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ABSTRACT Microelectromechanical system (MEMS)-based gyroscopes have been widely applied to
various inertial-sensing-based human–computer interaction (HCI) devices. However, the random drift of
MEMS-based gyroscopes limits their applications. Hence, studies pay attention to develop various models
to model and compensate the random drift for improving the performance of the MEMS-based gyroscopes.
This paper presents a self-constructing Wiener-type recurrent neural network (SCWRNN) with its false
nearest-neighbors-based self-constructing strategy and recursive recurrent learning algorithm to model the
random drift of the MEMS-based gyroscopes and then compensate them from the calibrated gyroscope
measurement. Subsequently, the proposed random drift modeling and compensation algorithm is integrated
into the handwriting trajectory reconstruction algorithm of the inertial-sensing-based HCI device, called
IMUPEN, for accurately obtaining the reconstructed handwriting trajectory. Users can hold the IMUPEN,
which is composed of an accelerometer, two gyroscopes, a microcontroller, and an RF wireless transmission
module, to write numerals at normal speed. The accelerations and angular velocities measured by the
accelerometer and gyroscopes are transmitted to a personal computer through the RF module for further
reconstructing the handwriting trajectory via the handwriting trajectory reconstruction algorithm. In addition,
we have developed the SCWRNN-based random drift modeling and compensation algorithm to eliminate
the cumulative errors caused by the random drift of the MEMS-based gyroscopes for further increasing
the accuracy of handwriting trajectory reconstruction. Our experimental results have successfully validated
the effectiveness of the proposed random drift modeling and compensation algorithm and its application in
handwriting trajectory reconstruction.

INDEX TERMS Random drift modeling, MEMS-based gyroscope, recurrent neural network, handwriting
trajectory reconstruction.

I. INTRODUCTION
In recent year, microelectromechanical system (MEMS)-
based inertial sensors have gained great attention for their
multiple field applications, such as activity recognition,
sport science, medical rehabilitation, gait analysis, health
care, inertial navigation, and robot teleoperation [1]–[10].
In addition, inertial-sensing-based human-computer interac-
tion (HCI) methods have been widely developed to create
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new types of HCI remote control devices via activity
recognition [11], gesture recognition [12], handwriting
recognition [13], and motion tracking [14], etc.

Among various inertial-sensing-based HCI devices, pen-
type HCI devices are embedded with accelerometers and
gyroscopes for providing intuitive expressions, which can
reconstruct handwriting trajectories without the limitations
of writing range or dimensions by using the accelera-
tions and angular velocities generated by handwriting move-
ments [13]. A handwriting trajectory reconstruction depends
on the integration process of the accelerations and angular
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velocitiesmeasured by accelerometers and gyroscopes during
executing handwriting movements. Subsequently, orientation
angles can also be obtained through the single integral of
angular velocities, which are used to form a transforma-
tion matrix for projecting the accelerations from the body
coordinate to the reference coordinate. Then, the accelera-
tions in the reference coordinate can be used to obtain the
handwriting velocities and positions (trajectories) through the
single integral and double integral processes, respectively.
However, the accuracy of the handwriting trajectories usu-
ally contains the effects of errors of the inertial sensors.
In practice, the accelerometer error introduces a second-order
error in handwriting trajectory after double integral. In the
meanwhile, the error of the gyroscope may lead to a first-
order error in the orientation angle after single integral and a
third-order error in handwriting trajectory, respectively [15].
Obviously, the accuracy of the handwriting trajectories of
the pen-type inertial-sensing-based HCI devices is seriously
affected by the performance of the gyroscope errors and
quickly degrades over time. Therefore, to estimate and com-
pensate the errors of the MEMS-based gyroscope is an
important procedure for enhancing the performance of the
handwriting trajectories of the pen-type HCI devices embed-
ded with the MEMS-based inertial sensors.

In general, the errors of the inertial sensors include deter-
ministic and stochastic errors [16], [17]. The deterministic
errors contain scale factors and biases, which can be removed
from the raw measurements in the calibration procedure. The
stochastic errors called bias drift are random in nature and
correlated over time, which can be modeled as a stochas-
tic process for extenuating their deleterious effect on the
accuracy of handwriting trajectory reconstruction. Currently,
the common approach for modeling and compensating the
random drift of the MEMS-based gyroscopes is time series
analysis [17]–[19]. To name a few, Noureldin et al. [18]
utilized a second-order autoregressive (AR) model to esti-
mate the inertial sensors’ drift error by using the stationary
measurements of the inertial sensors. Zhang and Fang [19]
identified the gyroscope drift by utilizing an autoregres-
sive moving average (ARMA) model with the gyroscope
measurements within 2 minutes firstly. Then, the perfor-
mance of the MEMS-based gyroscope was improved via a
Kalman filter which was applied to compensate the error.
Alternatively, the artificial intelligence-based methods utiliz-
ing neural networks (NNs) have been developed for mod-
eling the MEMS-based inertial sensor error and are found
to have better performance than other common time series
analysis techniques [16], [20]–[23]. Hao and Tian [20] uti-
lized a grey radial basis network (GRBF) for estimating the
MEMS-based gyroscope drift. Compared with AR models,
the GRBF has better identification performance, but it needs
more computational time. Xing et al. [22] applied a least
squares support vector machine (LSSVM) to model and com-
pensate the random drift of the MEMS-based gyroscope,
which was optimized by the chaotic particle swarm optimiza-
tion. Shen et al. [23] selected the temperature, temperature

variation rate, and coupling term to be as the inputs for the
genetic-Elman neural network which was utilized to model
the temperature drift of the MEMS-based gyroscope.

In our literature review, we found that most existing
artificial intelligence-based methods for modeling stochas-
tic errors (random drift) are feedforward neural net-
works (FNNs). However, recurrent neural networks (RNNs)
which provide feedback connections in addition to feedfor-
ward connections, have greater robustness for dealing with
time series signals. In addition, neurons in hidden layers
of NNs are determined based on expert experience and
knowledge, which leads to computational complex and poor
modeling accuracy. This paper targets to purpose a self-
constructing Wiener-type RNN (SCWRNN) with its false
nearest neighbors-based self-constructing strategy and recur-
sive recurrent learning algorithm to model and compensate
random drift of MEMS-based gyroscopes embedded in a
pen-type inertial-sensing-based HCI device for improving
the performance of handwriting trajectories. The proposed
pen-type inertial-sensing-based HCI device called IMUPEN
comprises an accelerometer, two gyroscopes, a microcon-
troller, and an RF wireless transmission module [13]. Users
can hold this IMUPEN to write numerals at their preferred
speed without any space limitations. Subsequently, the hand-
writing motion signal measured by the accelerometer and
gyroscopes are submitted to a personal computer (PC) for
further signal processing via the RF wireless module. Then,
the handwriting trajectory reconstruction algorithm proposed
in our earlier work [13] is adopted in this paper to recon-
struct handwriting numeral trajectories. In order to model
and compensate the random drift of the MEMS-based gyro-
scopes, we integrate the proposed random drift modeling
and compensation algorithm into the handwriting trajec-
tory reconstruction algorithm for acquiring more accurate
handwriting trajectories. The contribution of this paper is to
develop a SCWRNN with its false nearest neighbors-based
self-constructing strategy and recursive recurrent learning
algorithm to model the stochastic time series errors (random
drift) of the MEMS-based gyroscopes and then compensate
them from the calibrated gyroscope measurement by using
the proposed random drift modeling and compensation algo-
rithm for obtaining more accurate handwriting trajectories.

The remainder of this paper is organized as follows. The
SCWRNN is introduced in detail In Section II. In Section III,
we present the proposed random drift modeling and com-
pensation algorithm. The experimental setup and results of
random drift modeling and compensation of MEMS-based
gyroscopes and handwriting trajectory reconstruction appli-
cations are provided in Section IV. Finally, conclusions are
given in the Section V.

II. SELF-CONSTRUCTING WIENER-TYPE
RECURRENT NEURAL NETWORK
A. WIENER-TYPE RECURRENT NEURAL NETWORK
The proposed self-constructing Wiener-type recurrent neural
network (SCWRNN) shown in Fig. 1(a) is composed of an
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FIGURE 1. (a) The topology of the proposed SCWRNN. (b) The block
diagram of the proposed SCWRNN.

input layer, a hidden layer, and an output layer. The input
layer transmits the input values to the network and does not
execute any operators. The hidden layer integrates the current
input values from the input layer and the state history stored
in the memories of the neurons in the hidden layer to infer
the current states of the network. Finally, the state variables
are transformed into the output space through a nonlinear
mapping in the output layer. The u(j)i (k), f

(j)
i (k), and o(j)i (k)

are represented as the input value, input function, and output
of the activation function of the ith neuron in the jth layer at
time k , respectively.

1) INPUT LAYER
The input neurons convey the input values to the hidden
neurons directly. Therefore, the functions of the ith neurons
in the first layer are represented as

f (1)i (k) = u(1)i (k) , (1)

o(1)i (k) = f (1)i (k) . (2)

2) HIDDEN LAYER
The functions of the jth neuron in the second layer can be
defined as

f (2)j (k + 1) =
∑J

i=1
ajixi (k)+

∑P

h=1
bjhu

(1)
h (k), (3)

o(2)j (k) , xj (k) = f (2)j (k) , (4)

where xj (k) is the state variables of the state space
representation.

3) OUTPUT LAYER
The output neurons utilize hyperbolic tangent sigmoid func-
tions to realize a nonlinear transformation from the state
variables to the network output values. The functions of the

neurons in the last layer are defined as

f (3)j (k) =
∑J

i=1
cjixi (k), (5)

yj(k) = o(3)j (k) =
exp(f (3)j (k))− exp(−f (3)j (k))

exp(f (3)j (k))+ exp(−f (3)j (k))
. (6)

The total number of network parameters can be calculated by
Np = J × (J + p + m). Based on the proposed SCWRNN,
we have developed a false nearest neighbors-based self-
constructing strategy for determining the number of the hid-
den neurons using input-output data and a recursive recurrent
learning algorithm for online tuning SCWRNN’s parameters.
Additionally, the SCWRNN can also be expressed by the
following state space representation:

x (k + 1) = Ax (k)+Bu (k) ,

y (k) = F(Cx (k)), (7)

where u = [u1, . . . , up]T is the input vector, x =

[x1, . . . , xJ ]T is the state vector, y = [y1, . . . , ym]T is the out-
put vector, F = [f1, . . . , fm]T is the nonlinear function vector,
and p, J , and m are the total number of neurons of the input
layer, hidden layer, and output layer, respectively. A ∈ RJ×J

represents the weights of the self-feedback connections.
B ∈ RJ×p is the link weights between the input layer and the
hidden layer. C ∈ Rm×J represents the link weights between
the hidden layer and the output layer. The block diagram of
the proposed SCWRNN is shown as Fig. 1(b).

B. FALSE NEAREST NEIGHBORS-BASED
SELF-CONSTRUCTING STRATEGY
Since the random drift of the MEMS-based gyroscope is a
chaotic time series, we adopt the false nearest neighbors to
estimate system order (number of state variables or hidden
neurons) of the SCWRNN. The false nearest neighbors algo-
rithm is widely used to determine the minimum embedding
dimension of the chaotic systems by using input-output mea-
surements [24], [25]. For a single-input-single-output (SISO)
system, we assume that the current system output can be
modeled by the history of input and output measurements.

y (k) = f
(
χ (J ,l) (k)

)
= f ([y (k − 1) , . . . , y (k − J) , u (k − 1) ,

. . . , u (k − l)]), (8)

where y (k) and u (k) represent the system output and input,
respectively, f (k) is the model of the system output, χ (k)
denotes the corresponding regressor, J and l are the num-
bers of time-delayed observations for the system output
and input in the regression vector, respectively. In the pro-
posed SCWRNN, the value of J is the number of state
variables or hidden neurons. Different numbers of the time-
delayed terms are utilized in the regression vectors to calcu-
late the percentage of regression vectors with false nearest
neighbors for determining the embedding dimension of the
regressor. Our objective is to obtain a minimum number of
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false nearest neighbors for identifying a regressor with a
minimal embedding dimension. More detailed procedures of
the false nearest neighbors can be found in our earlier studies
[26], [27]. In general, the percentage of false nearest neigh-
bors decreases with an increasing embedding dimension and
that may reach zero after the minimal embedding dimension
is identified. Once the false nearest neighbors-based self-
constructing strategy determines the system order (J ), the
architecture of the proposed SCWRNNcan be then estimated.
Next, the network parameters can be optimized by the follow-
ing parameter optimization method.

C. RECURSIVE RECURRENT LEARNING ALGORITHM
In this paper, a recursive recurrent learning algorithm based
on the concept of ordered derivatives is derived in parameter
learning phase for improving the overall network perfor-
mance [26]. In this paper, we combine the ordered deriva-
tive with a momentum term for each parameter update rules
to accelerate the parameter learning convergence. In the
learning phase, the optimization target is characterized to
minimize the following error function with respect to the
adjustable parameters (w) of a network.

E (w, k) = 1/2 (yd (k)− y (k))2 = 1/2e(k)2, (9)

where w is the adjustable network parameters, yd (k) and
y (k) are the desired output and the actual output, respectively.
The update rule for the network parameters is defined as
follows:

1w (k) = −ξ
(
∂+E
∂w

)
+ α1w (k − 1) , (10)

w (k) = w (k − 1)+1w (k) , (11)

where ξ is the learning rate and ∂+E/∂w is the ordered deriva-
tive which considers the direct and indirect effects on chang-
ing the parameter involved in the current state and previous
states. α1w is the momentum term, where α ∈ [0, 1] is the
learning rate. The adjustable parameters w of the SCWRNN
include the input link weights (B ∈ RJ×p), the state matrix
(A ∈ RJ×J ), and the output link weights (C ∈ Rm×J ). The
current output y (k) is obtained by calculating the activities of
all nodes on each layer, and the corresponding functions are
expressed as follows:

xj (k) =
∑J

j=1

((∑J

i=1
ajixi (k − 1)

)
+

(∑P

h=1
bjhuh (k − 1)

))
,

(12)

s = Cx (k) =
∑J

j=1
cjxj (k), (13)

y (k) = f (s) =
exp(s)− exp(−s)
exp(s)+ exp(−s)

. (14)

The update rule of the output link weights cj is

cj (k) = cj (k − 1)+
(
−ξbc

∂+E(k)
∂cj

+ α1cj(k − 1)
)
,

(15)

∂+E(k)
∂cj

=
∂E(k)
∂cj

= −e(k)xj (k) (
4

(exp(s)+ exp(−s))2
),

(16)

where ξbc is the learning rate for adjusting cj and bjh.
To update the elements of the state matrix (aji) and the

input link weights (bjh), the current error signal should be
propagated to not only the current state but also the previous
states. The update rule of the components of the state matrix
aji is

aji (k) = aji (k − 1)+
(
−ξa

∂+E(k)
∂aji

+ α1aji(k − 1)
)
,

(17)
∂+E(k)
∂aji

=
∂E(k)
∂xj(k)

∂+xj(k)
∂aji

, (18)

∂E(k)
∂xj

= −cj (k − 1)
4

(exp (s)+ exp (−s))2
e (k) , (19)

∂+xj(k)
∂aji

=
∂xj(k)
∂aji

+
∂xj(k)

∂xj(k − 1)
∂+xj(k − 1)

∂aji
, (20)

where ξa is the learning rate for adjusting ajj, ∂xj(k)/∂aji =
xi (k − 1) ,∂xj(k)/∂x j(k − 1) = ajj(k − 1), and ∂xj(1)/∂aji =
xi(0) when k = 1.

The update rule of the input link weights bjh is:

bjh (k) = bjh (k − 1)+
(
−ξbc

∂+E(k)
∂bjh

+ α1bjh(k − 1)
)
,

(21)
∂+E(k)
∂bjh

=
∂E(k)
∂xj(k)

∂+xj(k)
∂bjh

, (22)

where ∂xj(k)/∂bjh = uh (k − 1) and ∂+xj(1)/∂bjh = uh(0)
when k = 1. The values of ∂+xj(k)/∂ajiand ∂+xj(k)/∂bjhare
set to zero initially and recursively accumulated as the error
signal generated by each training measurement. In addition,
to avoid a large accumulated error, the values of these terms
are reset to zero after a period of learning. More detailed
information of the recursive recurrent learning algorithm for
the SCWRNN can be found in our earlier study [26].

III. RANDOM DRIFT MODELING AND
COMPENSATION ALGORITHM
This paper focuses on the development of a random drift
modeling and compensation algorithm which is based on the
SCWRNN to model the random drift of the MEMS-based
gyroscopes for improving the accuracy of estimated orienta-
tions and reconstructed trajectories. Once the calibrated angu-
lar velocity signals are obtained from the calibration process,
which can eliminate the scale factor errors and biases (deter-
ministic errors) of theMEMS-based gyroscopes, a SCWRNN
is then applied to model the random drift (stochastic errors)
of the gyroscopes. From our literature review, the gyroscope
error is the primary bottleneck for enhancing the performance
of the estimated motion orientations and reconstructed tra-
jectories [15]. An uncompensated gyroscope error introduces
a first-order error in orientation angles after single integral.
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Therefore, when the acceleration is transferred from the body
coordinate (body frame) to the reference coordinate (local-
level frame), the acceleration vector will be incorrectly trans-
ferred due to the orientation estimation error. Subsequently,
the error of acceleration in the reference coordinate will
lead to a first-order and a second-order error in the veloc-
ity and position (trajectory) after single integral and double
integral, respectively. Hence, the position (trajectory) error
caused by the gyroscope error grows very rapidly with time
(a third-order error in the position).

FIGURE 2. The procedure of the one-step-ahead predictor for modeling
the random drift of the MEMS-gyroscopes through the proposed
SCWRNN.

The proposed SCWRNN is applied to model the ran-
dom drift by using the time series measurements of the
MEMS-gyroscopes, where that is stationary. In this study,
the proposed SCWRNN is trained as a one-step-ahead predic-
tor in the modeling procedure using the stationary measure-
ments of the MEMS-based gyroscope. That is, the gyroscope
readings of the stationary measurement from 1 to N -1 and
from 2 toN are represented as the input and output data for the
proposed SCWRNN, respectively, where N is the length of
the measurement [28]. The one-step-ahead predictor proce-
dure for modeling the random drift of the MEMS-gyroscopes
is shown in Fig. 2. In general, the measured angular veloc-
ity signal generated from the handwriting motion is always
accompany with the random drift signal which can be mod-
eled by the calibrated stationary angular velocity signal of
the MEMS-based gyroscope. Hence, the calibrated station-
ary angular velocity signal should be the input for the one-
step-ahead predictor (SCWRNN) for modeling the random
drift signal. After then, each collected handwriting angu-
lar velocity signal is utilized to subtract the estimated ran-
dom drift signal for obtaining the drift-removal handwriting
angular velocity, which can be used to estimate accurate

handwriting orientation angles and reconstructed trajectories.
The procedure of the random drift modeling and compensa-
tion algorithm is shown as Fig. 3.

IV. EXPERIMENTAL SETUP AND RESULTS
A. EXPERIMENTAL SETUP
In this paper, the pen-type inertial-sensing-based HCI device
(IMUPEN) implemented in our earlier work [13] is com-
posed of a microcontroller (C8051F206 with 12 bits A/D
converter), an RF wireless transmission module (nRF2401),
a triaxial accelerometer (LIS3L02AQ3), a biaxial angular
rate gyroscope (IDG-300), a uniaxial angular rate gyroscope
(ADXRS300), and a power supply circuit. The size of the
IMUPEN is 125 mm × 15 mm × 15 mm as shown in Fig. 4.
The microcontroller is utilized to collect the analog acceler-
ation and angular velocity signals, to convert the signals to
digital ones via an internal 12 bits A/D converter, and to trans-
mit the signals to a PC via the RF wireless transceiver. The
accelerometer can detect the gravitational and X-, Y-, and
Z-axis handwriting motion accelerations of the IMUPEN
held by users during handwriting activities, and has a full
scale of ±2g in this paper. The IDG-300 gyroscope can
simultaneously sense the X- and Y-axis handwriting angu-
lar velocities of the IMUPEN, and its full-scale range and
sensitivity are set as ±500 ◦/s and 2.0 mV/◦/s, respectively.
The ADXRS300 gyroscope measures the Z-axis handwriting
angular velocity of the IMUPEN, and its full-scale range and
sensitivity are set as ±300 ◦/s and 5.0 mV/◦/s, respectively.
The sampling rate of the accelerometer and gyroscopes were
set as 100 Hz. The power supply circuit is used to provide
the power consumption for the IMUPEN, which is composed
of a Li-ion battery, a Li-ion battery charging module, and
regulators. The overall power consumption of the IMUPEN
is 30 mA at 3.7 V.

B. RANDOM DRIFT MODELING AND COMPENSATION
OF MEMS-BASED GYROSCOPE
In this paper, we collected the stationary angular veloc-
ity measurements contaminated by the random drift of the
MEMS-based gyroscopes for modeling the random drift and
compensating them from the calibrated angular velocities.
In the following presentation, we utilize the calibrated X-axis
angular velocity (ωcx) measured by the MEMS-based gyro-
scope to interpret the conception of the proposed SCWRNN
for the random drift removal. We collected two different
stationary angular velocity measurements of the MEMS-
based gyroscope for 10 minutes, whose output signal was
sampled at 100 Hz. Hence, each stationary angular velocity
measurement contaminated by the random drift consists of
60,000 data and the unit is in radians per second (rad/sec).
The first stationary angular velocitymeasurement was used to
be the training data for the proposed SCWRNN to model the
gyroscope random drift, while the second stationary angular
velocity measurement was treated as the testing data for veri-
fying the modeling performance of the proposed SCWRNN.
Note that the calibration procedure is utilized to eliminate
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FIGURE 3. The proposed random drift modeling and compensation process through the proposed SCWRNN.

FIGURE 4. The proposed IMUPEN. (a) Front view of the hardware circuit.
(b) Back view of the hardware circuit.

the deterministic errors (scale factor error and bias) of the all
stationary angular velocity measurements. More information
about the calibration procedure of the gyroscopes can be
found in [13].

The random drift modeling and compensation procedure of
the stationary gyroscope measurement is shown Fig. 3. In the
modeling procedure, we utilized the first stationary angu-
lar velocity measurement to train the proposed SCWRNN
to be as a one-step-ahead predictor. That is, from 1 to
59,999 and from 2 to 60,000 of the first stationary angular
velocity measurement were treated as the input and output
data for the proposed SCWRNN, respectively. The learn-
ing rates ξa and ξbc were set as 0.05 and 0.5, respectively.
In the beginning, the false nearest neighbors utilized the first
500 stationary angular velocity measurement to determine
the system order (number of state variables or hidden neu-
rons) of the whole SCWRNN. From Table 1, the system order
of the SCWRNN applied to model the gyroscope random
drift is chosen as 6. The total number of the network param-
eters is 48. Subsequently, the remaining stationary angular
velocity measurements are used to optimize the network
parameters by the recursive recurrent learning algorithm.
The state-space equations of trained network are represented
in (23), as shown at the bottom of the next page, where
x(k) = [x1(k), x2(k), x3(k), x4(k), x5(k), x6(k)]T are the state
variables.

TABLE 1. Embedding dimensions vs. percentages of false nearest
neighbors (Pfnn) for modeling the X-axis gyroscope random drift.

FIGURE 5. Gyroscope reading of the second stationary data. (a) Raw data.
(b) Calibrated data.

After the network was trained, the second stationary angu-
lar velocity measurement of the gyroscope was utilized to
evaluate the ability and suitability of the proposed SCWRNN
to generalize for a different measurement. Fig. 5 shows
the second stationary angular velocity measurement
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FIGURE 6. Autocorrelation of the second stationary raw angular velocity.

contaminated by the random drift before and after the cali-
bration procedure. The raw stationary data collected from the
gyroscope is shown in Fig. 5(a). The stationary signal shown
in Fig. 5(b) was calibrated via the calibration procedure to
remove the scale factor error and bias. Fig. 6 gives the auto-
correlation of the stationary raw angular velocity measured
by the gyroscope. Fig. 7 shows the autocorrelation of the
stationary gyroscope measurement after removing the scale
factor error and bias. Fig. 8 presents the stationary angular
velocity measurement (after removing the scale factor error
and bias) from 2 to 60,000 together with the estimated ran-
dom drift by the proposed SCWRNN that used the readings
from 1 to 59,999 as the inputs. In addition, we applied the
mean square error (MSE), mean absolute error (MAE), root
mean square error (RMSE), and average relative error (ARE)
to evaluate the estimation performance, which are briefly
described as follows:

MSE =
1
n

∑n

i=1
(ωi − ω̂i)2, (24)

MAE =
1
n

∑n

i=1
|ωi − ω̂i| , (25)

FIGURE 7. Autocorrelation of the second stationary angular velocity after
removing the scale factor error and bias.

FIGURE 8. The stationary angular velocity after removing the scale factor
error and bias (gray color) versus the SCWRNN prediction of the random
drift (black color).

RMSE =

√∑n
i=1 (ωi − ω̂i)

2

n
, (26)

ARE =
1
n

∑n

i=1

|ωi − ω̂i|

ωi
, (27)

where n is the size of the stationary angular velocity mea-
surement, ωi represents the actual stationary angular veloc-
ity measurement, and ω̂i denotes the predicting stationary
angular velocity measurement. The MSE, MAE, RMSE, and

x (k + 1) =


−0.2505 −0.4135 −0.1993 0.1246 −0.3985 −0.4519
−0.4524 −0.1867 −0.4007 −0.4044 0.3323 0.1686
−0.0546 −0.0477 −0.2003 −0.4227 −0.1656 0.1030
−0.4906 −0.3954 −0.4554 0.2803 −0.2020 0.0274
0.3899 0.5014 0.0028 0.4115 0.2531 0.2329
−0.3248 −0.1512 0.2556 0.0530 −0.4723 0.2202

 x (k)

+


0.1304
−0.2298
−0.3445
−0.2961
0.3626
−0.5591

 u (k) ,
y (k) = F ([0.5372− 0.4412 0.2744− 0.1846− 0.3266− 0.5423] x (k)) , (23)
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FIGURE 9. Gyroscope reading of the second stationary signal. (Gray color:
without removing drift signal; black color: random drift-removed signal.)

FIGURE 10. Autocorrelation of the second stationary angular velocity
after removing the scale factor error, bias, and random drift estimated by
the SCWRNN.

FIGURE 11. Orientation angle obtained through the integral of the
stationary angular velocity measurements. (Gray solid curve: ideal
orientation angle, red solid curve: orientation angle estimation with
removing drift signal, black dotted curve: orientation angle estimation
without removing drift signal).

ARE were 0.0018 rad/sec, 0.0358 rad/sec, 0.042 rad/sec, and
3.4336 %, respectively. The results show that the proposed
SCWRNN can model the random drift of the MEMS-based
gyroscope effectively. Fig. 9 shows the stationary signal after
removing the scale factor error, bias, and estimated random
drift. Fig. 10 shows the autocorrelation of the stationary
gyroscope signal after eliminating the scale factor error,
bias, and random drift estimated by the proposed SCWRNN.
Obviously, the stationary angular velocity measurement after
removing the scale factor error, bias, and estimated random
drift mainly contained white noise. Fig. 11 shows the ori-
entation angles caused by the integral of the random drift

of the gyroscope and by the integral of the random drift
removal signal, respectively. Obviously, the ideal orientation
angle should be zero when the gyroscope embedded in the
IMUPEN was stationary. We can see that if the random drift
was not removed, the error of the orientation angle estimation
continuously increased. The error of the orientation angle
arrived about 360◦ in 10 minutes. In contrast, the estimated
orientation angle was very close to zero if the random drift
was removed by the proposed random drift modeling and
compensation algorithm. Finally, the drift-removal measure-
ments of gyroscopes can be obtained by removing the random
drift estimated by the SCWRNN from the calibrated gyro-
scope measurements.

C. HANDWRITTNG TRAJECTORY
RECONSTRUCTION APPLICATIONS
After modeling and compensation of the random drift of
the gyroscopes, we utilized the handwriting trajectory recon-
struction algorithm to reconstruct handwriting trajectories by
using the calibrated accelerations and compensated angu-
lar velocities. The handwriting trajectory reconstruction
algorithm consists of the following procedures: 1) signal
acquisition, 2) calibration, 3) random drift modeling and
compensation, 4) lowpass filtering, 5) orientation estimation,
6) coordinate transformation and gravity compensation, and
7) handwriting trajectory reconstruction. At the beginning
of the procedures, the handwriting motion signals measured
from the accelerometer and gyroscopes were collected by the
microcontroller embedded in the IMUPEN and then trans-
mitted to the PC via the RF wireless transmission module.
Second, a calibration process was utilized to eliminate the
deterministic errors (scale factor errors and biases) of the
accelerometer and gyroscopes. Third, the proposed random
drift modeling and compensation algorithm was developed
for removing the stochastic errors (random drift) of the
gyroscopes. Fourth, a digital lowpass filter was designed
for removing high frequency noise of the inertial signals
and users’ unconscious trembles. Fifth, a quaternion-based
orientation estimation method was used to estimate accu-
rate orientation angles of the IMUPEN for forming a trans-
formation matrix. Sixth, the coordinate transformation and
gravity compensation procedure was utilized to transfer the
filtered acceleration from the body coordinate to the reference
coordinate and to eliminate the effect of the gravitational
acceleration in the reference coordinate. Finally, the hand-
writing trajectory of the IMUPEN was reconstructed via the
multi-axis dynamic (MAD) switch. The block diagram of the
proposed handwriting trajectory reconstruction algorithm is
shown in Fig. 12. More detailed information for the handwrit-
ing trajectory reconstruction procedures can be found in [13].

In this experiment, participants were asked to write digits
using the IMUPEN without ambit restrictions. Fig. 13 shows
the experimental setup. All the participants were asked to
complete each digit in one stroke and follow the pictorial tra-
jectories of the digits shown as Fig. 14(a). Before the experi-
ment, we asked all the participants to practice writing of the
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FIGURE 12. Handwriting trajectory reconstruction algorithm with the
proposed random drift modeling and compensation algorithm.

FIGURE 13. The handwritten digit recognition experimental settings.

FIGURE 14. The trajectories of the 10 digits. (a) The pictorial digit
trajectories. (b) The digit trajectories using the IMUPEN and its associated
handwriting trajectory reconstruction algorithm without the random drift
modeling and compensation algorithm. (c) The digit trajectories using the
IMUPEN and its associated handwriting trajectory reconstruction
algorithm with the gyroscope drift removal through the random drift
modeling and compensation algorithm.

digits using the IMUPEN until they felt comfortable. The pro-
posed handwriting trajectory reconstruction algorithm was
utilized to reconstruct the trajectories based on the accelera-
tions and angular velocities generated by the IMUPEN during
handwriting motions. The digit trajectories collected from a
participant using the IMUPEN and its associated handwriting
trajectory reconstruction algorithm without/with gyroscope
drift removal through the proposed random drift modeling
and compensation algorithm are shown in Figs. 14(b) and (c),
respectively. Obviously, from Fig. 14(b), we can see that if the
random drift of the gyroscope was not removed, the handwrit-
ing trajectories were crooked or distorted due to the error of

the orientation angle estimation. However, from Fig. 14(c),
if the random drift is removed through the proposed random
drift modeling and compensation algorithm, the handwriting
trajectories can easily be recognized by human beings due to
the correct orientation angle estimation.

V. CONCLUSIONS
In this paper, we present a random drift modeling and com-
pensation algorithm to model and compensate the random
drift of the MEMS-based gyroscopes, which is composed
of the SCWRNN with the false nearest neighbors-based
self-constructing strategy for determining network structure
and the recursive recurrent learning algorithm for optimiz-
ing network parameters. For modeling the random drift, the
MSE, MAE, RMSE, and ARE of the modeling error are
0.0018 rad/sec, 0.0358 rad/sec, 0.042 rad/sec, and 3.4336 %,
respectively. The results show that the proposed SCWRNN
can model the gyroscope random drift effectively. And then,
the proposed random drift modeling and compensation algo-
rithm is integrated into the handwriting trajectory reconstruc-
tion algorithm of the IMUPEN for handwriting trajectory
reconstruction applications. The experimental results show
that the digit trajectories collected from the participants using
the IMUPEN and its associated handwriting trajectory recon-
struction algorithm without gyroscope drift removal were
crooked or distorted due to the error of the orientation angle
estimation. In contrast, the digit trajectories can easily be
recognized by human beings if the random drift is removed
through the proposed random drift modeling and compensa-
tion algorithm. Based on the abovementioned experimental
results, the effectiveness of the proposed SCWRNN-based
random drift modeling and compensation scheme for the
MEMS-based gyroscopes has been successfully validated
and applied in the handwriting trajectory reconstruction
applications.
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