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ABSTRACT A two-step identification method of secondary crashes (SCs) is developed in this paper, and
the effects of traffic variables on the SC risks on freeways are captured. Crash-related data were obtained
from the I-880 freeway in California, USA. Combined with the speed contour map, the SCs were identified
by the real shock wave speed index and the SC identification index. The random effect logit regression
was applied to analyze the significantly contributing factors and their mechanism on the SCs. The results
showed that the significantly contributing factors are different between the initial SC model and SC models
(Threshold = 20mile/h, 15mile/h, 10mile/h, 5mile/h), except for the variable of the standard deviation of 30-
s vehicle speed during 5–10 min. In the SC models, the number of significant contributing factors increases
with the increase in the threshold value. The results of the elasticity analysis showed that the elasticity values
of the hit object crash, wet surface road, the average 30-s vehicle speed during 5–10 min, and the average
30-s vehicle count during 5–10 min are greater than 10%.

INDEX TERMS Freeways, traffic flow, secondary crash, identification method, random effect logit
regression.

I. INTRODUCTION
Secondary crashes (SC) happen in the impact ranges of prior
crashes, which is regarded as a result of primary crashes (PC).
Moreover, SC can result in increased traffic flow fluctuation
and more crashes. To reduce the adverse congestion and
safety impacts associated with SC, increased attentions have
been given to develop advanced management and control
strategies to prevent SC. Accordingly, numerous studies have
been proceeded to understand themechanisms of SC and their
contributing factors [1]–[3].

In most of the previous studies, SC was identified by the
static threshold methods (STM) based on some fixed tempo-
ral and spatial range. That is to say SC would happen in a
fixed spatial and temporal range of a PC. Many researchers
have used STM to analyze the mechanism of SC [4]–[7].
However, the limitation of STM is that the determination of
temporal and spatial range is too subjective to give a objective
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and accuracy identification of SC [1], [8]–[10]. Recently,
a number of researchers proposed different dynamic meth-
ods (DM) to overcome the limitation of STM, such as auto-
matic tracking of moving jams, speed contour, shock wave
principles and vehicle probe data [11]–[14]. The traffic flow
characteristics (e.g. density, flow, and speed) which fluctuate
over space and time were used in DM. These DM can help to
better understand the mechanism of traffic flow and the queue
formation process.

In addition to SC identification methods, the characteris-
tics of SC have also been explored in some studies. It was
found that some contributing factors are related to the SC
risk [6], [14]–[17]. Previous studies utilized random effect
logit (REL) regression to analyze the relationship between
SC risk and contributing factors, such as traffic flow vari-
ables, PC characteristics factors, environmental factors, and
geometric design factors.

Numerous studies established probit or logit parametric
models to explore the mechanism of SC [12], [13], [16].
Zhang and Khattak [9] used the ordered logistic regression to
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analyze the relationship between the occurrence probability
of SC and the characteristics of the PC. The result indicated
that PC duration and the number of involved vehicles signif-
icantly affect the SC risks. Yang et al. [15] used the logistic
regression to analyze the effects of the PC characteristics
on the SC risks. The results indicated that occurrence time
and collision type of the PC are main contributing factors to
SC. Khattak et al. used the logistic regression to establish
a SC risk prediction model. It was found that the time of
day, adverse weather conditions, and detection source of the
PC are related with the occurrence probability of SC [17].
The artificial intelligence methods such as Bayesian neural
networks model [12], machine learning algorithms [18],
were also applied in analyzing SC,

Although many studies have analyzed SC, limited studies
have considered what SC really is, and how to identify SC
with more reasonable method. In previous studies, no matter
what the method of identification of SC is, the primary task
is to identify the influence area when the PC occur at the
downstream on freeway. However, the influence area has
the spatial and temporal restriction. The traffic is related
to various variables, such as traffic flow variables, environ-
ment variables, and geometric design variables. When a prior
crash occurs, the traffic situation is becoming more complex.
As such, the vital questions of identifying SC are (i) how to
confirm the spatial and temporal restriction of the influence
area when a crash occur, (ii) how to judge the impact of prior
crash on traffic flow states, and (iii) how to distinguish that
the change of traffic state at the location of SC is affected by
the prior crash or other factors such as recurrent congestions.
In this study, the primary objective was to explore the SC
identification method by traffic flow theory, and to analyze
the contributing factors of SC. This study can promote the
understanding of the mechanism of SC and help the road
safety management authorities to reduce SC risks.

II. DATA
The related data used in this study were acquired from the
I-880 freeway, in the San Francisco Bay area of California,
United States. The length of the selected freeway section is
35-mile, and the length of time period is from 2006 to 2010.
134 loop detectors on two directions were adopted. Traffic
data, road design data, and crash data were acquired from the
Highway Performance Measurement System (PeMS) main-
tained by the California Department of Transportation. The
related data included traffic flow variables, PC characteristics
factors, environmental factors, and geometric design factors.
A total of 8,981 crashes were used in this study. There were
three types of crashes, including SC, PC, and the normal
crashes (NC). PC are defined as the crashes that lead to SC,
while NC are defined as the crashes that did not lead to SC.
Themethod of identification of SC and the number of SC, PC,
and NC are given in section VI.

Traffic data were collected from the nearest loop detector
station to crashes. Specifically, traffic count, speed, and occu-
pancy were collected in 30s for each lane. Moreover, weather

data were collected from three weather stations which were
located within five miles from the selected freeway segment.
In order to match the crash data, weather data was collected
5 to 10 minutes before the occurrence of recorded crash.
In Table 1, the 30s raw data of 5-min intervals for each
crash were further converted into the 24 traffic flow vari-
ables. In addition, 6 crash characteristic variables, 4 environ-
ment variables, and 4 geometric characteristics variables were
induced in Table 1. A total of 38 candidate variables were
considered.

III. METHODOLOGY
In this research, REL regression was used to identify the
impact factors of SC on freeway. The impact factors were
related to geometric design characteristic, PC characteristic,
traffic flow, and environment conditions. In REL regression,
the heterogeneity induced by the unobserved factors, such as
driver age, driver gender, was explained by a random effect.
Neglecting the heterogeneity can induce bias parameter esti-
mates and inconsistent [19], [20]. The REL regression is
showed as:

yi ∼ Bernoulli (pi) (1)

logit (pi) = β0 + θr + β1x1i + β2x2i + · · · + βkixki (2)

where yi indicates the SC indicator (1 represent a SC occurred
caused by a PC, and 0 represent no SC happened) for the
ith observation in the sample; pi indicates the probability of a
SC for the ith observation; xki indicates the value of variable
k for sample i; βk indicates the coefficient of variable k;
θr is a random term which catches the random effects for
freeway segment r . In general, the random effect term θr is
hypothesized to be normally distributed with mean uθ and
variance 6θ [21], [22].
Based on the above specifications, the likelihood function

can be written as:

f (Y |2)

=

N∏
i=1

Pi=
N∏
i=1

[(
eβ0+θr+β1x1i+β2x2i+···+βkixki

1+ eβ0+θr+β1x1i+β2x2i+···+βkixki

)yi
×

(
1−

eβ0+θr+β1x1i+β2x2i+···+βkixki

1+ eβ0+θr+β1x1i+β2x2i+···+βkixki

)(1−yi)]
(3)

where 2 indicates the vector of the parameters to be esti-
mated, including the regression parameters β, the random
effect θ for different freeway segment, the mean of random
effect uθ , and the variance of random effect6θ . Accordingly,
2 = [β, θ, uθ , 6θ ].
To estimate the effect of the impact factors on SC

probability, the elasticity analysis was utilized. Specifically,
the independent variable can be continuous variable or indica-
tor variable. As such, two equations were given to calculated
the elasticity. The elasticity of a continuous independent vari-
able xi is showed as:

Ei =
∂Yi
∂xi
×
xi
Yi
= [1− P(i)]βixi (4)
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TABLE 1. Variables.

In this study, the average elasticity of a continuous variable
was used to interpret its quantitative effect on the outcome.

As for the indicator variable, the pseudo-elasticity an indi-
cator variable xi is computing by the following equation [23]:

Ei = [
EXP[1(x ′β)][1+ EXP(xiβi)]
EXP[1(x ′β)][EXP(xiβi)]+ 1

− 1]× 100 (5)

IV. A TWO-STEP IDENTIFICATION METHOD OF SC
A. THE INITIAL IDENTIFICATION OF SC
Traditionally, STM and DM are used to identify a SC. How-
ever, STM have the problem of subjective judgment of fixed
spatial and temporal thresholds. As an alternative of STM,
the DM can determine dynamic thresholds by using queue
length estimations or traffic flow simulation. Nevertheless,
numerous DM still have drawbacks. For instance, the DM
which use queue length estimations need detailed queuing
information. However, this information is not always avail-
able [10], [6], [15]–[17]. Another DM which use incident
progression curve utilize only one identical curve for all SC,
which may lead to unreliable results [10].

In order to overcome the drawbacks accompanied with the
STM and DM, this study applied a method based on the
speed contour figure to initially identify SC. This method

utilizes real-time traffic flow data to determine the spatial
and temporal influencing range of a prior crash and simul-
taneously takes the effects of recurrent congestions into
account. Subsequently, an initial SC is identified if it is
within the spatial and temporal influencing range of the cor-
responding prior crash. The proposed method is detailed as
follows.

1) STEP ONE
The 5-min speed data were extracted to produce a speed con-
tour figure for a prior crash. Specifically, the speed data were
extracted from the loop detectors within 10 miles upstream
and 10 miles downstream the prior crash during the time
interval between 6 hours before and 6 hours after the prior.
Figure 1(a) shows an example of a speed contour figure.
It can be clearly seen from the figure that congestions and
queue formations occur after the prior crash. However, less
information is offered by the figure about whether the queue
formations were resulted from recurrent congestions or the
prior crash. To eliminate the effects of recurrent congestions,
the spatial and temporal influencing range of the prior crash
should be determined, which is given by the following two
steps.
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FIGURE 1. Initial identification of SC.

2) STEP TWO
The 5-min speed data for the same time and same location in
step one, however, from crash-free days, were extracted for
the whole year in this step. For instance, the prior crash in
Figure 1(a) happened at 11:45 am on September 20, 2010 at
milepost 3.95. Following this step, the speed data for the
same time and location in Figure 1(a) were collected from
all crash-free days in 2010. Subsequently, the speed data for
each time and location was averaged over all the crash-free
days.

3) STEP THREE
To eliminate the potential effects of recurrent congestions, the
average speed in step two was subtracted from the speed data
for each time and location in step one. A new speed contour
figure was developed using the differences between speeds
in step two and step one for various times and locations. The
new speed contour figure as shown in Figure 1(b) was then
used to determine the spatial and temporal influencing range
of the prior crash.

4) STEP FOUR
The crashes that happened within the spatial and tempo-
ral influencing ranges of PC were identified as initial SC.
The crashes that did not lead to initial SC were identified
as NC.

Following the above four steps of initial identification
method, the numbers of SC, PC, and NC in the dataset are
97, 97, and 8787 respectively.

B. IDENTIFICATION OF SC BY SHOCKWAVE
Subsequently, the method based on shockwave is used for
accurate identification of SC. Obviously, the SC is the crash
that is caused by PC. In early studies of STM and DM,
the aim is to identify PC influence area. In recent studies,
the shockwave theory was used to identify PC influence
area based on traffic flow theory. However, all the above
mentioned methods have ignored the fact that PC affect the
transition of traffic flows, and the transition of traffic flows
affect the occurrence of SC. Namely, PC indirectly affects
the SC. If the traffic flow state is stable or the transition of
traffic flows is not affected by the prior crash, the crash in
PC influence area, which identified by the initial methods
mentioned above, can no longer be identified as a SC. It is
because that these phenomena also occur in the situation of
non-SC.

The location of crashes can be seemed as a bottleneck on
freeway. When a crash occurs, a shock wave maybe devel-
oping from the crash location to the upstream. If Vreal < 0
in Eq. (6), the shock wave is developing. If Vreal ≥ 0,
it indicates that the upstream traffic flow is not affected.
Therefore, when Vreal ≥ 0, although the upstream crashes are
in speed contour map, they cannot be identified as SC. Only
in this case that a crash locates in the upstream of PC and the
speed contour map, meanwhile, the crash is affected by the
shock wave, and the SC can be identified. Although the shock
wavewill lead to traffic flowfluctuation, it still has spatial and
temporal restriction. Therefore, there is in need of a εthreshold
in Eq. (7). In this study, the value of εthreshold is 20 mile/h,
15 mile/h, 10 mile/h and 5 mile/h were adopted. In Eq. (8),
if Vreal−threshold ≤ Vsecondary−primary ≤ Vreal+threshold , a SC
is identified. As shown in Figure 2, crash B occur in the speed
contour map and the upstream from the crash A, the value of
Vsecondary−primary is betweenVreal−threshold andVreal+threshold .
It indicates that the crash B is affected by the shock wave
which is generated by crash A. On the other hand, although
crash C and crash D are in the speed contour map and the
upstream from the crash A, they are not affected by the shock
wave. Crash C occurs after the shockwave and crashD occurs
before the shock wave. There are no direct and real-time
relationship between the crash A (PC) and traffic flow states
at the location of crash C and D.

The real shock wave speed index (RSWSI) can be
calculated by:

Vreal =
qi − qj
ki − kj

=
120× Qi − 120× Qj

120×Qi
Vi
−

120×Qj
Vj

(6)

where Vreal is the real shock wave speed index (RSWSI)
(mile/h); qi(vehicle/h), qj(vehicle/h), Qi(vehicle/30s) and
Qj(vehicle/30s) are the traffic volume of crash i and j;
ki(vehicle/mile) and kj(vehicle/mile) are the density of crash
i and j; Vi(mile/h) and Vj(mile/h) are the density of crash
i and j. Crash j occurs at the upstream of crash i.

Vreal±threshold = Vreal ± εthreshold (7)

VOLUME 7, 2019 22887



B. Yang et al.: Analysis of Freeway SCs With a Two-Step Method by Loop Detector Data

FIGURE 2. Identification of SC by shockwave.

where Vreal±threshold is spatial and temporal restriction of
shock wave (mile/h); εthreshold is the threshold value (mile/h).

Vsec ondary−primary =
S
T
=

Si − Sj
Ti − Tj

(8)

where Vsecondary−primary is SC identification index (SCII)
(mile/h); Si (mile), Sj(mile), Ti (h) and Tj (h) are the location
and time of crash A and crash B; S (mile) and T (h) are
the difference of the location and time between crash A and
crash B.

The number of SC, PC, and NC in section VI-A are further
identified by the method proposed in this section. The final
number of SC, PC, and NC are given in Table 2. It reveals
that the number of SC and PC are smaller with the threshold
decreasing.

TABLE 2. The distribution of SC crashes in different identification method.

V. RESULTS OF REL REGRESSIONS
REL regressions were applied to identify how different types
of variables affected the SC probability. The events are PC
that induce SC and the non-events are NC that did not induce
SC. In REL regression, 1 is PC, 0 is NC. P-value of 0.1 was
employed for parameter estimate significance in these mod-
els. The REL regression were estimated using the software
package STATA. The results of REL regressions are presented
in Table 3.

In Table 3, the results (initial SC) showed that the average
30s vehicle occupancy during 5-10 minutes (Occ5) is found
to be positively related to the SC risks, implying that the

crashes occurred in high-occupancy traffic have high prob-
ability to lead to SC. The positive parameter of the standard
deviation of 30s vehicle speed during 5-10minutes (Stdc5) and
the average difference in 30s vehicle count between 15-20
minutes and 5-20 minutes (Ldc), and the negative parameter
of variation of 30s vehicle count during 5-10 minutes (Cc5)
show that the SC risks increase as Stdc5, Ldc increases and
Cc5 decreases. The increasing Stdc5, Ldc and the decreasing
Cc5 represent an increase disturbances and instability in traf-
fic state leading to increased SC risks. The turbulent traffic
conditions can lead to higher SC probability. The negative
coefficient with lanes counts (Nl) suggests that the SC risks
increase with an decrease in Nl. It implied that lane changing
with less lanes onmultilane freeway can increase the SC risks.

Further, elasticity analysis was applied to quantify the
impacts of significant variables on the SC probability.
As shown in Table 3, the average elasticity for the five
traffic variables (Occ5, Stdc5, Cc5, Ldc and Nl) are 0.786,
2.263, −3.799, 1.267 and 1.369, respectively, indicating that
a 1% increase in these five traffic variables leads to 0.786%,
2.263%, −3.799%, 1.267%, and 1.369% increases in the
SC probability, respectively. Moreover, the absolute value of
coefficient of variation of vehicle count is the largest among
the five, indicating that the impact of variation of vehicle
count on SC risks is greater than other traffic variables.

The results (threshold=20mile/h) also showed that non-
PDO (Se) and sideswipe (Sw) crashes have negative effects on
SC risks. The average 30s vehicle count during 5-10 minutes
(Cnt5) and the standard deviation of 30s vehicle count during
5-10 minutes (Stdc5) is positively related to the SC risks, and
the average 30s vehicle speed during 5-10 minutes (Spd5) is
negatively correlated with the SC risks, suggesting that the
crashes occurred in high-flow and low-speed traffic are more
likely to lead to a SC. In addition, the results also implied that
a crash happened onweekday (Dw), wet surface road (Rs) and
low visibility (Vi) can increase the SC risks.
A SC probability increases 3.011%,−1.325% and 0.189%

for a 1% increases in Cnt5, Spd5 and Stdc5. In addition, the
probability of a SC involving a non-PDO crash, a sideswipe
crash, weekday, wet surface road and low visibility increases
by −24.519%, −34.323%, 4.775%, 35.877% and 1.459%,
respectively.

The results of the model (threshold=15mile/h) is simi-
lar to the results of the model (threshold=20mile/h). The
results (threshold=15mile/h) also showed that sideswipe
(Sw) crashes have negative effects on SC risks. The average
30s vehicle count during 5-10 minutes (Cnt5) and the standard
deviation of 30s vehicle count during 5-10 minutes (Stdc5) is
positively associated with the SC risks, and the average 30s
vehicle speed during 5-10 minutes (Spd5) is negatively asso-
ciated with the SC risks, indicating that the crashes happened
in high-flow and low-speed traffic have high probability of
leading to a SC. In addition, the results also implied that the
crash happened on wet surface road can increase the SC risks.

A SC probability increases 2.932%, 12.354% and 0.019%
for a 1% increases in Cnt5, Spd5 and Stdc5. In addition, the
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TABLE 3. Results of REL regressions.

probability of a SC involving a sideswipe crash, and occurring
on wet surface road increases by −27.003% and 32.106%,
respectively.

The results of the model (threshold=10mile/h) and the
results of the model (threshold=5mile/h) showed that the hit
object (Ho) crashes have positive effects on the SC risks. The
average 30s vehicle count during 5-10 minutes (Cnt5) in the
model (threshold=10mile/h) and the wet surface road (Rs) in
the model (threshold=5mile/h) have positive effects on SC
risks.

In elasticity analysis, the results of the model (threshold=
10mile/h) showed that the SC probability enhances 10.136%
for a 1% increases in Cnt5. The probability of a SC involving
a hit object crash increases by 49.155%. The results of the
model (threshold=10mile/h) showed that the crash proba-
bility of a SC involving a hit object crash and occurring
on wet surface road increases by 66.378% and 40.068%,
respectively.

VI. DISCUSSION AND CONCLUSIONS
In this study, a two-step identification method of SC was
proposed, and the REL regressions were used to capture
the effects of traffic variables, such as traffic flow variables,
geometric design variables, environment variables, on the SC
risks on freeways.

More specifically, compared to the other identification
methods of SC, only in this case that a crash locates in
the upstream of PC and the speed contour map, meanwhile,
the crash is affected by the shock wave, then the SC can be
identified. The real shock wave speed index (RSWSI) and
SC identification index (SCII) are used to identify the SC in
this study. In the initial SC model, the average 30s vehicle
occupancy during 5-10minutes (Occ5), the standard deviation
of 30s vehicle speed during 5-10minutes (Stdc5), and the aver-
age difference in 30s vehicle count between 15-20 minutes
and 5-20 minutes (Ld) have been proved that can enhances
the SC risks. The coefficient of variation of 30s vehicle count
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during 5-10 minutes (Cc5) and lanes counts (Nl) can decrease
the SC risks. In the SC models (Threshold=20mile/h,
15mile/h, 10mile/h, 5mile/h), the average 30s vehicle count
during 5-10 minutes (Cnt5), the standard deviation of 30s
vehicle speed during 5-10 minutes (Stdc5), low visibility (Vi),
wet surface road (Rs), and the hit object crashes(Ho) can
increase the SC risks. Non-PDO crashes (Se), sideswipe
crashes (Sw), the average 30s vehicle speed during 5-10 min-
utes (Spd5), weekday (Dw) can decrease the SC risks. The
REL regression estimate results revealed that the signifi-
cantly contributing factors are different between the initial SC
model and the SC models (Threshold=20mile/h, 15mile/h,
10mile/h, 5mile/h), except for the standard deviation of 30s
vehicle speed during 5-10 minutes (Stdc5). In the SC mod-
els, the number of significant contributing factors increases
with the threshold value increase. In the elasticity analysis,
the elasticity values of the hit object crash(Ho), wet surface
road (Rs), the average 30s vehicle speed during 5-10 minutes
(Spd5) and the average 30s vehicle count during 5-10 minutes
(Cnt5) are greater than 10%. The results in this research can
help road safety management authorities prevent the SC on
freeway, reduce the SC risks, as well as better understand the
significantly contributing factors and their mechanism on SC.
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