed for the detection of weak signals in
additive impulsive noise environment assumed as generalized Gaussian distribution with properly selected
parameter values. The asymptotic detection performance is derived and compared with some traditional
detectors optimized for operations in Gaussian noise with Nakagami fading communication channels. The
analytical and computer simulation results of the fractional order moment-based detector are shown for
signal detection with fading channels in the impulsive noise.

INDEX TERMS Signal detection, generalized Gaussian distribution, fractional order moment, Nakagami
fading.

I. INTRODUCTION
Signal detection is aimed at testing for the pres-
ence or absence of signals in additive noise, which has
received widespread attention due to recent demands of
modern communication system, such as spectrum sensing
in Cognitive radio networks [1], [2] and the dynamic shar-
ing of free frequency spectrum resources in 5G networks
[3]–[5], [23]. In the previous signal detection problem,
the noise distribution is assumed to be Gaussian, which has
been justified in many environment e.g. [7]. But in the actual
environment, particularly the spectrum below 100MHz, we
need to think about the non-Gaussian noise environments,
such as impulsive and heavy-tailed noise [8]. As we known,
the probability density function (PDF) of non-Gaussian noise
has the heavier tail characteristics than that of Gaussian
noise [9], therefore, the performance of detectors that have
been designed inGaussian noisemay be significantly reduced
in non-Gaussian noise.

There are some effective detectors for signals detection in
the non-Gaussian noise environment, for instance, the locally
optimum detector(LOD) and the Neyman-Pearson(NP) [9],
[10], but they require some known information, for instance,
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the known form of the signal or the PDF of the receiver noise,
which may not be readily available in practice. Generalized
likelihood ratio test (GLRT) [11] and Rao test [12], [13] has
been studied about detection under the non-Gaussian noise
environment, which has the maximum likelihood estima-
tion (MLE) of the unknown parameters, but they need large
computational operations.

According to the problems above, we need to design valid
detectors which can detect signal availably in additive non-
Gaussian noise without any priori knowledge of the signal
and the additive noise and can be realized easily in the actual
environment.

Recently, the α-stable distribution as an important class
of statistical signal processing models has been widespread
attention by researchers. But the stable noise does not have
finite second- or higher order moments, so the fractional
lower order statistics (FLOS) become a new tool to pro-
cess signal with lower order moments (0 < p < 2). By
performing fractional exponential operations of the addi-
tive noise, the fractional lower order moments (FLOM)
can reduce the degree of non-Gaussianity. It has been
applied to weak signal detection under α-stable distribu-
tion noise in [14], but its application to signal detec-
tion under the GGD noise has not yet received much
attention.
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In this paper, We consider using fractional lower order
moments (FLOM) detector to perceive the presence of the
signal under the generalized Gaussian distribution (GGD).
The detection performance of the FLOM detector is theoreti-
cal analyzed and the closed-form solutions for probabilities
of detection and false alarm are derived.Finally, both the
numerical and simulation results indicate that the detection
performance of the fractional order moment detector is much
superior to the traditional energy detector in the GGD noise
environments.

The rest of this paper is arranged as follows: We analyze
the detection problem and theGGD noise model in Section 2.
The performance of the FLOM detector derived in Section 3.
We provide numerical and simulation results of the proposed
method compared with the traditional detectors in Section 4,
and the conclusion is given in Section 5.

II. PROBLEM FORMULATION
A. SYSTEM MODEL
We consider the detection of the presence of the signal s(n)
with Kmulti detectors in the additive background noisewk (n)
through the wireless channel. Signal detection problem is
formulated as a binary hypothesis testing problem, they are
defined as H0: signal absent and H1: signal present. Under
the two hypotheses,the k-th detector receive the observed
sample zk (n), at discrete-time n ∈ {1, 2, . . . ,N }, and the
observation vectors can be expressed as{

H0 : zk (n) = wk (n)
H1 : zk (n) = hks(n)+ wk (n)

(1)

The s(n) obeys the random distribution of zero-mean and
variances σ 2

s = E[|s(n)|2]. hk is the channel gain between the
signal and the k-th detector under fading channel, which are
IID and variances σ 2

h = E[|hk |2]. wk (n), s(n) and hk are all
IID random variables, independent of each other.

B. NOISE MODEL
We imagine that the background noise wk (n) under both
hypotheses in (1) is part of the GGD family and is a GGD
with zero-mean and variance σ 2

w. When the variance σ 2
w > 0

and the shape factor β > 0, the GGD’s PDF is [16]

p (wk (n);β) =
β0 (4/β)

2πσ 2
w(0 (2/β))

2 exp
(
−
1
B
(
|wk (n)|
σw

)β
)

(2)

B =
(
0 (2/β)
0 (4/β)

)β/2
(3)

where 0(α) =
∫
∞

0 xα−1e−xdx. The GGD has some special
cases, for example, the Laplacian distribution with β = 1
and the Gaussian distribution when β = 2, the impulse
probability function as β → 0, in addition the uniform
distribution when β →∞.
Since (2) are zero whit the odd origin moments, the abso-

lute value of order moments are researched in this paper. The

finite order moments of GGD is shown by,

E
(
|wk (n)|p

)
=

(
0 (2/β )
0 (4/β )

)p/2
0 ((p+ 2)/β)
0 (2/β )

σ pw (4)

Here, the orders is not just integer, it can be any value with
p > 0.

FIGURE 1. PDF of Gaussian and GGD with different shape factor β.

Fig. 1 shows the PDF of the GGD noise with different
values of the shape factor β. The different rate of decay for
the tail with different β are obtained. When β > 2, the tail
decays faster than that of the normal distribution, but when
0 < β < 2, the tail decays more slowly than that of the
normal distribution. According to the above result, the GGD
can be used to fit the non-Gaussian noiseswith different shape
factor β in signal detection practical systems, and moreover
a higher degree of non-Gaussianity can be modeled with a
smaller value of β. In practical system, the shape factor β can
be obtained by the signal estimation methods of the additive
noise such as the moments estimation. The ‘‘heavier’’ tail of
the GGD noise means larger noise samples, then the signal
detection problem under non-Gaussian noise environment
must consider a large noise samples, which will lead to the
high probability of false alarm.

C. CHANNEL MODEL
Nakagami distribution is normally used to express the signals
which has been transmitted through multipath fading chan-
nels. The PDF of the channel gains can be expresse by [20]

p (hk) =
2

0 (m)

(m
�

)m
(h)2m−1e−m(hk )

2/� , hk > 0 (5)

where � = E
[
H2
]
, m is the Nakagami fading parameter of

the communication channel. When m = 0.5, the Nakagami
is a one-side Gaussian fading , when m = 1, it is a Rayleigh
fading, and when m→∞, it expresses non-fading.
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III. FRACTIONAL LOWER ORDER MOMENT BASED
DETECTOR FOR SIGNAL DETECTION
The FLOM detector can optimize the detection performance
by a tunable parameter P, P = p1, p2, ..., pK . The detection
statistic of the FLOM detector is follow

yFLOM =
1
KN

K∑
k=1

N∑
n=1

|zk (n)|pk (6)

where pk is a variable value under 0 < pk < 2. When pk = 2,
the FLOM detection is simplified to energy detection. With a
given pk , yFLOM can be compared to a pre-scribed threshold λ.
If yFLOM > λ, the detector determines that signal exists,
otherwise the signal does not exist.

The equation (6) shows that the structure of the FLOM
scheme is simple and low implementation complexity. It need
not any a priori knowledge of noise, signal and channel,
however the detection performance of the FLOM detector is
better than that of second- (the energy detector) or higher-
order moments based detectors for non-Gaussian noise envi-
ronment. This will be given in Section 4.

Using (4), the mean u0 and σ 2
0 under H0 can be calculated,

u0 = E[yFLOM |H0]

=
1
KN

E

[
K∑
k=1

N∑
n=1

|wk (n)|pk
]

=
1
K

K∑
k=1

(
0 (2/βk )
0 (4/βk )

)pk/2 0 ((pk + 2)/βk)
0 (2/βk )

σ pkw (7)

where βk is the shape factor of the GGD noise received by
k-th antenna, 0 < pk < 2. The variance σ 2

0 under H0 can be
expressed as

σ 2
0 = E[(yFLOM − E[yFLOM ])2|H0]

= E[yFLOM
2
− E2[yFLOM ]|H0] (8)

Substituting (6) into (8), noting that zk (n) = wk (n) and
using (4), we obtain

σ 2
0 = E[(

1
KN

K∑
k=1

N∑
n=1

[|wk (n)|pk ])2]

−{
1
KN

K∑
k=1

N∑
n=1

E[|wk (n)|pk ]}2

=
1

(KN )2
{NE[

K∑
k=1

|wk (n)|2pk ]

+

K∑
k,i=1

k 6=i or n 6=j

N∑
n,j=1

E[|wk (n)|pk |wi(j)|pi ]

−N
K∑
k=1

E2[|wk (n)|pk ]

−

K∑
k,i=1

k 6=i or n 6=j

N∑
n,j=1

E[|wk (n)|pk |wi(j)|pi ]}

=
1

K 2N
{

K∑
k=1

E[|wk (n)|2pk ]−
K∑
k=1

E2[|wk (n)|pk ]}

=
1
KN

K∑
k=1

(
0 (2/βk )
0 (4/βk )

)pk
σ 2pk
w [

0 ((2pk + 2)/βk)
0 (2/βk )

− (
0 ((pk + 2)/βk)
0 (2/βk )

)2] (9)

The mean u1 of yFLOM under H1 is given as

u1 = E[yFLOM |H1]

=
1
KN

E

[
K∑
k=1

N∑
n=1

|hks(n)+ wk (n)|pk
]

(10)

We combine the binomial theorem to compute |hks(n) +
wk (n)|pk , leading to

u1 =
1
K

K∑
k=1

E[|wk (n)|pk + pk |hks(n)||wk (n)|pk−1

+
pk (pk − 1)

2!
|hks(n)|2|wk (n)|pk−2 + ...] (11)

Because low SNR assumption, hks (n) � wk (n), and s(n)
has zero mean, thus high order terms and the first order term
of |hks(n)| are ignored, and using (4), we can obtain

u1 ≈
1
K

K∑
k=1

E[|wk (n)|pk

+
pk (pk − 1)

2!
|hks(n)|2|wk (n)|pk−2]

= u0 +
1
2K

K∑
k=1

pk (pk − 1)E[|hks(n)|2|wk (n)|pk−2]

= u0 +
σ 2
s

2K

K∑
k=1

|hk |2pk (pk − 1)
(
0 (2/βk )
0 (4/βk )

)(pk−2)/2

0 ((pk )/βk)
0 (2/βk )

σ pk−2w (12)

With the approximate method to calculate u1, the variance σ 2
1

is derived as

σ 2
1 = E[(yFLOM − E[yFLOM ])2|H1]

= E[yFLOM
2
− E2[yFLOM ]|H1]

= E{[
1
KN

K∑
k=1

N∑
n=1

|hks(n)+ wk (n)|pk ]2}

− {
1
KN

K∑
k=1

N∑
n=1

E[|hks(n)+ wk (n)|pk ]}2

=
1

K 2N
{

K∑
k=1

E[|hks(n)+ wk (n)|2pk ]

−

K∑
k=1

E2[|hks(n)+ wk (n)|pk ]} (13)
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The binomial theorem is used to calculate approximately
|hks(n)+ wk (n)|2pk and |hks(n)+ wk (n)|pk , leading to

σ 2
1 =

1
K 2N
{

K∑
k=1

E[|wk (n)|2pk + 2pk |hks(n)||wk (n)|2pk−1

+
2pk (2pk − 1)

2!
|hks(n)|2|wk (n)|2pk−2 + ...]

−E2[|wk (n)|pk + pk |hks(n)||wk (n)|pk−1

+
pk (pk − 1)

2!
|hks(n)|2|wk (n)|pk−2 + ...]} (14)

According to the assumption of low SNR, the |hks(n)| <<
|wk (n)| is given. We can ignore the higher-order terms, at the
same time, the hk is constant and s(n) is zero mean under the
detecting process, so we can get

σ 2
1 ≈

1
K 2N
{

K∑
k=1

E[|wk (n)|2pk

+
2pk (2pk − 1)

2!
|hks(n)|2|wk (n)|2pk−2]

−E2[|wk (n)|pk +
pk (pk − 1)

2!
|hks(n)|2|wk (n)|pk−2]}

=
1

K 2N

K∑
k=1

{E[|wk (n)|2pk ]− E2[|wk (n)|pk ]

+σ 2
s |hk |

2pk (2pk − 1)E[|wk (n)|2pk−2]

−σ 2
s |hk |

2pk (pk − 1)E[|wk (n)|pk−2]}

≈ σ 2
0 +

σ 2
s

K 2N

K∑
k=1

|hk |2
(
0 (2/βk )
0 (4/βk )

)pk−1
pkσ 2pk−2

w

{(2pk − 1)
0 (2pk/βk)
0 (2/βk )

−(pk − 1)
0 ((pk + 2)/βk) 0 (pk/βk)

202 (2/βk )
}. (15)

We guess that N in any given detection interval is suf-
ficiently large, in view of the central limit theorem, even
wk (n) is non-Gaussian noise distribution, the distribution of
the FLOM detector statistics is similar to a Gaussian distri-
bution. So for H0, the FLOM detector statistics is expressed
as Gaussian with mean u0 and variance σ 2

0 and, for H1, with
mean u1 and variance σ 2

1 , respectively. Therefore Pfa and Pd
of the FLOM detector is computed as

Pfa = {yFLOM > λ|H0} = Q(
λ− u0√
σ 2
0

) (16)

Pd = {yFLOM > λ|H1} = Q(
λ− u1√
σ 2
1

) (17)

where λ is the detection threshold, Q (a) =
∫
∞

a
1
√
2π
e−

y2
2 dy

is the Gaussian Q-function.
For the fading communication channels, the Pfa and Pd

depend on the channel gain hk . In order to make the problem
tractable, we consider the low SNR case, σ 2

s → 0, σ 2
1 ≈ σ

2
0 .

λ is determined by a fixed Pfa according to (16), substituting
λ into (17), we obtain the detection probability Pd

Pd = Eh

Q
λ− u1√

σ 2
1


≈ Eh

Q

√
σ 2
0Q
−1(Pfa)+ u0 − u1√

σ 2
0


= Eh

{
Q

(
Q−1(Pfa)−

σ 2
s

2Kσ0

K∑
k=1

|hk |2pk (pk − 1)t

)}
= Eξ

{
Q
(
Q−1(Pfa)− ξ

)}
(18)

where

t =
(
0 (2/βk )
0 (4/βk )

)(pk−2)/2 0 ((pk )/βk)
0 (2/βk )

σ pk−2w (19)

ξ =
σ 2
s

2Kσ0

K∑
k=1

|hk |2pk (pk − 1)t (20)

where Q−1 (·) is the inverse of the Gaussian Q-function. For
calculation of (18), the PDF of ξ , pξ (ξ ) is needed. As has been
pointed out in [22] and [23], a K -detector system transmitted
in a Nakagami independent fading channel equals to an L =
Km channel diversity for a Rayleigh fading channel, this
lead to

pξ (ξ ) =
ξL−1

(L − 1)!ξ̄
L exp(−ξ/ξ̄ ) (21)

The noise signal and fading gains are IID progress, for sim-
plicity, pk = p, βk = β. ξ̄ is the average value of ξ , is
defined as

ξ̄ =
σ 2
s σ

2
h

2σ0
p(p− 1)

(
0 (2/β )
0 (4/β )

)(p−2)/2
0 ((p)/β)
0 (2/β )

σ p−2w

(22)

Then (18) is written as

Pd = Eξ
{
Q
(
Q−1(Pfa)− ξ

)}
=

∞∫
0

Q
(
Q−1(Pfa)− ξ

)
pξ (ξ )dξ (23)

where Pfa ≤ 1/2, we have Q−1(Pfa) ≥ 0. The expression of

the Gaussian Q-functionQ (a) =
∫
∞

a
1
√
2π
e−

y2
2 dy. By putting

(21) into (23), Pfa of the FLOM detector under Nakagami
fading channel is expressed as

Pd =
1
√
2π

∫
∞

0

∫
∞

Q−1(Pfa)−ξ
e−y

2/2dy
ξL−1

(L − 1)!ξ̄L
e(−ξ/ξ̄ )dξ

(24)

Pd can be easily evaluated by MATLAB through the expres-
sion of (24).
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IV. NUMERICAL AND SIMULATION RESULTS
In this section, we use the FLOM detector to detect the
primary user signal in Cognitive Radio Network (CRN) and
give the simulation and numerical results. Here the s(n) is
assumed to be a Gaussian random variable with zero-mean
and the GGD noise with 0 < β < 2 is generated by the
three-step method [21]. Here,Pf a = 0.1,N = 1000, if there
is no special explanation.

FIGURE 2. Effect of the detection threshold on Pfa with N=1000, K = 1,
SNR = −15dB.

Fig. 2 shows the effect of the the detection threshold on Pfa
for different β and p. It can be seen that the Pfa decreases with
increasing the detection threshold. From Fig. 2, it is clear that
the theoretical results agree well with the simulation results.

In Fig. 3, we display Pd of the FLOM detector varies
according to p. Here in order to compare the different per-
formance of the detectors based on the lower order moments,
the second order moments and the higher order moments,
we assume 0 < p < 10 with the shape factor β = 0.8 and
1.5 in the simulation. It is seen that the Pd decreases with p
increasing. The results verify that the performance of FLOM
detector (p < 2) is better than the traditional detectors, such
as the second moment (p = 2) based detectors and the higher
moments (p > 2) based detectors. The numerical results
agree well with their simulations.

In Fig. 4, we compare the receiver operating characteris-
tic (ROC) curves of different p and β. Note that with β = 0.8
(or β = 1.5), the smaller the value of p is, the higher the
performance of the FLOM detector will achieve. Similarly,
when p = 1, the smaller β has the better performance.
Specially, in the case of β = 1.5, when p = 2 (the energy
detector), its performance is worse as compared to p = 1.
Thus, traditional energy detector has poorer performance than
our FLOM detector in non-Gaussian noise. Among 4 groups
of data, the ROC curves for p = 0.5, β = 0.8 achieve the best
detection performance.

Fig. 5 shows the probability of detection with different
SNR. The Pd increase as SNR increasing. The numerical
results are in close agreement with the simulation results.

FIGURE 3. Pd versus p with K = 1 and β1 = 0.8, β2 = 1.5.

FIGURE 4. Effect of p and β on the ROC of the proposed detector for
SNR = −15dB, K = 1, N = 1000.

FIGURE 5. Pd versus SNR for different p and β with K = 1.

Fig. 6 shows the relation between the pd and β. From
Fig. 6, it shows that as β decreases, the Pd of the
FLOM method is increased significantly,however that of the
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FIGURE 6. Probability of detection of the proposed detector and energy
detector (p = 2) versus β.

FIGURE 7. ROC for Nakagami channels with different m.

FIGURE 8. ROC of the detector over Nakagami channels with different K .

ED decreases. That is to say, under the non-Gaussian noise
environment, ED scheme is failed and the performance of the
FLOM detector is perfect. At the same time, the result shows

that the performance of the FLOM detector is increasing with
p decreasing, which agrees with the results of Fig. 3.
Fig. 7 compares the ROC curves for Nakagami fading

channels with m = 2, 1, 0.5, p = 0.5, SNR = −15dB,
K = 4. From Fig. 7, we can see that when the value of m
increases, the detection performance is increasing. Figs. 8
shows the effect of the number of detectors K on the ROC
for m = 2. Obviously, the bigger the number of detectors is,
the higher the performance will achieve. Thus, it is useful for
multi-detector cooperative detection to gain a better perfor-
mance of detecting the received signal.

V. CONCLUSIONS
The fractional order moments of the received signal has been
proposed to detect the presence or absence of signal. The
performance of the detector has been verified by theoretical
analysis and Monte Carlo simulation. The detector, as a blind
detector, can be used for detection applications under gen-
eralized gaussian distribution noise environment without any
priori-knowledge of noise, channel and signal.
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