
Received December 14, 2018, accepted January 7, 2019, date of publication January 29, 2019, date of current version February 20, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2895701

Analysis of Memory System of Tiled
Many-Core Processors
YE LIU 1, SHINPEI KATO2, AND MASATO EDAHIRO 1
1Graduate School of Information Science, Nagoya University, Nagoya 464-8601, Japan
2Graduate School of Information Science and Technology, The University of Tokyo, Tokyo 113-8654, Japan

Corresponding author: Ye Liu (liuyeos@gmail.com)

ABSTRACT Tiled many-core processors are designed to integrate simple cores onto a single chip to take
advantage of software-level parallelism, and these cores are interconnected via mesh-based networks to
mitigate overheads such as limited throughput derived from traditional interconnects. As these processors
become more prevalent, one unnoticed problem is that it is more likely for operating system (OS) designers
to believe that these processors, which have multiple on-chip memory controllers, belong to the non-uniform
memory access (NUMA) system. In this paper, we define novel models regarding the differentiation between
uniform memory access and NUMA on tiled many-core processors from the perspective of the cache system
to facilitate OS designers and application programmers in fully understanding the underlying hardware.
Whether or not a tiled many-core processor belongs to the NUMA system, is determined by the cache system
rather than howmany memory controllers it has. The experimental results together with the novel models are
able to explain why the (non-)significant performance difference can be observed on KNL and TILE-Gx72.

INDEX TERMS NUMA, UMA, memory system, tiled many-core processors.

I. INTRODUCTION
KNL (Knights Landing) [1] from Intel, and TILE-Gx series
of processors, including TILE-Gx36 [2] and TILE-Gx72 [3]
from Mellanox Technologies, have recently emerged in the
market as real tiled many-core processors. These processors,
of which cores are fitted onto a single chip and interconnected
via mesh-based networks, are different from the well-studied
traditional multicore systems described in Section V, from
the perspective of computer architecture. Diagrams of KNL
and TILE-Gx72 are illustrated in Figure 1. Because memory
access latency between cores on separate columns (rows) and
an identical memory controller is non-uniform, processors
of Figure 1 belong to the NUMA (non-uniform memory
access) system. OS (operating system) designers, thus, can
believe that an OS designed for traditional multicore (many-
core) systems works well on tiled many-core processors. For
instance, Barrelfish [4] (a research OS) that treated cores as
processors of a distributed system and assumed that there was
no inter-core sharing at the lowest level, aimed at solving
the scalability problem of the OS for many cores and was
believed to be attractive. However, if researchers do not take
into consideration the underling shared cache system of tiled
many-core processors discussed in this paper and create a

The associate editor coordinating the review of this manuscript and
approving it for publication was Honghao Gao.

Barrelfish-like OS, expected experimental results cannot be
achieved. Moreover, a technical report [5] regarding KNL’s
cluster modes suggests not using KNL as a UMA (uni-
form memory access) system, and the Linux kernel treats
TILE-Gx36/72 as a NUMA system by default. OS designers
(or users) may directly treat these tiled many-core processors
as the NUMA system and thus devote themselves to miti-
gating the overhead from memory controllers. On the other
hand, KNL and TILE-Gx36/72 can be viewed as another type
of processor, of which cores and a single virtual memory
controller are fitted onto the single chip, even thoughmultiple
on-chip physical memory controllers are available. There-
fore, according to conventional models of UMA and NUMA
described in Section V, processors of Figure 1 belong to the
UMA system as well.

To help better understand the underling memory (cache)
system, in this paper, we define novel models regarding the
differentiation between UMA and NUMAon tiled many-core
processors from the perspective of the cache system. When
the home tile (processing core) (and the owner tile together
for KNL-like processors) of a givenmemory block can be any
tile(s) on a single chip, a tiled many-core processor belongs
to the UMAcache system; when the home tile (and the owner
tile together for KNL-like processors) of a given memory
block can be designated from a portion of tiles correlated with
a memory controller, a tiled many-core processor belongs

18964 This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/ VOLUME 7, 2019

https://orcid.org/0000-0003-0007-722X
https://orcid.org/0000-0003-2188-2690


Y. Liu et al.: Analysis of Memory System of Tiled Many-Core Processors

FIGURE 1. Overview of tiled many-core processors. (a) KNL. (b) TILE-Gx72.

to the NUMAcache system. Therefore, TILE-Gx36/72 is a
UMAcache processor because it does not support distributing
a page to a portion of tiles correlated with a memory con-
troller. Insignificant performance difference between UMA
and NUMA systems (those described in Section V) on TILE-
Gx36/72 can be predicted when performance is dominated
by memory access latency between processing cores (tiles)
and main memory. This is because on both UMA and NUMA
systems of TILE-Gx36/72, a memory request behaves iden-
tically: it is (1) forwarded to the home tile and (2) sent to
the memory controller if data is not present in the home tile.
In contrast, KNL is viewed as UMAcache and NUMAcache
systems with distinct hardware supports (all-to-all and SNC-
2/4 clustermodes), and relatively better program performance
underUMAcache can be anticipated when (1) on-chip network
congestion is not a problem, (2) a program is not aggressive
to the cache system, and (3) the main overhead is from the
memory system. This is because on KNL the virtual last level
cache (LLC) used by amulti-threaded application is larger for
the UMAcache system than for NUMAcache. With a full under-
standing of the underlying shared hardware, OS designers
can take advantage of characteristics of UMAcache from both
TILE-Gx36/72 and KNL to design their light-weight OS.
They can make use of features of NUMAcache with KNL as
well to design their specific-purpose OS. In general, OSes for
UMAcache-based tiled many-core processors seem relatively
easier to design than for NUMAcache-based ones because
there is one node for UMAcache instead of multiple nodes for
NUMAcache.
Another potential problem arises if OS designers and

application programmers highly rely on the cache system of
tiled many-core processors. This is because it is well-studied
that cache sharing problem between applications is able to
greatly degrade performance on a system of which LLC
is shared by multiple cores [6]–[10]. One cache-aggressive
application can evict cache blocks of another co-scheduled
application, even though those evicted cache blocks will be
accessed by the co-scheduled application later. OS design-
ers for UMAcache-based tiled many-core processors should
adopt feasible methods to prevent a non-cache-aggressive

application from being affected by another co-scheduled
application as much as possible. Meanwhile, OS designers
for NUMAcache-based tiled many-core processors can benefit
from the hardware support of dividing cores into multiple
nodes, but the benefit is limited because the cache sharing
problem still happens when the number of applications is
higher than the node count. To alleviate the burden placed
on OS designers and application programmers, we propose
a hybrid memory system that combines benefits from tra-
ditional UMA and novel NUMAcache systems, though the
relative simulation work will be completed in the future. The
main idea is that the node count of tiled many-core processors
is managed dynamically by software (i.e., OS/hypervisor)
rather than hardware, and a virtual memory controller, for
which a page is distributed across multiple physical memory
controllers, is supported.
Contributions: The most significant contribution shown

in this paper is that we define novel models (UMAcache
and NUMAcache) on tiled many-core processors. It is based
on the cache access latency between a requester tile and
the home tile (and the owner tile together for KNL-like
processors), instead of on the memory access latency for
conventional models (UMA and NUMA). This is because
a memory request is first forwarded to the home tile and
then sent to the memory controller when the data is not
present on the whole cache system. A physical page can be
distributed across the whole cache system for a UMAcache
processor, while the page can be stored onto a portion of
the total caches for a NUMAcache processor. Furthermore,
experimental results shown in Section IV correspond to the
anticipated program performance difference between conven-
tional UMA and NUMA systems on tiled many-core proces-
sors (TILE-Gx72 and KNL). The novel models can help OS
designers understand whether or not a specific tiled many-
core processor is UMAcache (NUMAcache) and rethink what
the organization of OSes on these tiled many-core processors
should be. For instance, creating a Barrelfish-like OS on
TILE-Gx36/72 is not a good choice because of the shared
caches. Moreover, the novel models help us easily find out
where the overhead is, for instance, a program itself or theOS,
when a performance comparison between conventional UMA
and NUMA systems reveals an anomaly. It is worth noting
that the analysis proposed in this paper mainly aims at helping
OS designers (or researchers whose goal is to find out or elim-
inate performance overheads) understand the effect of the
underling cache system of tiled many-core processors.1

1One specific example of tiled many-core processors is that knights mill
(KNM) [11], which is the successor of KNL and was initially released
in December, 2017, was designed for the deep learning area. However,
according to the public documents [11]–[14], the cache system of KNM is
identical to that of KNL.Without a full understanding of the underlying cache
system of tiled many-core processors, directly deploying existing frame-
works for deep learning to KNMmay not achieve the expected experimental
results. Note that at the time of writing, we cannot evaluate performance
on KNM because of the unavailable machine. However, according to our
analysis proposed in this paper, we would like to conjecture that the expected
experimental results cannot be achieved without a full understanding of the
underlying cache system on KNM.

VOLUME 7, 2019 18965



Y. Liu et al.: Analysis of Memory System of Tiled Many-Core Processors

The remainder of this paper is organized as follows.
Section II describes background andmotivations of our work.
The novel models (UMAcache and NUMAcache) are shown
in Section III. Experimental results and a hybrid memory
system for future tiled many-core processors are exhibited in
Section IV. Related work is described in Section V. Future
work and a conclusion are given in Section VI.

II. BACKGROUND AND MOTIVATIONS
A. USE CASES ON KNL2

As suggested by the technical report [5] regarding KNL’s
cluster modes, users avoided to use KNL as a UMA sys-
tem. Byun et al. [15] evaluated performance of data-analysis
and machine-learning applications on KNL. For the exper-
iments, they avoided to use KNL as a UMAcache (with all-
to-all cluster mode) system. However, they failed to exhibit
experiment results (from others work if existed) to explain
why a UMAcache tiled many-core processor was not a good
choice. You et al. [16] redesigned algorithms for the deep
learning area to expedite the training process and evaluated
them on GPU and KNL clusters. They directly used KNL as
aNUMAcache system. Awan et al. [17] evaluated performance
of CPU- and GPU-based DNN training, but failed to state
if KNL was treated as a UMAcache or NUMAcache system.
Allen et al. [18] evaluated performance of workloads on KNL
and Haswell architectures, but failed to explore performance
difference between UMAcache and NUMAcache systems as
well. Calore et al. [19] focused on performance and energy
efficiency on KNL, but also failed to discuss performance dif-
ference between UMAcache and NUMAcache systems. More-
over, researchers concentrated on performance improvement
fromMCDRAM-based cache. However, experimental results
shown in [17] demonstrated that the improvement was trivial.
Our analysis described in this paper reveals that the effect
from the cache system cannot be ignored. Therefore, we need
to pay attention to whether or not a tiled many-core pro-
cessor is a UMAcache (NUMAcache) system. To understand
why it is necessary to define the novel models discussed
in Section III, we first mainly describe the cache coher-
ence protocol employed by traditional multicore systems in
Section II-B and then exhibit its counterpart employed by
emerging tiled many-core processors in Section II-C.

B. TRADITIONAL MULTICORE SYSTEM
Figure 2 illustrates the organization of a multi-socket system
that is a typical example of traditional multicore systems
adopted in the HPC (high performance computing) area, on
which nodes are interconnected via 8/16-bit point-to-point
links, and each node embraces eight cores and one on-chip
memory controller. According to the conventional models of
UMA and NUMA described in Section V, the multi-socket

2As discussed in this paper, KNL supports both UMAcache and
NUMAcache models, while TILE-Gx36/72 supports the UMAcache model.
Only use cases on KNL are discussed in this subsection to exhibit that users
avoided to use KNL with the UMAcache model, even though they could treat
it as a UMAcache processor.

FIGURE 2. Multi-socket system.

system exhibited in Figure 2 is a NUMA system. A non-
uniform memory access latency clearly exists, since latency
between a core from one node and a memory controller from
another node is larger than that generated when the core
accesses amemory controller from the same node, due to wire
delay and limited interconnect throughput. Research work
has been done to take advantage of the non-uniform char-
acteristics of NUMA systems. For instance, in [20], it was
pointed out that bandwidth caused by an asymmetric inter-
connect between nodes matters more than distance between
them. That is, the asymmetric interconnect between a 16-bit
point-to-point link connecting intra-socket nodes and an 8-bit
point-to-point link connecting inter-socket nodes in Figure 2,
is the main overhead to program performance.

To guarantee the memory consistency [21] in terms of
a whole cache system composed of node-based LLCs, the
snooping-based cache coherence protocol is adopted on the
traditional NUMA-based multicore system. When a cache
miss takes place on the LLC (i.e., a shared L2/L3 cache)
on one node, a snoop message is broadcast on the node-
to-node interconnect(s). The requested data is subsequently
transferred from the corresponding main memory when no
copy exists on the whole cache system, or from the cache
when one node detects the snoop message and finds that it
has a copy. The snooping-based cache coherence protocol
can have separate implementations depending on the design
requirements. For instance, home snoop mode, of which a
home node issues a snoop to a node that may have a copy
of the requested data, and source snoop mode, of which the
requester node issues snoops to all other node(s), are both
supported on Intel processors [22] with QPI [23], [24].

Since a directory that tracks on which node(s) a copy of
a cache line exists is adopted by home snoop mode on Intel
processors with QPI and its implementation is a little similar
to the directory-based cache coherence protocol on KNL, we,
therefore, take it as an example to explain how the snooping-
based cache coherence protocol works. On each node of a
NUMA-based traditional multicore system, a CA (caching
agent) connects to a cache controller, and a HA (home agent)
connects to its on-chip memory controller. When a cache

18966 VOLUME 7, 2019



Y. Liu et al.: Analysis of Memory System of Tiled Many-Core Processors

miss happens, on the basis of home snoop mode, the CA
on the requester node is responsible for sending a request to
the HA on the home node. The requested data exists in the
main memory associated with the home node when there is
no copy on the whole cache system. The HA then checks the
directory to see if other nodes hold a copy of the requested
data, and it asks that node to transfer data to the requester node
if so. Otherwise, data is transferred from HA’s associated
mainmemory to the requester node directly. Readers can refer
to [25] for further information.

C. TILED MANY-CORE PROCESSORS
Figure 1 exhibits a brief overview of emerging tiled many-
core processors (TILE-Gx72 andKNL). One common feature
belonging to these processors is that cores interconnected via
mesh-based networks are fitted onto a single chip. That is
the main characteristic of these processors that differentiates
them from traditional multicore systems, and this can be
clearly seen from comparing Figures 2 and 1. On TILE-Gx72,
each tile (core) has an L1 cache and an L2 cache, and on
KNL, each tile consisting of two cores has an L2 cache, but
each core has an L1 cache. That is, on KNL, the L2 cache
of each tile is shared by two cores, but on TILE-Gx72,
the L2 cache is accessed by one core. Non-uniform mem-
ory access latency also exists on tiled many-core processors
because of wire delay. According to the conventional models
on UMA andNUMAdescribed in Section V, TILE-Gx72 and
KNL in Figure 1 both belong to the NUMA system. However,
since all cores are integrated onto a single chip, both tiled
many-core processors support a virtual memory controller
from the perspective of hardware, which might not be easily
implemented on the traditional multicore system. Therefore,
both tiled processors belong to the UMA system.

A virtual memory controller is supported by
TILE-Gx36/72 via the technique of memory stripping, of
which a page is interleaved across available physical memory
controllers with a stripping granularity of 512 bytes. That is,
if a physical address A is allocated from the physical memory
controller N, then the physical address A + 512 is allo-
cated from the memory controller N + 1. Enabling/disabling
memory stripping on TILE-Gx36/72 can be managed by
system software (called hypervisor). Whenmemory stripping
is disabled by default, designers of TILE-Gx36/72 believe
that it belongs to the NUMA system. Meanwhile, a virtual
memory controller, is supported by KNL via the distribution
of memory addresses across all on-chip per-tile tag directo-
ries (TDs). When cores are divided into multiple groups in
accordance with the memory-controller count, and memory
addresses of a given page can only be distributed across TDs
of a specific group, designers of KNL believe that it belongs
to the NUMA system. The technical report [5] regarding
KNL’s cluster modes suggests not using KNL as UMA,
and the Linux kernel treats topology of TILE-Gx36/72 as
NUMA by default. If researchers (or users) follow these
guides (i.e., [5] and the source code of the Linux kernel for
TILE-Gx36/72), and ignore the UMA characteristic of tiled

many-core processors, creating a Barrelfish-like OS or devot-
ing themselves to eliminating the overhead from memory
controllers is possible. Therefore, it is more likely to see that
the expected experimental results can not be achieved, and/or
the root cause of the performance problems is missed. We
notice that KNL and TILE-Gx36/72 have distinct techniques
for supporting the virtual memory controller and they may
be able to help us explore the novel models of UMAcache and
NUMAcache on tiled many-core processors.

To help fully understand the novel models of UMAcache
and NUMAcache, we thus introduce directory-based cache
coherence protocols employed by KNL and TILE-Gx36/72.
On KNL, when a cache miss happens, a request (from a
requester tile) is forwarded to a designated tile (called home
tile in this paper), onwhich a directory trackswhere the owner
tile (a tile that keeps a copy of the requested data) is; then
a message is sent from the home tile to the owner tile in
order to transfer data to the requester tile when a valid copy
exists. If no data is present in the cache system, the home
tile will forward the request to the associated physical mem-
ory controller. It seems that the home snoop mode of the
snooping-based cache coherence protocol is similar to the
directory-based cache coherence protocol for KNL; the main
difference is dependent on how the owner node (tile) detects a
request message and responds to it. On TILE-Gx36/72, when
a cache miss takes place, a request (from the requester tile) is
forwarded to a designated tile (which is home tile and owner
tile as well), and data is transferred from the home tile to the
requester tile when a valid copy exists. Otherwise, the home
tile will forward the request to the associated physical mem-
ory controller as well. Therefore, we can find that it is the
home tile rather than the requester tile that sends a request to
the memory controller when the requested data is not present
in the whole cache system. An exceptional example, in which
the requester tile is local to the memory controller but the
home tile is remote, is common to tiledmany-core processors.
Thus, we need to rethink the models of UMA and NUMA for
tiled many-core processors.

III. NOVEL MODELS
In this section, we define the novel models (UMAcache and
NUMAcache), which are dominated by the cache system on
shared-memory tiled many-core processors. Compared with
traditional multicore systems described in Section II-B, cur-
rent technology guarantees that cores can be fitted onto a
single chip for tiled many-core processors and the on-chip
cache system is shared by them. It is worth noting that the
memory consistency [21], which is supported by the cache
coherence protocol, is important to a shared-memory system
in order to guarantee correct execution of applications from
the HPC area. However, cache coherence protocols (i.e.,
a two-hop protocol employed by TILE-Gx36/72 and a three-
hop counterpart employed by KNL (Intel processor)) vary
among different architectures. The way the cache coherence
protocol works determines how the cache system is shared by
cores on tiled many-core processors.

VOLUME 7, 2019 18967



Y. Liu et al.: Analysis of Memory System of Tiled Many-Core Processors

TABLE 1. Comparison between conventional models and novel models on tiled many-core processors.

On the basis of how the cache coherence protocol works,
the novel models are defined as follows: if a physical page
can be distributed across all available tiles (caches) of a tiled
many-core processor, the processor belongs to a UMAcache
system (with a relatively larger virtual LLC); if a physical
page can be distributed across a portion of tiles (caches)
associated with a memory controller, the processor belongs
to a NUMAcache system (with a relatively smaller virtual
LLC). That is, on a UMAcache tiled many-core processor,
on-chip caches can be viewed as a single virtual cache and
thus memory blocks can be evicted later compared with
a NUMAcache processor, when the data layout is carefully
designed. In contrast, multiple LLCs coexist on a NUMAcache
tiled many-core processor and it can help divide separate-
purpose data into multiple groups. However, a NUMAcache
tiled many-core processor is less likely to be beneficial to
a multi-threaded application from the HPC area when that
application is not cache-aggressive. It is worth noting that
an appropriate cache system3 (i.e., the one reducing effects
from system noise [26]–[29] and/or solving the cache sharing
problem caused by co-scheduled applications, and employing
a scalable cache coherence scheme [30]) on future shared-
memory tiled many-core processors poses challenges to com-
puter architects and software designers. When a new tiled
many-core processor is released and details of the cache sys-
tem including the cache coherence protocol are available, it is
easy for researchers to treat it as a UMAcache or NUMAcache
processor, on the basis of the above novel models.

To further understand the definition, a comparison between
conventional models and novel models on KNL and
TILE-GX72 is shown in Table 1. Note that the SNC-2 clus-
ter mode of KNL is not included in Table 1 as NUMA,
since it is similar to the SNC-4 cluster mode but with two

3Note that the cache system design which is differentiated from the main-
memory (i.e., DRAM) system design in this paper, is complicated. For
example, computer architects should consider their design choices between
an inclusive LLC and a non-inclusive LLC, and the selection between a
private cache and a shared cache. Especially, designing an appropriate cache
coherence protocol [31] (i.e., a scalable cache coherence scheme [30]) for
many cores can be an individual research topic. Our analysis in this paper,
on the one hand, helps computer architects understand that their designs
have an influence on software frameworks designed by OS designers and/or
application programmers on many cores; on the other hand, it helps OS
designers and application programmers understand the effect of the underly-
ing shared cache system on emerging tiled many-core processors (i.e., KNL
and TILE-Gx36/72) when considering their software frameworks in order to
pursue high performance.

NUMA nodes. On the basis of the novel models of UMAcache
and NUMAcache, we are able to anticipate the performance
comparison between conventional UMA andNUMA systems
when a single multi-threaded application runs on KNL and
TILE-Gx72 respectively, assuming that access to the memory
system is the main overhead. Because TILE-Gx72 belongs
only to the UMAcache system, we can predict that there
will be an observable, insignificant performance difference
between traditional UMA and NUMA systems, unless on-
chip network congestion is a serious problem. Meanwhile,
we can predict that, on KNL, memory-intensive and non-
cache-aggressive programs will benefit from UMAcache since
all available caches can be used to keep a copy of a memory
block, and thus, it has a larger virtual LLC than NUMAcache.

IV. PERFORMANCE ANALYSIS
To help understand that it is not unimportant to define the
novel models of UMAcache and NUMAcache, we selected pro-
grams from PARSEC [32], SPLASH-2X [33], NAS Parallel
Benchmarks [34], and BigDataBench [35] to run on KNL
and TILE-Gx72. Detailed hardware information is shown
in Table 2. We run programs with settings from the per-
spective of conventional models but explain the experimental
results in terms of novel models.

A. EXPERIMENTAL SETUP
The running settings for the experiment are shown in Table 3.
Note that the experimental settings with conventional mod-
els and novel models on KNL are identical. The selected
applications are listed in Table 4. Canneal, raytrace, vips,
and x264 from the PARSEC benchmark suite could not be
correctly compiled for TILE-Gx72. CONFIG_NUMA was
disabled when compiling the Linux kernel (Linux-4.5) for the
UMA model. With every setting combination (for instance,
memory stripping was disabled and the first-touch mem-
ory allocation policy was adopted for the UMA model on
TILE-Gx72) exhibited in Table 3, each program was run
three times. Average values were used to plot figures shown
in Figures 3 and 4. HPC experts may argue that program
performance is dominated by fetching data from a remote
memory controller, and/or burdening a specific memory con-
troller rather than the effect of the cache system of tiled
many-core processors, on the basis of their experiences on
traditional many-core systems. We therefore evaluated if the
program performance was improved when tasks and data

18968 VOLUME 7, 2019



Y. Liu et al.: Analysis of Memory System of Tiled Many-Core Processors

TABLE 2. Detailed hardware information for emerging tiled many-core processors (KNL4nd TILE-Gx72).

TABLE 3. Settings for the experiment.

were closer with the automatic NUMA balancing policy. It
is important to note that the goal of the automatic NUMA
balancing policy supported by theOS (Linux) is tomake tasks
(threads/processes) running on the cores and data present in
the main memory closer. Readers can refer to [36] for more
detailed information. Since the automatic NUMA balanc-
ing policy is not supported by the Linux kernel for TILE-
Gx36/72, we keep only the performance evaluation on the
NUMA model with the first-touch policy for TILE-Gx72.
The experimental results in Section IV-B can help us explain
that the novel models are feasible.

4The hardware information shown in this table exhibits KNL on which the
experiment in this paper is done, though up to 68 cores can be supported on
another KNL.

5Hyper-Threading, which supports multiple (i.e., 4 for KNL) logical cores
on an identical physical core, is guaranteed by Intel processors rather than
TILE-Gx36/72. The initial and the most significant goal of Hyper-Threading
is to take advantage of instruction-level parallelism and thus it is expected
to improve performance. However, scalability problem, which presents that
application performance cannot be improved when more threads are con-
figured on many cores, is observed on tiled many-core processors as well,
as illustrated in Figures 3 and 4. Enabling Hyper-Threading on KNL can
further degrade performance due to the shared cache system. That is, tasks
of parallel applications, which run on logical cores of the same physical core,
are able to evict cache lines belonging to each other and thus data must be
fetched from the high-overheadmain-memory system as a result of increased
cache misses. Since our goal is to help understand the underlying shard
cache system of tiled many-core processors and make use of it to improve
performance, we, therefore, do not evaluate application performance when
Hyper-Threading is enabled.

B. PERFORMANCE
Figures 3 and 4 exhibit program performance on
TILE-Gx72 and KNL, respectively. The x-axis shows the
thread (process) count designated to run a program, which
is able to be less than the total active thread (process) count.
For instance, the active thread count for dedup (a pipeline
program from PARSEC) is 3(n+1), but the thread count
shown in Figures 3c and 4c to run this program is n (for each
parallel stage). The y-axis illustrates the speedup normalized
to a baseline, for which only one thread (process) is adopted
to run the program. Label F in the parentheses represents that
the first-touch policy is employed. Label A in the parenthe-
ses stands for the automatic NUMA balancing policy. The
abnormal performance with the NUMA model for radiosity
in Figure 3qwas caused by the program being incorrectly exe-
cuted. Similar abnormal performance with 51 and 59 threads
for cholesky with UMA and NUMA models was also caused
by failed execution, as shown in Figures 3k and 4o. Note
that UMA and NUMA were recognized with conventional
models in the experiment. This is because the intention of
the experiment is to see whether or not it is necessary to
redefine models of UMA and NUMA for tiled many-core
processors and to meanwhile evaluate whether or not the
novel models are feasible. #Ts in Tables 5, 6, 7, and 8 refers
to the number of threads presented in Figure 3. # of threads in
Tables 9, 10, 11, and 12 refers to the thread count shown
in Figure 4. SD means the standard deviation.

VOLUME 7, 2019 18969



Y. Liu et al.: Analysis of Memory System of Tiled Many-Core Processors

TABLE 4. Selected applications for the experiment.

TABLE 5. MPKI values of streamcluster on TILE-Gx72.

TABLE 6. MPKI values of cholesky on TILE-Gx72.

1) PERFORMANCE ON TILE-GX72
On average, for most programs running on TILE-Gx72,
as illustrated in Figure 3, an insignificant difference in

TABLE 7. MPKI values of bt on TILE-Gx72.

TABLE 8. MPKI values of Grep on TILE-Gx72.

performance between UMA and NUMAmodels is observed.
The observation corresponds to the anticipation on perfor-
mance comparison between conventional UMA and NUMA

18970 VOLUME 7, 2019



Y. Liu et al.: Analysis of Memory System of Tiled Many-Core Processors

FIGURE 3. Speedup on TILE-Gx72. (a) blackscholes. (b) bodytrack. (c) dedup. (d) facesim. (e) ferret. (f) fluidanimate. (g) freqmine.
(h) streamcluster. (i) swaptions. (j) splash2x.barnes. (k) splash2x.cholesky. (l) splash2x.fft. (m) splash2x.lu_cb. (n) splash2x.lu_ncb.
(o) splash2x.ocean_cp. (p) splash2x.ocean_ncp. (q) splash2x.radiosity. (r) splash2x.raytrace. (s) splash2x.water_nsquared. (t)
splash2x.water_spatial. (u) bt.C.x. (v) cg.C.x. (w) dc.W.x. (x) ep.D.x. (y) is.C.x. (z) lu.C.x. (aa) sp.C.x. (ab) ua.C.x. (ac) Grep. (ad) Sort.
(ae) WordCount.

VOLUME 7, 2019 18971



Y. Liu et al.: Analysis of Memory System of Tiled Many-Core Processors

FIGURE 4. Speedup on KNL. (a) blackscholes. (b) bodytrack. (c) canneal. (d) dedup. (e) facesim. (f) ferret. (g) fluidanimate. (h) freqmine.
(i) raytrace. (j) streamcluster. (k) swaptions. (l) vips. (m) x264. (n) splash2x.barnes. (o) splash2x.cholesky. (p) splash2x.fft. (q) splash2x.lu_cb.
(r) splash2x.lu_ncb. (s) splash2x.ocean_cp. (t) splash2x.ocean_ncp. (u) splash2x.radiosity. (v) splash2x.raytrace. (w) splash2x.water_nsquared.
(x) splash2x.water_spatial. (y) bt.C.x. (z) cg.C.x. (aa) dc.W.x. (ab) ep.D.x. (ac) is.C.x. (ad) lu.C.x. (ae) sp.C.x. (af) ua.C.x. (ag) Grep. (ah) Sort.
(ai) WordCount.

18972 VOLUME 7, 2019



Y. Liu et al.: Analysis of Memory System of Tiled Many-Core Processors

TABLE 9. MPKI values of fluidanimate on KNL.

TABLE 10. MPKI values of canneal on KNL.

TABLE 11. MPKI values of sp.C.x on KNL.

TABLE 12. MPKI values of Sort on KNL.

models on TILE-Gx72, as described in Section III. This
is because for the conventional UMA and NUMA mod-
els supported by TILE-Gx36/72, they belong to the same
UMAcache model on the basis of novel models proposed in
this paper. Streamcluster (Figure 3h), cholesky (Figure 3k),
bt (Figure 3u), and Grep (Figure 3ac) seem to be exceptions.
The experimental results exhibit that streamcluster, cholesky,
bt, and Grep perform better with the conventional NUMA
model than UMA. However, since we know that the cache
behaviors of the UMA model are similar to those of NUMA,
we can infer that the performance degradation is triggered by
other parts instead of the memory system.

An insignificant difference in the numbers of cache misses
per kilo instructions (MPKI) between UMA and NUMA

models can be clearly observed from Tables 5, 6, 7, and 8.
These MPKI values support the inference. Two kinds of
cache misses (LOCAL and REMOTE) were calculated for
TILE-Gx72. LOCAL, as exhibited in Tables 5, 6, 7 and 8,
represents that the cache block is not present in the virtual
LLC and must be fetched from the main memory. REMOTE
means that the cache block is not present in the L2 cache of
the current processing core but may reside in the L2 cache
of the home tile. A LOCAL cache miss refers to a real
cache miss, but a REMOTE cache miss does not eventually
cause a costly cache miss. Our further analysis regarding the
performance difference of streamcluster and cholesky
between UMA and NUMA models on TILE-Gx72, demon-
strates that the difference is triggered by the Linux kernel. The
root cause and the solution to the problemwill be presented in
the next work. We therefore believe that there is no difference
between UMA and NUMA models when the significant
overhead is from the main memory. The novel models of
UMAcache and NUMAcache are able to explain why most pro-
grams exhibit almost identical performance between UMA
and NUMA models. When other applications rather than
those evaluated in this paper perform abnormally between
UMA and NUMA models, those people who concern the
performance can find out the root cause easily with the help
of other tools since the memory system is excluded from
being the overhead. However, without a full understanding
of the effect of the underlying cache system (i.e., the way
the cache coherence protocol works is important) of TILE-
Gx36/72, HPC experts may think that it is a little weird due
to the observation that insignificant performance difference
between the conventional UMA and NUMAmodels appears.

2) PERFORMANCE ON KNL
As illustrated in Figure 4, nine programs clearly benefit
from the UMA (also UMAcache) model and three programs
(fluidanimate, canneal, and Sort) benefit from the NUMA
(also NUMAcache) model on KNL. This is different from
what is observed on TILE-Gx72 from Figure 3. It is easy to
understand why performance with the UMA model is better
than NUMA on KNL. This is because the virtual LLC is
larger for a UMAcache processor than for a NUMAcache one.
We take sp.C.x as an example to explain the performance
benefit from a UMAcache processor. Table 11 exhibits the
MPKI values of sp.C.x, one of the nine programs that benefit
from the UMAcache model on KNL. The MPKI values with
the UMAcache model from 58 to 64 threads are lower than
those with the NUMAcache model with/without the automatic
NUMA balancing policy. Less counts of cache misses with
the UMAcache model exhibited in Table 11 correspond to
the performance improvement shown in Figure 4ae. The
observation reflects that the guides in [5] (i.e., suggesting not
using KNL as a UMA (also UMAcache) system) can mislead
researchers and/or users.

Since the virtual LLC of theUMAcache system is composed
of all on-chip L2 caches, it has a two-fold effect on program
performance.When a program reuses cache blocks in the near

VOLUME 7, 2019 18973



Y. Liu et al.: Analysis of Memory System of Tiled Many-Core Processors

future and/or exhibits good data locality, the future-accessed
cache blocks can be kept in the larger virtual LLC of the
UMAcache system, and thus, the performance is improved
compared with the NUMAcache system. When a program is
aggressive toward the cache system, which means that most
future-accessed cache blocks are not present in the virtual
LLC, the smaller virtual LLC of the NUMAcache system can
prevent the L2 caches of other node(s) from being polluted.
Tables 9, 10, and 12 present the MPKI values for fluidan-
imate, canneal, and Sort on KNL, respectively. The MPKI
values of fluidanimate with 32 and 64 threads with the UMA
model are higher than those with NUMAwith andwithout the
automatic NUMA balancing policy. The higher MPKI values
correspond to the worse performance with 32 and 64 threads
in Figure 4g. Knowing that the NUMAcache model on KNL
is able to protect L2 caches of other node(s) from being
polluted, compared with the UMAcache model, we can infer
that fluidanimate is aggressive to the cache system. When
a cache miss takes place, L2 caches of the whole system
are affected for the UMAcache model, but for the NUMAcache
model, only L2 caches of the current node are influenced.
That is why the MPKI values for the UMAcache model are
higher when the program is aggressive to the cache system.
Sort exhibits similar MPKI values to fluidanimate as pre-
sented in Table 12. Contrary to fluidanimate, canneal with
the UMAcache model does not exhibit clearly higher MPKI
values than the NUMAcache model, as shown in Table 10. We
then can infer that the main overhead is not related to the
memory system. People who want to improve performance
of a canneal-like application need to find the root cause(s)
from the OS, the runtime system, and the application itself.

Other programs exhibit insignificant performance compar-
ison betweenUMAcache andNUMAcachemodels onKNL. The
automatic NUMA balancing policy does not help improve
program performance on KNL compared with the first-touch
policy. Canneal and dedup are exceptions, as illustrated
in Figures 4c and 4d. The MPKI values shown in Table 10
for the automatic NUMA balancing policy exhibit that the
performance improvement is not from the memory system.
Further analysis is left for the future work. On the other
hand, it demonstrates that a UMAcache processor does not
hurt performance compared with a NUMAcache one, if the
program is not cache-aggressive. This observation contradicts
the guides described in [5]. In summary, a compute-intensive
(i.e., cg.C.x) application benefits from a UMAcache processor
because of a larger virtual LLC. A cache-aggressive applica-
tion benefits from a NUMAcache processor due to that other
LLCs are protected from being polluted.

C. DISCUSSION
From Section IV-B, we know that the novel models
(UMAcache and NUMAcache) can explain the insignificant
performance difference between the conventional UMA and
NUMA models on TILE-Gx72 and the significant perfor-
mance comparison on KNL. Because the novel models can
help OS designers and application programmers focus on the

cache system instead of both the cache system and the main-
memory system, we therefore believe that it is feasible (or
necessary) to redefine what a (non-)uniform memory access
system should be for tiled many-core processors, especially
when more and more cores are integrated onto a single chip
to further improve performance. OS designers (application
programmers) can treat the tiled many-core processor as a
UMAcache system, but they need to rethink what the OS
(application) should be in order to take advantage of data
locality in the cache system as much as possible. The cache
replacement policy, which determines which cache block
needs to be evicted before a new cache block is installed,
should be reconsidered as well in order to keep the most-
accessed cache blocks, i.e., the cache blocks belonging to
a shared area between threads, in the cache system as long
as possible. The performance analysis in Section IV shows
that we are able to analyze the (non-)significant performance
difference on emerging tiled many-core processors using the
novel models ofUMAcache andNUMAcache, with a full under-
standing of the underlying hardware. Since it is impractical to
evaluate hundreds (or thousands) of applications on emerging
tiled many-core processors to conclude that the conventional
UMA (or NUMA) system is better, the novel models can be
adopted to predict whether or not a given program benefits
from the UMA (or NUMA) system. The performance of a
program is more likely to benefit from the UMAcache model
on tiled many-core processors because of the larger-capacity
LLC, as illustrated in Figure 4. OS designers may benefit
from that feature because it seems relatively easier to design
UMAcache-based OSes than NUMAcache-based ones.

However, another problem arises on tiled many-core pro-
cessors if OS designers and application programmers highly
rely on the cache system. It is well-studied that the per-
formance of one application is influenced by another co-
scheduled onewhen LLC is shared between them. One cache-
aggressive application is able to evict cache lines of another
co-scheduled one, even though those cache lines will be
accessed by the co-scheduled application later. Therefore,
how do OS designers design their own OS to schedule multi-
ple applications when underlying caches are shared by them?
One simple approach is to run them on NUMAcache-based
tiled many-core processors, divide applications into multiple
groups and map each group to each node. That might be
feasible if the group count is nomore than the node count, and
the burden placed on one specific memory controller is not a
serious overhead.When the performance of one application is
sensitive to the cache capacity, this simple approach degrades
the performance undoubtedly. Moreover, when each group
includes more than one application, the cache sharing prob-
lem of UMAcache-based tiled many-core processors happens
again. OS designers should be careful to design their OS on
tiled many-core processors.

To alleviate the burden placed on OS designers and appli-
cation programmers, and to eliminate the potential overhead
of burdening one specific physical memory controller on tiled
many-core processors, we propose a hybrid memory system

18974 VOLUME 7, 2019



Y. Liu et al.: Analysis of Memory System of Tiled Many-Core Processors

in this paper, though the simulation work will be completed
in the future. Note that we do not differentiate cache and
physical memory when discussing the hybrid system. The
system is inspired by the performance comparison between
conventional models and novel models discussed in this
paper. It combines traditional UMA model and NUMAcache
model, and thus, a physical page is interleaved acrossmultiple
physical memory controllers with modeled granularity (such
as 512 bytes adopted by TILE-Gx36/72), and cores are
clustered as a node. Furthermore, the node count is managed
by software (OS/hypervisor) dynamically to facilitate the
work of OS designers. The cache coherence protocol can be
similar to that used by TILE-Gx36/72, and thus, a requester
tile and the home tile are included in the same node. One
might be concerned that this will cause the same problem for
cache-capacity-intensive applications. One more aggressive
idea, which is inspired by cooperative caching [37] and hybrid
shared/private caching [38], is to separate the L2 cache from
a tile with one bit managed by software, and not to change
the physical location of each L2 cache. That is, cores from
one node can access their L2 caches when bits are set to 1.
When bits of some L2 caches of one node are set to 0,
then these L2 caches can be borrowed by other (neighbor-
ing) node(s) on demand. Moreover, the experimental results
shown in Figure 4 demonstrate that program performance
degraded by on-chip network congestion is not serious com-
paredwith performance loss caused by a lower-capacity LLC.
Thus, we believe that the hybrid memory system, which is
supported by a virtual memory controller and a dynamic
software-managed node count, is feasible for future tiled
many-core processors. Further work will be completed in the
future to analyze modeling parameters, such as interleaving
granularity and maximum core count.

V. RELATED WORK
Because the analysis is based on previous research work, in
this section, we mainly describe aspects associated with the
novel models and the proposed hybrid memory system.

A. TRADITIONAL MULTICORE SYSTEM
Figure 2 exhibits an example of a multi-socket system,
which is one of the typical traditional multicore systems in
the HPC area, of which cores can be fitted onto multiple
chips [22], [39] and the interconnect between cores on the
same chip can be rings [40]. According to conventional
models of UMA and NUMA, in which UMA is deter-
mined by the uniform memory access latency between cores
(processors) and a memory system, and NUMA is non-
uniform, the multi-socket system of Figure 2 belongs to
the NUMA system. Non-uniform memory access latency
is the main feature of NUMA-based traditional multicore
systems. However, Dashti et al. [41] observed that remote
access latency was not the key overhead to program perfor-
mance because of reduced wire delay. They pointed out that
the congestion on the memory controller and node-to-node
interconnect hurt the performance more than the wire delay.

Moreover, Lepers et al. [20] noticed that an asymmetric point-
to-point interconnect mattered more than the wire delay.
Diener et al. [42] evaluated how performance was affected
by access locality and balanced memory accesses. They
observed that the mixture of locality and balance was able to
provide the highest performance improvement. These studies
further inspired us to pay attention to the overhead from the
memory controller and interconnect.

B. CACHE SYSTEM
Huh et al. [43] depicted the organization of private cache and
shared cache with non-uniform cache architecture (NUCA)-
based L2 cache. They observed that a dynamically migratory
NUCA approach was able to improve program performance
for a portion of workloads. Zhang and Asanovic [44] men-
tioned private cache (local L2 cache slice is private to a tile)
and shared cache (all L2 cache slices are combined together
as a large L2 cache shared by all tiles) as well. They proposed
a policy called ‘‘victim replication’’ to take advantage of the
advantages of private and shared caches. On the basis of
shared cache, they attempted to keep a copy of a victim in
a tile’s local L2 cache slice when the cache line was evicted
because of a conflict or lack of capacity. Chang and Sohi [37]
presented cooperative caching to combine the strengths of
private and shared caches as well. Their work was based on
private cache but exploited L2 cache resources as sufficiently
as possible via policies including cache-to-cache transfers of
clean data, replication-aware data replacement, and global
replacement of inactive data. Cho and Jin [38] proposed
an OS-level page allocation approach to mapping data to
L2 cache slices at memory page granularity. They further
pointed out that L2 cache slices from other cores could be bor-
rowed to increase the caching space. These studies motivated
us to propose a more aggressive method in Section IV-C to
separate L2 caches from tiles with one software-managed bit.

C. CACHE SHARING PROBLEM
Chandra et al. [45] observed that the number of cache misses
was increased and that of instruction per cycle (IPC) was
reduced, to respective degrees, when one application was co-
scheduled with other applications on a system with a shared
L2 cache. They proposed three performance models to inves-
tigate the impact of cache sharing on co-scheduled threads.
Xie and Loh [46] proposed a new classification algorithm
that predicted when cache sharing problems might appear on
a multi-core processor. Kim et al. [47] observed an increase
in the number of cache misses and a reduction in IPC of
one application when it was co-scheduled with other appli-
cations as well. They proposed five metrics to measure the
degree of cache sharing fairness, and found that optimizing
fairness mattered more than maximizing throughput on co-
scheduled benchmark pairs. These studies motivated us to
propose a hybrid memory system to dynamically manage
tiled many-core processors when multiple applications are
co-scheduled.

VOLUME 7, 2019 18975



Y. Liu et al.: Analysis of Memory System of Tiled Many-Core Processors

VI. CONCLUSION AND FUTURE WORK
We define novel models (UMAcache and NUMAcache) that
are based on the cache coherence protocol on tiled many-
core processors. The UMAcache model is determined when
one physical page is distributed across all available on-chip
tiles with the purpose of maintaining cache coherence,
while the NUMAcache model is recognized by distributing
a physical page across a portion of on-chip tiles. With the
novel models, we conclude that KNL belongs to UMAcache
and NUMAcache systems, and TILE-Gx72 belongs to the
UMAcache system, though both tiledmany-core processors are
composed of on-chip tiles interconnected viamesh-based net-
works. Experimental results demonstrate that the novel mod-
els of UMAcache and NUMAcache can explain the observed
(non-)significant performance difference between conven-
tional UMA and NUMA models for tiled many-core proces-
sors. Moreover, we propose a hybrid memory system, the
goal of which is to solve the cache sharing problem when
multiple applications are co-scheduled, for future tiled many-
core processors. Because (future) tiled many-core processors
are more complicated and distinct from traditional multicore
systems, we believe that the analysis in this paper will help
OS designers rethink what the organization of an OS on
tiledmany-core processors should be.Well-designedOSes on
tiled many-core processors can further facilitate the work of
application programmers, and/or motivate the design of new
programming model(s). In the future, simulation work will
be done for the hybrid memory system on tiled many-core
processors. Parameters such as interleaving granularity will
be modeled, and the sensitivity to varied parameters will be
analyzed.

REFERENCES
[1] A. Sodani et al., ‘‘Knights landing: Second-generation intel xeon phi

product,’’ IEEE Micro, vol. 36, no. 2, pp. 34–46, Mar./Apr. 2016.
[2] (2015). TILE-Gx36 Porcessor. [Online]. Available: http://www.mellanox.

com/related-docs/prod_multi_core/PB_TILE-Gx36.pdf
[3] (2015). TILE-Gx72 Porcessor. [Online]. Available: http://www.mellanox.

com/related-docs/prod_multi_core/PB_TILE-Gx72.pdf
[4] A. Baumann et al., ‘‘The multikernel: A new OS architecture for scalable

multicore systems,’’ in Proc. ACM SIGOPS 22nd Symp. Operating Syst.
Princ. New York, NY, USA: ACM, 2009, pp. 29–44.

[5] (2016). Clustering modes in knights landing processors. [Online]. Avail-
able: https://colfaxresearch.com/knl-numa/

[6] M. K. Qureshi and Y. N. Patt, ‘‘Utility-based cache partitioning: A low-
overhead, high-performance, runtime mechanism to partition shared
caches,’’ in Proc. 39th Annu. IEEE/ACM Int. Symp. Microarchitecture,
Dec. 2006, pp. 423–432.

[7] A. Fedorov, M. Seltzer, and M. D. Smith, ‘‘Improving performance iso-
lation on chip multiprocessors via an operating system scheduler’’ in
Proc. 16th Int. Conf. Parallel Archit. Compilation Techn., Sep. 2007,
pp. 25–38.

[8] J. Lin, Q. Lu, X. Ding, Z. Zhang, X. Zhang, and P. Sadayappan, ‘‘Gaining
insights into multicore cache partitioning: Bridging the gap between sim-
ulation and real systems,’’ in Proc. IEEE 14th Int. Symp. High Perform.
Comput. Archit. (HPCA), Feb. 2008, pp. 367–378.

[9] D. K. Tam, R. Azimi, L. B. Soares, and M. Stumm, ‘‘RapidMRC: Approx-
imating L2 miss rate curves on commodity systems for online optimiza-
tions,’’ ACM SIGARCH Comput. Archit. News, vol. 37, no. 1, pp. 121–132,
2009.

[10] X. Zhang, S. Dwarkadas, and K. Shen, ‘‘Towards practical page coloring-
basedmulticore cachemanagement,’’ inProc. 4th ACMEur. Conf. Comput.
Syst., 2009, pp. 89–102.

[11] D. Bradford, S. Chinthamani, J. Corbal, A. Hassan, K. Janik, and N. Ali.
(2017). Knights Mill: Intel XEON Phi Processor for Machine Learning.
[Online]. Available: https://www.hotchips.org/wp-content/uploads/hc_
archives/hc29/HC29.21-Monday-Pub/HC29.21.40-Processors-
Pub/HC29.21.421-Knights-Mill-Bradford-Intel-APPROVED.pdf

[12] I. Cutress. (2017). Intel Lists Knights Mill Xeon Phi on ARK: Up to 72
cores at 320W with QFMA and VNNI. [Online]. Available: https://www.
anandtech.com/show/12172/intel-lists-knights-mill-xeon-phi-on-ark-up-
to-72-cores-at-320w -with-qfma-and-vnni

[13] (2018). Knights Mill-Microarchitectures-Intel. [Online]. Available:
https://en.wikichip.org/wiki/intel/microarchitectures/knights_mill

[14] P. Kennedy. (2017). Intel Xeon Phi Knights Mill for Machine Learn-
ing. [Online]. Available: https://www.servethehome.com/intel-knights-
mill-for-machine-learning/

[15] C. Byun et al. (2017). ‘‘Benchmarking data analysis and machine learning
applications on the Intel KNL many-core processor.’’ [Online]. Available:
https://arxiv.org/abs/1707.03515

[16] Y. You, A. Buluç, and J. Demmel, ‘‘Scaling deep learning on GPU and
knights landing clusters,’’ in Proc. Int. Conf. High Perform. Comput.,
Netw., Storage Anal. New York, NY, USA: ACM, 2017, p. 9.

[17] A. A. Awan, H. Subramoni, and D. K. Panda, ‘‘An in-depth performance
characterization of CPU-and GPU-based DNN training on modern archi-
tectures,’’ in Proc. Machine Learn. HPC Environ. New York, NY, USA:
ACM, 2017, p. 8.

[18] T. Allen, C. S. Daley, D. Doerfler, B. Austin, and N. J. Wright, ‘‘Perfor-
mance and energy usage of workloads on KNL andHaswell architectures,’’
in High Performance Computing Systems. Performance Modeling, Bench-
marking, and Simulation (Lecture Notes in Computer Science), vol. 10724,
S. Jarvis, S. Wright, and S. Hammond, Eds. Cham, Switzerland: Springer,
2018. [Online]. Available: https://link.springer.com/chapter/10.1007/978-
3-319-72971-8_12#citeas

[19] E. Calore, A. Gabbana, S. F. Schifano, and R. Tripiccione, ‘‘Software
and DVFS tuning for performance and energy-efficiency on Intel KNL
processors,’’ J. Low Power Electron. Appl., vol. 8, no. 2, p. 18, 2018.

[20] B. Lepers and V. Quéma, and A. Fedorova, ‘‘Thread and memory place-
ment on NUMA systems: Asymmetry matters,’’ in Proc. USENIX Annu.
Tech. Conf., 2015, pp. 277–289.

[21] S. V. Adve and K. Gharachorloo, ‘‘Shared memory consistency models:
A tutorial,’’ Computer, vol. 29, no. 12, pp. 66–76, Dec. 1996.

[22] D. Molka, D. Hackenberg, and R. Schöne, and W. E. Nagel, ‘‘Cache
coherence protocol and memory performance of the intel haswell-ep archi-
tecture,’’ in Proc. 44th Int. Conf. Parallel Process. (ICPP), Sep. 2015,
pp. 739–748.

[23] (2009). An Introduction to the Intel Quickpath Interconnect. [Online].
Available: https://www.intel.com/content/www/us/en/io/quickpath-
technology/quick-path-interconnect-introduction-paper.html

[24] K. David, ‘‘The common system interface: Intel’s future interconnect,’’
2007. [Online]. Available: https://www.realworldtech.com/common-
system-interface/

[25] S. Kottapalli, H. G. Neefs, R. Pal, M. K. Arora, and D. Nagaraj,
‘‘Extending a cache coherency snoop broadcast protocol with
directory information,’’ 2012. [Online]. Available: https://patentimages.
storage.googleapis.com/58/a6/a1/22988f4452fe56/US8656115.pdf

[26] F. Petrini, D. J. Kerbyson, and S. Pakin, ‘‘The case of the missing super-
computer performance: Achieving optimal performance on the 8,192 pro-
cessors of ASCI Q,’’ in Proc. ACM/IEEE Conf. Supercomput., Nov. 2003,
p. 55.

[27] D. Tsafrir, Y. Etsion, D. G. Feitelson, and S. Kirkpatrick, ‘‘System noise,
OS clock ticks, and fine-grained parallel applications,’’ in Proc. 19th Annu.
Int. Conf. Supercomput. New York, NY, USA: ACM, 2005, pp. 303–312.

[28] A. Nataraj, A. Morris, A. D. Malony, M. Sottile, and P. Beckman, ‘‘The
ghost in the machine: Observing the effects of kernel operation on parallel
application performance,’’ in Proc. ACM/IEEE Int. Conf. Supercomput.
New York, NY, USA: ACM, 2007, p. 29.

[29] K. B. Ferreira, P. Bridges, and R. Brightwell, ‘‘Characterizing application
sensitivity to OS interference using kernel-level noise injection,’’ in Proc.
ACM/IEEE Conf. Supercomput. Piscataway, NJ, USA: IEEE Press, 2008,
p. 19.

[30] D. Sanchez and C. Kozyrakis, ‘‘SCD: A scalable coherence directory with
flexible sharer set encoding,’’ in Proc. IEEE Int. Symp. High-Perform.
Comp Archit., Feb. 2012, pp. 1–12.

[31] A. Ros, M. E. Acacio, and J. M. Garcia, ‘‘A direct coherence protocol
for many-core chip multiprocessors,’’ IEEE Trans. Parallel Distrib. Syst.,
vol. 21, no. 12, pp. 1779–1792, Dec. 2010.

18976 VOLUME 7, 2019



Y. Liu et al.: Analysis of Memory System of Tiled Many-Core Processors

[32] C. Bienia, S. Kumar, J. P. Singh, and K. Li, ‘‘The PARSEC benchmark
suite: Characterization and architectural implications,’’ in Proc. 17th Int.
Conf. Parallel Architectures Compilation Techn. New York, NY, USA:
ACM, 2008, pp. 72–81.

[33] C. Bienia, S. Kumar, and K. Li, ‘‘PARSEC vs. SPLASH-2: A quan-
titative comparison of two multithreaded benchmark suites on chip-
multiprocessors,’’ in Proc. IEEE Int. Symp. Workload Characteriza-
tion (IISWC), Sep. 2008, pp. 47–56.

[34] D. H. Bailey et al., ‘‘The NAS parallel benchmarks,’’ Int. J. High Perform.
Comput. Appl., vol. 5, no. 3, pp. 63–73, 1991.

[35] L. Wang et al., ‘‘Bigdatabench: A big data benchmark suite from Inter-
net services,’’ in Proc. IEEE 20th Int. Symp. High Perform. Comput.
Archit. (HPCA). IEEE, 2014, pp. 488–499.

[36] (2014). Automatic Non-Uniform Memory Access (NUMA) Balancing.
[Online]. Available: https://doc.opensuse.org/documentation/leap/tuning/
html/book.sle.tuning/cha.tuning.numactl.html

[37] J. Chang and G. S. Sohi, Cooperative Caching for Chip Multiprocessors,
vol. 34, no. 2. New York, NY, USA: ACM, 2006.

[38] S. Cho and L. Jin, ‘‘Managing distributed, shared L2 caches through
OS-level page allocation,’’ in Proc. 39th Annu. IEEE/ACM Int. Symp.
Microarchitecture, Dec. 2006, pp. 455–468.

[39] Z. Majo and T. R. Gross, ‘‘Memory system performance in a NUMA
multicore multiprocessor,’’ in Proc. 4th Annu. Int. Conf. Syst. Storage.
New York, NY, USA: ACM, 2011, p. 12.

[40] D. Molka, D. Hackenberg, and R. Schöne, ‘‘Main memory and cache
performance of Intel sandy bridge andAMDbulldozer,’’ inProc.Workshop
Memory Syst. Perform. Correctness. New York, NY, USA: ACM, 2014,
p. 4.

[41] M. Dashti et al., ‘‘Traffic management: A holistic approach to memory
placement on NUMA systems,’’ ACM SIGPLAN Notices, vol. 48, no. 4,
pp. 381–394, 2013.

[42] M. Diener, E. H. M. Cruz, and P. O. A. Navaux, ‘‘Locality vs. Bal-
ance: Exploring data mapping policies on NUMA systems,’’ in Proc.
23rd Euromicro Int. Conf. Parallel, Distrib., Netw.-Based Process. (PDP),
Mar. 2015, pp. 9–16.

[43] J. Huh, C. Kim, H. Shafi, L. Zhang, D. Burger, and S. W. Keckler,
‘‘ANUCA substrate for flexible CMP cache sharing,’’ IEEE Trans. Parallel
Distrib. Syst., vol. 18, no. 8, pp. 1028–1040, Aug. 2007.

[44] M. Zhang and K. Asanovic, ‘‘Victim replication: Maximizing capacity
while hiding wire delay in tiled chip multiprocessors,’’ ACM SIGARCH
Comput. Archit. News, vol. 33, no. 2, pp. 336–345, 2005.

[45] D. Chandra, F. Guo, S. Kim, and Y. Solihin, ‘‘Predicting inter-thread cache
contention on a chip multi-processor architecture,’’ in Proc. 11th Int. Symp.
High-Perform. Comput. Architectur (HPCA), Feb. 2005, pp. 340–351.

[46] Y. Xie and G. H. Loh, ‘‘Dynamic classification of program memory
behaviors in CMPs,’’ in Proc. 2nd Workshop Chip Multiprocessor Memory
Syst. Interconnects, 2008, pp. 1–9.

[47] S. Kim, D. Chandra, and Y. Solihin, ‘‘Fair cache sharing and partitioning in
a chipmultiprocessor architecture,’’ inProc. 13th Int. Conf. Parallel Archit.
Compilation Techn., Oct. 2004, pp. 111–122.

YE LIU received the M.S. degree from the Uni-
versity of Chinese Academy of Sciences, in 2013.
She is currently pursuing the Ph.D. degree with the
Graduate School of Information Science, Nagoya
University. Her research interests include operat-
ing systems and memory systems.

SHINPEI KATO received the B.S., M.S., and
Ph.D. degrees from Keio University, in 2004,
2006, and 2008, respectively. He was with
Carnegie Mellon University, and with the Uni-
versity of California at Santa Cruz, from 2009 to
2012. He is currently an Associate Professor with
the Graduate School of Information Science and
Technology, TheUniversity of Tokyo. His research
interests include operating systems, real-time sys-
tems, and parallel and distributed systems.

MASATO EDAHIRO received the Ph.D. degree
in computer science from Princeton University,
Princeton, NJ, USA, in 1999. He joined NEC Cor-
poration, in 1985, and was with its research center
for 26 years, and moved to Nagoya University,
Nagoya, Japan, in 2011. His research interests
include graph and network algorithms and soft-
ware for multi- and many-core processors.

VOLUME 7, 2019 18977


	INTRODUCTION
	BACKGROUND AND MOTIVATIONS
	USE CASES ON KNL[2]
	TRADITIONAL MULTICORE SYSTEM
	TILED MANY-CORE PROCESSORS

	NOVEL MODELS
	PERFORMANCE ANALYSIS
	EXPERIMENTAL SETUP
	PERFORMANCE
	PERFORMANCE ON TILE-GX72
	PERFORMANCE ON KNL

	DISCUSSION

	RELATED WORK
	TRADITIONAL MULTICORE SYSTEM
	CACHE SYSTEM
	CACHE SHARING PROBLEM

	CONCLUSION AND FUTURE WORK
	REFERENCES
	Biographies
	YE LIU
	SHINPEI KATO
	MASATO EDAHIRO


