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ABSTRACT Robust optimization (RO) is an important tool to solve the security-constrained unit commit-
ment (SCUC) problem for a power system with large-scale wind power. The main disadvantage of RO is that
it is overly conservative, and the conservativeness of RO can be attributed to the uncertainty set used in the
formulation. This paper proposes a two-stage robust SCUCmodel considering the spatiotemporal correlation
of the uncertainty prediction error. First, based on the historical data, a polyhedral uncertainty set that
can describe the spatial-temporal correlation of uncertainties is established, and the analytical relationship
between confidence probability and the uncertain set is given. Second, a two-stage robust SCUC model
with the objective of minimizing the operating cost under the forecasting scenarios is proposed based on the
polyhedral set. Third, the Benders decomposition method is used to solve the proposed model according to
its characteristics. The simulation results on the modified IEEE-30 and IEEE-118 bus system demonstrate
that the proposed method can reduce the conservativeness of RO and guarantee the security and economy of
the unit commitment.

INDEX TERMS Robust optimization, power generation dispatch, SCUC, power systems, smart grids.

I. INTRODUCTION
Although the large-scale integration of wind power promotes
the green development of power systems, the uncertainty
of its output brings severe challenges to the dispatching
and operation of power systems. In order to cope with this
challenge, new optimal dispatching strategies are urgently
needed in power systems. Stochastic scheduling and robust
scheduling have unique advantages in dealing with uncer-
tainties [1]–[6]. The former generally depicts the uncer-
tainty of wind farm output by simulating scenarios [7]–[8],
while the latter describes the uncertainty by using uncertainty
sets [9]–[11].

Robust optimization (RO) uses closed convex sets to
describe the uncertainty of parameters and solves the optimal
problem under the ‘‘worst case.’’ Therefore, the results of
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RO are generally conservative. The conservativeness of RO’s
results is directly affected by the set of uncertain parameters.
Reference [12] uses the upper and lower bounds of each
uncertain variable at a certain confidence level as the uncer-
tainty set. References [3] and [11] use the box set to describe
the uncertainty, which further reduces the conservativeness
of the RO. Due to the linear nature of the box set, it is more
widely used in the power system. References [3] and [12]
propose a general modeling method for wind power uncer-
tainty set for RO. This method considers the time smoothing
effect between different periods of a single wind power plant,
which reduces the conservativeness of the uncertainty sets to
some extent. In [13], based on considering the time smoothing
effect of the prediction error of a single wind power plant,
the spatial cluster effect between wind power plants is further
considered, and the uncertainty set of wind power is further
compressed.
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The above research works have made many contribu-
tions to reduce the conservativeness of RO. However, they
all assume that the prediction error among different wind
power farms and the various scheduling periods are inde-
pendent of each other. In fact, the prediction error of wind
power output is mainly caused by the difficulty in accu-
rately predicting the meteorological conditions. Considering
the continuity of the scheduling period and the geographical
proximity of wind farms, this assumption of independence
may not be guaranteed in practice and the effectiveness of
the data needs to be assessed through actual data. Taking the
wind power dispatching problem as an example, the wind
farms not far from each other often have the correlated
outputs [14]–[16].

Using the wind power data of Irish wind farms, [17] points
out that the wind power prediction error sequence has auto-
correlation, and proposes a statistical method to reduce the
wind power prediction error by using this feature. In [18],
the covariance matrix of wind power prediction error is
added to the Gaussian distribution, and the model consid-
ering correlation is used to improve the economics of the
robust optimal power flow model. The ellipsoidal set can
consider the spatiotemporal correlation of wind power [4],
and the coefficient matrix of the ellipsoid set is the covariance
matrix of wind power, which has a natural advantage in
incorporating the wind power correlation into the analysis.
However, the mathematical form of the ellipsoid set makes
it difficult to be applied to the RO problem, which limits its
application.

In this paper, a two-stage robust SCUC method that
takes into account the spatiotemporal correlation of uncer-
tainty prediction error is proposed. The main contributions
of this paper are twofold: (1) A linear polyhedral uncer-
tain set that can describe the temporal-spatial correlation of
uncertainty is established and sequentially integrated into
the RO problem; (2) a two-stage robust SCUC model is
established to minimize the operating costs robustly under
uncertainties.

The rest of this paper is organized as follows: an uncertain
set considering spatiotemporal correlations of the prediction
error is established in Section II; the proposed two-stage
robust SCUC model is then formulated in Section III; and
the solution methodology is given in Section IV; Section IV
presents numerical case study results, and the conclusions are
drawn in Section V.

II. UNCERTAIN SET MODELING CONSIDERING
SPATIOTEMPORAL CORRELATION OF
PREDICTION ERRORs
In the unit commitment problem of power systems, the fore-
cast value of wind power output and load are both uncertain
quantities. This section uses wind power output as an example
to construct an uncertain set considering the correlation of
time and space. The uncertainty of the load can be modeled
in a similar manner.

A. VERIFY THE SPATIOTEMPORAL COEEELATION OF
PREDICTION ERRORS
Wind power prediction error are mainly due to complexmete-
orological conditions that cannot be accurately predicted.
Considering the continuity of the scheduling period and the
proximity of the geographic locations of the wind farms, there
is a certain spatiotemporal correlation between the prediction
error of adjacent time segments or adjacent wind farms. This
correlation reflects the fluctuation level of wind power output
and affects the conservativeness of the uncertain set of wind
power.

The historical data of wind power output from
October 2017 to September 2018 provided by the Belgian
transmission system operator Elia [19] is used as statistical
data to analyze the correlation of predicted error. In order to
visually analyze the characteristics of wind power output pre-
diction error, figure 1 shows the prediction error distribution
of the statistical data of two adjacent time periods, indicating
that the prediction error has a very obvious aggregation effect.

FIGURE 1. Aggregation effect of wind power measurement prediction
error.

FIGURE 2. Wind power prediction error correlation matrix of different
time periods of single wind farm.

Figure 2 shows the correlation coefficient matrix of the
prediction error for 24 periods. In Figure 2, the horizontal
and vertical coordinates respectively correspond to random
vectors of prediction errors in all scheduling periods. Each
square represents the prediction error correlation coefficient
of the corresponding two periods. The analysis shows that
the correlation coefficient of the prediction error of each
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scheduling period is mostly between 0.2∼1.0, and the closer
the scheduling period is, the stronger the correlation is.
Therefore, there is a strong correlation between prediction
errors of adjacent scheduling periods.

In addition to the strong temporal correlations among the
wind power predication error, there also exist the strong
spatial correlations among them, which proved in figure 9 of
section V.

B. OVERVIEW OF TYPICAL UNCERTAIN SETS
In [10]–[12], the modeling problem of uncertainty set of wind
power output is studied. W1 represents the upper and lower
bounds of wind power output. The main idea is to consider
the time smoothing effectW2 and spatial cluster effectW3 of
wind power output in the confidence interval. This method
is called box-type uncertain set (BUS) modeling, and its
mathematical model can be briefly expressed as follows

WBUS
= W1 ∩W2 ∩W3 (1)

W1 = {wwt |wewt − Kσwt ≤ wwt ≤ w
e
wt

+ Kσwt∀i ∈ Gw,∀t ∈ T } (2)

W2 =

{
wwt |

∑|T |

t=1

|wwt − wewt |
σwt

≤ 0Tw∀w ∈ Gw

}
(3)

W3 =

{
wwt |

∑|Gw|

t=1

|wwt − wewt |
σwt

≤ 0St ∀t ∈ T
}

(4)

where, wwt represent the actual wind power output; we, σ
represent the expectation wind power output and the standard
deviation of the prediction error, respectively;K is a constant,
determined by the given confidence probability α; Gw, T
are sets of wind farms and scheduling periods respectively,
|Gw| and |T| represent their cardinality respectively; 0T is
a time-indeterminate budget, which is used to describe the
time smoothing effect of wind power output; 0S is a spatially
uncertain budget, which is u sed to describe the spatial clus-
tering effect of wind power output.

The uncertain budgets in Eq. (3) and (4) can be described
by expectation values and standard deviations without know-
ing the specific distribution. 0T and 0S can be obtained
based on Chebyshev’s inequality [20], which are expressed
as follows 

K =

√
1

1− α

0Tw = µwT + σwT

√
1

1− αT
− 1

0St = µtS + σtS

√
1

1− αS
− 1

(5)

where,µwT and σwT are the expected and standard deviations

of
∑|T |

t=1

∣∣∣wwt−wewtσwt

∣∣∣, respectively; µtS and σtS are the expected
and standard deviations of

∑|Gw|
t=1

∣∣∣wwt−wewtσwt

∣∣∣, respectively; αT
and αS are the given confidence probabilities.

C. UNCERTAIN SET MODELING CONSIDERING
SPATIOTEMPORAL CORRELATION OF
PREDICTION ERRORS
Covariance is a typical parameter that characterizes the cor-
relation of random variables. The covariance matrix of the
wind power output prediction error can be obtained through
the statistical analysis on historical data.

Denote the covariance matrix of the wind power vector w
as 6. The wind power output vector can be represented by

w = we +1w (6)

where, w is the wind power output random vector, the expec-
tation of the random vector w is we; 1w is the wind power
prediction error vector. According to the statistical data, the
expectation E(1w) = 0 of 1w, and the covariance is
cov(1w) = 6. 1w can also be expressed as [21]

1w = 61/2v (7)

where, v is a random vector, which is expected to be 0, and
the covariance matrix is an identity matrix.

Multiplying both sides of Eq.(7) by 6−1/2, we have

v =

 v1...
vn

 = 6−1/21w = 6−1/2
1w1

...

1wn

 (8)

In the formula, each random variable of v is independent
of each other, and when a distribution of v is given, the
distribution forms of1w and w can be indirectly determined.

1) ELLIPSOID UNCERTAINTY SET
Given the distribution of v, the distribution of ||v||2 can be
obtained from Eq. (9).

‖v‖2 = vT v = 1wT6−11w = v21 + v
2
2 + · · · v

2
n (9)

In particular, when vw obeys a standard normal distribution,
‖v‖2 obeys the chi-square distribution with a freedom degree
n, i.e.

∑
v2w ∼ χ

2(n) [22].
Apply Eq.(6) to the uncertainty modeling of wind power

output, we denotes the expected value vector of wind power
output, 1w denotes the wind power output prediction error
vector. the uncertainty set of wind power output can be
expressed as

WEGF
=

{
we +1w|1wT6−11w ≤ Kα

}
(10)

In the formula,Kα is a constant corresponding to the cumu-
lative probability distribution of χ2(n) when the confidence
probability is equal to α.

The distribution of v in Eq.(9) can be obtained by analyzing
the actual output characteristics of wind power. The fact that
wind power prediction error approximately satisfies certain
distribution characteristics has been widely confirmed and
recognized [18]. Figure 3 shows the distribution of the mea-
sured wind power prediction error data of Elia. As can be seen
from figure 3, the distribution of the wind power prediction
error can be approximated by the normal distribution. Since v
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FIGURE 3. Schematic diagram of normal distribution of Elia prediction
error original data.

is a random vector, which expectation is 0, and the covariance
matrix is an identity matrix, so the random variables vw in
vobey the standard normal distribution.

In order to facilitate the subsequent comparative analysis,
when the wind power prediction error obeys the normal
distribution, the wind power output uncertainty set given by
Eq.(10) is recorded as the ellipsoid uncertainty set (EUS).
In the next section, the ellipsoidal forms are converted to
the polyhedral uncertain sets to reflect the temporal-spatial
correlations of prediction error.

2) POLYHEDRAL UNCERTAINTY SETS
Considering that random variables vw(w = 1, 2, · · · , n) in
Eq. (8) are independent of each other, defining the distri-
bution of vw respectively can also indirectly determine the
distribution of 1w and w. Give a confidence probability
α, and assume that v1, v2, · · · , vn has the same confidence
probability β, then we have βw = α,w = 1, · · · , n. The
probability that the random vector1w satisfies the following
inequality is α [20], [21].

−Uβ ≤

 v1...
vn

 = 6−1/2
1w1

...

1wn

 ≤ Uβ (11)

where, Uβ =
[
Uβ

1 , · · · ,U
β
w , · · · ,U

β
n

]T
, Uβ is a constant

corresponding to the cumulative distribution of the random
variable vw when the confidence probability is equal to β.

The wind power output uncertainty set is then given by

WPGF
=

{
we +1w| − Uβ ≤ 6−1/21w ≤ Uβ

}
(12)

The wind power uncertainty set of Eq. (12) shows that the
weighted wind power predication errors are bounded by−Uβ

and Uβ , thus the uncertainty is constrained by the polyhedral
regions. For convenience of comparison, the above method
was recorded as polyhedral uncertainty set (PUS).

The methods presented above control the conservativeness
of the set by constructing an analytical relationship between
the uncertain set of wind power output and the confidence
probability. In the above method, any two random variables
1w1 and 1w2 of 1w may be prediction errors of different

wind farms in the same time period, or prediction errors of
different time periods of the same wind farm, which does not
affect the generality and applicability of the method. For the
case of |Gw|wind farms with |T | scheduling periods,1w can
be expressed as

1w= [1w1,1, · · ·1w1,|T |, · · · ,1ww,1, · · · ,1w1,|T |, · · · ,

×1w|Gw|,1, · · · ,1w|Gw|,|T |] (13)

III. PROPOSED TWO-STAGE ROBUST SCUC MODEL
A. DETERMINISTIC SCUC MODEL
1) THE OBJECTIVE FUNCTION
The objective of deterministic SCUC is (14). Prevailing con-
straints include system power balance (20), generation capac-
ity limits of thermal units (21)-(23) and wind farms (24),
minimum on/off time limits (25)-(26), startup/ shutdown
costs (27)-(28), ramping up/down limits (29)-(30), and net-
work security constraint (31).

Min
Pbit ,I

b
it ,P

b
wt

∑
t

∑
i

[Ci(Pbit )+ SU
b
it + SD

b
it ] (14)∑

i

Pbit +
∑
w

Pbwt =
∑
d

Pbdt (15)

Pmin
i · I

b
it ≤ P

b
it ≤ P

max
i · Ibit (16)

0 ≤ Pbwt ≤ P
b
f ,wt (17)[

Xbon,i(t−1) − Ton,i
]
·

[
Ibi(t−1) − I

b
it

]
≥ 0 (18)[

Xboff ,i(t−1) − Toff ,i
]
·

[
Ibit − I

b
i(t−1)

]
≥ 0 (19)

SUb
it ≥ sui · (I

b
it − I

b
i(t−1)),SU

b
it ≥ 0 (20)

SDbit ≥ sdi · (I
b
i(t−1) − I

b
it ),SD

b
it ≥ 0 (21)

Pbit − P
b
i(t−1) ≤ URi · I

b
i(t−1) + P

min
i

· (Ibit − I
b
i(t−1))+ P

max
i · (1− Ibit ) (22)

Pbi(t−1) − P
b
it ≤ DRi · I

b
it + P

min
i · (I

b
i(t−1) − I

b
it )

+ Pmax
i · (1− Ibi(t−1)) (23)∣∣∣∣∣∣

∑
m

SFl,m

∑
i∈U (m)

Pbit+
∑

w∈W (m)

Pbwt−
∑

d∈D(m)

Pbdt

∣∣∣∣∣∣
≤ PLmax

l (24)

where, Pbit and I
b
it are the decision variables, which are the

output of the generator set and the start and stop state respec-
tively; Ci(Pbit ) is the energy cost; SU

b
it and SD

b
it are the on-off

costs; Pbwt denotes the dispatch of wind farm w at time t;
Pbdt is the load forecast of load d at time t; Pmax

i and Pmin
i

denote the upper and lower limits of the output of unit i;
wewt denotes the predicted value of wind power; X

b
on,it , X

b
off ,it

denote the on/off time counters of unit i at time t; Ton,i,
Toff ,i denote the minimum start-up and downtime limit; sui,
sdi is the start-stop cost of unit i; URi, DRi are the unit
climbing power limit; PLmax

l denotes the maximum power
flow constraint of the line; SFl,m denotes the node power
transfer factor; D(m) denotes the set of load demands located
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at bus m; U (m) denotes the set of thermal units located at
bus m; W (m) denotes the set of wind farms located at bus m.

B. ROBUST SCUC MODEL
Forecast values on system load demands Pbdt and wind gener-
ations wewt in the deterministic SCUC model (14)–(24) could
be inaccurate. The uncertainty set for predicting the output of
wind power according to Eq.(12) can be expressed as

wu ∈
{
we +1w| − Uβw ≤ 6

−1/2
w 1w ≤ Uβw

}
(25)

Similarly, the uncertainty set of load forecasting can be
expressed as

Pud ∈
{
Pbd +1Pd | − Uβd ≤ 6

−1/2
d 1Pd ≤ Uβd

}
(26)

In robust SCUC model, the objective is to minimize the
total operation costs in the expected scenario (i.e. Pudt = Pbdt ,
wuwt = wewt ). At the same time, adjust the output of the unit
in uncertain scenarios to cope with the uncertainty of wind
power and load. The objective function and constraints of
robust SCUC problem are as follows.

1) THE OBJECTIVE FUNCTION

Min
Pudt∈P

PUS
d ,wuwt∈WPUS ,Pbit ,I

b
it ,P

b
wt

∑
t

∑
i

[Ci(Pbit )+ SU
b
it + SD

b
it ]

(27)

2) THE CONSTRAINTS
(1) System balance constraint can be represented as:∑

i

Puit (S)+
∑
w

Puwt (S) =
∑
d

Pudt (28)

where, Puit and P
u
wt are the adaptive dispatch adjustment of

unit i and wind farm w at time t in response to uncertain
intervals; Pudt is the uncertain load demand of load d at time t;
S=

{
Pudt ,w

u
wt
}
.

(2) The generation limits of thermal units and wind farms.

Pmin
i · I

b
it ≤ Puit (S) ≤ P

max
i · Ibit (29)

0 ≤ Puwt (S) ≤ w
u
wt (30)

(3) Dispatch adjustments of thermal units in response to
uncertain sets are restricted by their corrective capabilities
and generation dispatches in the base case.

−Rdowni · Ibit ≤ P
u
it (S)− P

b
it ≤ R

up
i · I

b
it (31)

where, Rupi and Rdowni are the up/down corrective action limits
of unit i. Corrective capabilitiesRupi ,R

down
i refer to the 10-min

spinning reserve capacities of generations units.
(4) Ramping up and down limits.

Puit (S)− P
u
i(t−1)(S)

≤ URi · Ibi(t−1) + P
min
i · (I

b
it − I

b
i(t−1))+ P

max
i · (1− Ibit )

(32)

Pui(t−1)(S)− P
u
it (S)

≤ DRi · Ibit + P
min
i · (I

b
i(t−1) − I

b
it )+ P

max
i · (1− Ibi(t−1))

(33)

(5) Transmission network constraint∣∣∣∣∣∣
∑
m

SFl,m(
Puit (S)∑
i∈U (m)

+

∑
w∈W (m)

Puwt (S)−
∑

d∈D(m)

Pudt )

∣∣∣∣∣∣ ≤ PLmax
l

(34)

For the sake of discussion, the compact matrix formula-
tion (35) is used to represent the above robust SCUC model.
In (35), matrix inequality (a) represents constraints in base
scenario, and matrix inequality (b) represents constraints in
uncertain scenarios;

Min
Ib,Pb

NT
· Ib + cT · Pb

s.t.


X · Ib + Y · Pb ≤ gb(a)
Q · Ib +W · Pb + R · Pu(S) ≤ gu(S) (b)
Pb ≥ 0,Pu ≥ 0, Ib ∈ {0, 1}(c)

(35)

where, Ib represents commitment related decisions Ibit , SU
b
it

and SDbit ; P
b represent dispatch related decisions Pbit and P

b
wt ;

Pu(S) represents dispatch related decisions Puit and Puwt in
response to uncertainties.

IV. SOLUTION METHODOLOGY
The proposed two-stage robust SCUCmodel (35) is solved by
the Benders decomposition (BD) method, which decomposes
the original model into a master UC problem and security
check subproblem under various uncertainties.

A. MASTER UNIT COMMITMENT PROBLEM
The Master UC problem (36) derives the unit commitment
Ib and dispatch Pb in the base case. The constraints include
(15)-(24) and all Benders cuts obtained.

Min
Ib,Pb

NT
· Ib + cT · Pb

s.t.

X · Ib + Y · Pb ≤ gb

All Benders cuts obtained so far
Pb ≥ 0, Ib ∈ {0, 1}

(36)

B. SECURITY EVALUATION FOR UNCERTAINTY SETS
1) IDENTIFY THE WORST SCENARIOS WITH THE LARGEST
SECURITY VIOLATION
The first step identifies the worst uncertainty scenario. The
problem can be represented as a max-min problem given
in (37).

Max
S

Min
Pu,v

1T · v

s.t.

{
s.t.R · Pu + v ≤ gu(S)− Q · Î

b
−W · P̂

b

v ≥ 0,Pu ≥ 0
(37)

where, v is a vector of slack variables.
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In this paper, KKT algorithm is adopted to solve (37)
with integer variables in the inner minimization problem. The
KKT algorithm is described as follows.
Step 1: The inner minimization problem is an LP problem,

and KKT conditions can be used to transfer model (37) into
a single level problem given in (38):

Q = Max η

s.t.



η ≤ 1T · v

R · Pu + v ≤ gu(S)− Q · Î
b
−W · P̂

b

R · Pu + v ≤ gu(S)− Q · Î
b
−W · P̂

bT
· λ ≤ 0

λ ≤ 1[
gu(S)− Q · Î

b
−W · P̂

b
− R · Pu − v

]
· λ = 0[

−RT · λ
]
· Pu = 0

[1− λ] · v = 0
v ≥ 0,Pu ≥ 0, S,λ ≤ 0

(38)

where, λ is the dual variables of (37).
Step 2: The ‘‘Big-M’’ method is used to solve (38) with

complementarity constraints, and the worst scenario Sworst =
Ŝ corresponding to the largest security violation can be
obtained.

2) GENERATE BENDERS CUTS CORRESPONDING TO THE
WORST SCENARIO WITH THE LARGEST SECURITY VIOLATION
If the largest security violation 1T · v in the worst scenario
Ŝworst is higher than the predefined threshold (10−3 MWh),
the security check subproblem (39) will generate feasibility
Benders cut (40) corresponding to the worst scenario to the
master UC problem.

Min
Pu,v

1T · v

s.t.

{
R · Pu + v ≤ g(u)(Ŝworst )− Q · Î

b
−W · P̂

b

v ≥ 0,Pu ≥ 0
(39)

1T · vCλT ·
[
Q ·

(
Ib − Î

b)
+W ·

(
Pb − P̂

b)]
≤ 0

(40)

In summary, the solution flow of proposed two stage robust
SCUC model (35) as shown in figure 4.

V. CASE STUDIES
Themodified IEEE-30 bus and IEEE-118 bus system are used
to illustrate the effectiveness of the proposed robust SCUC
approach. The two-stage robust SCUC model is solved using
YALMIP and Gurobi-7.5.2 on MATLAB 2015b.

A. UNCERTAINTY SET MODELING ANALYSIS
This section evaluates the effects of wind power uncertainty
set modeling using 2017.10-2018.9 historical data provided
by Elia. The three uncertainty set models are evaluated by tak-
ing dispatch periods 1 and 2 of a wind farm. From Eq. (1)-(5),
the BUS is mainly affected by the confidence probability α,

FIGURE 4. Flowchart of the proposed solution procedure.

αT , αS , where K is controlled by α, the time uncertainty bud-
get 0T is controlled by αT , and the spatial uncertainty budget
0S is controlled by αS . This section analyzes the temporal
correlation of a single wind farm, so space uncertainty budget
is not considered. It can be concluded from Eq. (10) and (12)
that the EUS and PUS are mainly affected by the confidence
probability α.

Firstly, the influence of the confidence probability α on the
uncertainty set is analyzed. αT in the BUS is 0.9. When the
given confidence probability α are 0.95, 0.9, 0.85, 0.8,
the uncertainty sets constructed by the three methods of BUS,
EUS and PUS are shown in figure 5.

FIGURE 5. Comparison of modeling effects of three uncertain sets under
different α.

It can be seen from figure 5, compared with the BUS
method, the EUS and PUS methods greatly compress the
space of the uncertainty set, and reduce the conservativeness
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of the uncertainty set. The historical data covered by BUS,
EUS and PUS models account for 98.35%, 96.15% and
95.05% respectively when α =0.95. As the confidence prob-
ability α decreases, the three uncertainty sets are compressed,
the EUS and PUS are compressed on the whole, and the
BUS is compressed in the direction controlled by K . The
historical data covered by BUS, EUS and PUS account for
90.1%, 89.56% and 89.01% respectively when α =0.8. It can
be concluded that the BUS is most affected by confidence
probability α. Although the coverage of BUS is similar to
EUS and PUS, but it covers a large number of ineffective area.

In addition to the influence of K , the uncertainty set BUS
is also affected by the time uncertainty budget 0T . The 0T
is controlled by the confidence probability αT . α in the three
uncertainty sets is 0.95. Compare the BUS, EUS and PUS
when αT = 0.95, 0.9, 0.85, 0.8. The results shown in figure 6.

FIGURE 6. The modeling effects of BUS uncertainty set under different αT .

As can be seen from figure 6, the EUS and PUS are not
affected by the confidence probability αT . The coverage area
of the BUS varies with αT . When αT = 0.95, 0.9, the bound-
ary of the BUS controlled by K does not change. At this
time, changing the confidence probability αT can reduce the
conservativeness of the uncertainty set.When αT = 0.85, 0.8,
the size of the BUS is controlled by αT as a whole. It can be
seen from (c) and (d) in figure 6 that the conservativeness
of the uncertainty set is reduced, the coverage of historical
data is also decreased, resulting in the decrease in robustness.
The historical data covered by BUS, EUS and PUS account
for 94.50%, 96.15% and 95.05% respectively. Although the
coverage of BUS is similar to EUS and PUS, but it covers
a large number of ineffective areas, and its characterization
accuracy is still low. At this time, the data coverage of the
BUS is lower than the EUS and PUS, but its coverage area is
larger than EUS and PUS. It can be concluded that the EUS

and PUS can effectively reduce the conservativeness while
ensuring the robustness of the uncertainty set.

B. MODIFIED IEEE-30 BUS STUDIES
The IEEE-30 bus system consists of 30 bus, 6 generators,
and 41 transmission lines. Wind power and system load data
are from public data from Belgian grid operator Elia. The
historical data of wind power and load are scaled to meet the
normal operating power range of the IEEE-30 bus system, and
the BUS and PUS are constructed. The maximum load of the
system is about 800MW. There is only one wind farm in the
IEEE-30 node system. Therefore, this section only considers
the influence of time correlation on robust scheduling. Select
wind power and load forecast data for Day-ahead as the input
data of the unit commitment.

In order to verify the validity of the proposed model, three
unit commitment models are compared in table 1. Based on
the historical data and the given confidence probability α =
0.95, the uncertain set is constructed. And given the time
uncertainty budget confidence of the BUS, when αT = 0.9,
0.85, 0.8, the uncertainty budget 0T is equal to 46, 40, 36,
respectively. The security criterion is whether the security
violation in Eq. (37) is less than a given threshold in the actual
scenario of wind power and load. The three UC models as
follow

TABLE 1. Comparison of scheduling results of three models.

a. Traditional security constrained unit commitment
(SCUC).

b. Two-stage robust unit commitment (RUC). The BUS
method is used to construct the box-type uncertain set, con-
sidering the wind power and load prediction error, but the
time correlation is not considered.

c. Two-stage robust unit commitment considering the time
correlation of uncertainty prediction error (TRUC).

As can be seen from Table 1, the traditional SCUC model
has the lowest operating cost and the fastest calculation effi-
ciency. However, when considering the uncertainty prediction
error, the unit commitment result will not guarantee the secu-
rity of the power system. Analysis of the RUC optimization
results under different confidence probabilities αT can reduce
the conservativeness of the uncertainty set after considering
the time uncertainty budget. When αT = 0.8, the operating
cost of the RUC model is lower than that of αT = 0.9,
but the UC decision at this time cannot guarantee sufficient
robustness. It can also be seen from (d) of figure 6 that when
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αT = 0.8, the effective area covered by the BUS is reduced.
Compared with the RUCmodel, the TRUCmodel reduces the
conservativeness of uncertainty set, and thereby reduces the
operating cost and improves the calculation efficiency.

When considering the uncertainty, the two-stage SCUC
deals with uncertainty by adjusting the unit commitment and
scheduling scheme. Figure 7 shows the UC decision under
different models. As can be seen from figure 6 (black repre-
sents the power-on state, white represents the shutdown state),
when given the confidence probability of the uncertain set,
the UC decision in base case adjusts the unit commitment
to cope with the uncertainty, and the number of power-on
increases, thereby resulting in an increase in economic costs.
Compared with RUC (αT =0.9), the number of startup units
of TRUC is less than that of the RUC. It can be concluded
that the conservativeness of the uncertainty set is limited by
considering the correlation of the uncertainty prediction error.

FIGURE 7. Comparison of unit combinations of the three models.

The optimization results of RUC and TRUC are mainly
affected by the wind power and load uncertainty set. The
conservation of TRUC method controlled by the confidence
probability α. The conservation of RUCmethod controlled by
α and αT . The comparisons of the influence under different α,
αT on the costs of the three models are presented in figure 8.

FIGURE 8. Operating costs at different confidence probabilities.

As can be seen from figure 8, the traditional SCUC model
does not consider uncertainty, and its operating cost does not
change with α. As the confidence probability α increases, the
operating costs of the RUC and TRUC models are increased
to varying degrees. Although the operating cost reduction of
the RUC model with αT reduced, the cost of RUC is always
higher than that of TRUC. When the time uncertainty budget
0T continues to decrease with the confidence probability αT ,
the robustness of the uncertainty set will be greatly reduced.
So the cost of αT < 0.8 is no longer discussed. When the
confidence probability is 75%, the operating costs of RUC
and TRUC are similar to those of SCUC. This is because
when the uncertainty interval is small, the system no longer
needs to adjust the unit commitment plan on a large scale.

C. MODIFIED IEEE-118 BUS STUDIES
The modified IEEE-118 bus system includes 118 bus, 54
generators, 186 transmission lines, and three wind farms are
installed at three buses of 17, 43, and 96. Wind power and
load data are slightly adjusted to meet the normal operating
power range of the IEEE-118 bus system based on Elia’s
published data, and wind power and load uncertainty sets
are constructed from historical data. The prediction curves of
load and wind power of three wind farms using the Elia data
are shown in figure 9.

FIGURE 9. System load and wind power generation of the three wind
farms.

1) ROBUST SCUC MODEL CONSIDERING THE
SPATIOTEMPORAL CORRELATION
The three wind farms in the IEEE-118 bus system are spa-
tially adjacent, so this section establishes an uncertainty set
based on the spatial correlation and temporal correlation
of wind power prediction errors. The robust SCUC model
considering the spatiotemporal correlation of uncertainties is
recorded as TSRUC. A prediction error set including 3 wind
farms and 24 scheduling periods is constructed according to
Eq.(13), and the standard deviation, the covariance matrix,
and the correlation coefficient matrix of the prediction error
set are calculated. The spatiotemporal correlation matrix of
wind power prediction error is shown in figure 10. Analysis
of figure 10 shows that there is a correlation between the
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FIGURE 10. Prediction error correlation matrix.

prediction errors of different wind farms during the same
time period. The prediction errors of adjacent wind farms in
different time periods are also correlated, and the closer the
time is, the stronger the correlation is.

The robust optimization costs comparison on SCUC, RUC,
TRUC, TSRUC are shown in Table 2. In Table 2, the bound-
aries of the BUS, EUS, and PUS are controlled by the con-
fidence probability α, and the confidence probability αT , αS
respectively control the time uncertainty budget 0T and the
spatial uncertainty budget 0S of the BUS.

TABLE 2. Comparison of optimization results of four models.

As can be seen from Table 2, the SCUC model without
considering uncertainty has the lowest operating cost. When
considering the uncertainty, in order to cope with the worst
scenario, it is necessary to adjust the UC decision, thereby
resulting in an increase in operating costs. In the RUCmodel,
comparing the operating costs under different αT and αS ,
it can be concluded that considering the time smoothing effect
and the spatial clustering effect, the conservativeness of the
BUS will be reduced to some extent, and the economics will
be improved. The TRUC model that considers the temporal

smoothing effect limits the conservativeness of uncertainty
set. When considering the spatiotemporal correlation of the
prediction error of multiple wind farms, the operating cost
will be further reduced.

2) ROBUSTNESS TEST OF THE TSRUC MODEL
In order to verify the robustness of the proposed TSRUC
model, tests are carried out for the UC decision with different
confidence probabilities. The robust test is done by solving
the security check subproblem for each scenario, which is
restricted by unit commitment and dispatch solutions Ib and
Pb in the base scenario as well as corrective capabilities
in Eq.(31). The higher the ratio of the number of scenar-
ios passed the verification to the total number of scenarios,
the higher the level of robustness of the power system.

In this paper, the adjusted historical prediction error
data (load and wind power) of Elia from October 2017 to
September 2018 is used as input to test the robust level of the
unit commitment plan with different model. The robust level
test results are shown in Table 3, where α is the confidence
probability of the uncertainty set, αT , αS are the confidence
probabilities of time uncertainty budget and spatially uncer-
tainty budget, respectively, cost denotes the robust optimiza-
tion cost, OGC denotes the sum of the maximum capacity of
the online unit, and αRO denotes the actual robust level.

TABLE 3. Robust level test result.

It can be seen from table 3 can conclude: 1) the larger α is,
the higher the actual robustness level is, the larger the cost and
OGC are. Therefore, by setting α, a reasonable lower bound
of αRO is given, so that a compromise between robustness
and economy can be achieved by adjusting α. 2) Comparing
the robustness of the RUC model with the robustness of the
TSRUC model, under the same confidence probability α,
when αT , αS = 0.9, the robustness of the RUC model is
slightly higher than TSRUC. This is because the historical
data covered by the BUS uncertainty set is slightly higher
than the PUS uncertainty set. At this time, the economy of the
TSRUC model is significantly higher than the RUC model.
This is because the uncertainty set determined by the BUS
method covers a large number of invalid regions, resulting
in the uncertainty set that is too conservative. By adjusting
the value of αT , αS to change the time and space uncertainty
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TABLE 4. Comparison of results of two robust scheduling models.

budget of the BUS uncertainty set can reduce the operation
cost. When αT ,αS = 0.8, the cost of the RUC model is close
to the TSRUC model, but the robustness of the RUC model
is lower than the TSRUC model. Through the above analy-
sis, the economics and robustness of the TSRUC method is
better.

3) ANALYSIS OF THE RESULTS OF THE SCUC
MODEL USED IN THIS PAPER
In the power system scheduling, the general form of the
classic RUC [3] is

min
x
(cT x+max

d∈D
min

y∈�(x,d)
bT y)

s.t.


Fx ≤ f
Hy ≤ h
Ax+ By ≤ g
Iuy = d

(41)

The model in Eq.(41) also considers the scheduling cost in
the worst scenario in the objective function, but in the power
system or other engineering fields, the probability of the
worst case occurring is extremely low. Therefore, it is only
necessary to ensure that robust testing is feasible in the worst
case. This paper establishes a two-stage robust SCUC model
with the lowest operating cost in the prediction scenario as the
objective function, as shown in Eq.(35). The operating cost of
the two robust SCUC models are shown in table 4.

It can be seen from table 4 that the operating costs of the
two models of models (35) and (41) are the same regardless
of the uncertainty. When considering the uncertainty, the pro-
posed model gives a lower cost than the classic two-stage
RUC model.

4) NONANTICIPATIVE CONSTRAINT CHECK
OF THE TSRUC MODEL
In the two-stage robust SCUC model considering the uncer-
tainty of wind power output and load, the worst scenario
obtained by the optimization method generally is the upper
bound of load interval and the lower bound of wind power
output interval. However, in practice, there may be a scenario:
during the entire dispatch period, wind power and load fluctu-
ate back and forth between the upper and lower bounds of the
uncertainty interval. Due to the limit of climbing constraints,
it may result in the UC decision obtained in the worst scenario
is not feasible. Therefore, this paper needs to verify the feasi-
bility in this scenario, and the verification in this scenario is
called nonanticipative constraint of the robust SCUC model.

Three nonanticipative scenarios are set in this paper.
Scenario 1: The loads are the lower bound of uncertainty

interval, and the wind power outputs are the upper bound of
uncertainty set.

Scenario 2: The scenario 2 with maximum wind power
outputs and minimum loads at odd periods, minimum wind
power outputs and maximum loads at even periods.

Scenario 3: The scenario 3 with minimum wind power
outputs and maximum loads at odd periods, maximum wind
power outputs and minimum loads at even periods.

Based on the above three nonanticipative scenarios,
the TSRUC model are verified under different confidence
probability. The verification results are shown in Table 5.

TABLE 5. Nonanticipative constraint checking in three scenarios.

As can be seen from Table 5, when α = 0.95, 0.9,
0.85, the TSRUC model can operate safely under the three
nonanticipative scenarios defined. Combined with figure 6,
the TSRUC model considers the temporal and spatial corre-
lation of wind power/load prediction error, and the prediction
error of adjacent time or adjacent wind farm has a high
correlation, so the wind power climbing and the load variation
in adjacent periods are limited to a certain range. Therefore,
considering the correlation of wind power output and load
changes in adjacent periods can significantly reduce the need
for climbing capacity of the power system. In addition, in the
larger power systems, the number of units is large. There
are 54 thermal units in the IEEE_118 bus system. When
more units are opened in the worst scenario, the flexibility
of system adjustment is higher, and it can cope with fluctu-
ations in the output of renewable energy. Through the above
analysis, it can be proved that the proposed TSRUC model
can effectively deal with the nonanticipative scenarios in the
uncertainty set to some extent.

VI. CONCLUSIONS
As renewable energy develops and demand response
increases, the impact of various uncertainties on power sys-
tem security and economic performance is critical. In this
paper, a two-stage robust optimization unit commitment con-
sidering the spatiotemporal correlation of uncertainty pre-
diction error is proposed. The method uses a polyhedral
uncertain set to model the uncertain wind power and load
power with spatiotemporal correlation. Based on the polyhe-
dral model, the TSRUC model is established. Different from
the RUC model in [3], the proposed robust SCUC model has
established basic case scheduling and corrective measures
for the uncertainty interval, which is more realistic from the
engineering point of view. The case studies show that the
uncertainty set considering the spatio-temporal correlation
of wind/load prediction error effectively reduces the invalid
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range on the basis of ensuring coverage of a large amount
of historical data. Thereby reducing the conservativeness
of the uncertainty set. Considering the correlation of wind
power output and load in adjacent periods can significantly
reduce the need for climbing capacity of the power system.
Therefore, it can be concluded that the model proposed in this
paper not only reduces the operating cost, but also ensures the
security operation on power systems.
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