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ABSTRACT Ultra-high frequency radio frequency identification (UHF RFID) technology has been widely
used in many areas, and RFID localization becomes a research hotspot. There are many kinds of research
on absolute localization; however, due to some disadvantages of absolute localization, relative localization
is more effective in some situations. At present, there are some problems with relative localization: existing
methods have low localization accuracy, and it is difficult for them to deal with high-density tags. Aiming
at these problems, this paper proposes PRDL: relative localization method of RFID tags via phase and RSSI
based on deep learning. By using deep learning, the variation characteristics of RFID phase and RSSI are
extracted with limited data accuracy conditions. On this basis, we can infer the relative positional relationship
of RFID tags with high accuracy, and design the corresponding sorting algorithm to obtain the sequence
arrangement. PRDL has experimented with bare tags and actual books, and the experimental results show
that PRDL can achieve better results than the traditional relative localization methods. A series of tests also
showed that PRDL has good robustness and generalization ability.

INDEX TERMS Relative localization, RFID, deep learning, RSSI, phase.

I. INTRODUCTION
Ultra-high frequency Radio Frequency Identification (UHF
RFID) technology has been widely used in many areas, such
as logistics, clothing industry, library management, ware-
house management and so on, and object localization has
always been a hot topic in RFID research. Localization can
be divided into absolute localization and relative localization.
The absolute position of an object refers to its coordinate
value in a coordinate system and the relative position of an
object refers to its order with respect to other objects.

Most of previous research is aimed at absolute localization,
but in many situations, the relative position of an object is
more important than its absolute position. For example, in the
library, when librarians are looking for misplaced books, they
need to know the current order of books rather than their
coordinates; In a conveyor system, the order of the objects
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provides enough information, and absolute position is not
important.

There are three main reasons why absolute localization
is not suitable for these scenes. First, the error of absolute
localization is relatively large, and it is difficult to com-
plete the localization of objects with small spacing. For
instance, the RFID indoor absolute localization scheme pro-
posed by Wang J et al., achieves the accuracy of 11 cm in
the library [11], a relatively good outcome, but the distance
between books is much smaller than 11 cm, so some absolute
localization schemes can hardly determine the sequence of
books because of their inadequate accuracy. Second, although
absolute localization method [1] can reach millimeter level,
but it uses four reader antennas, which is not only hardware
costly, but also inconvenient to use. Third, absolute localiza-
tion usually requires multiple reader antennas to be placed at
fixed locations, and if someone passes or interferes with the
running localization system, the localization results will be
hugely influenced.
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To some extent, relative localization is easier than the
absolute localization because it is committed to find out the
relative position between objects rather than the coordinates.
However, there are still many research difficulties in relative
localization. First, for practical use, the accuracy of local-
ization must be guaranteed. Absolute localization methods
position objects respectively, different with relative local-
ization. In relative localization, the positioning deviation of
one object will affect the positioning result of other objects,
which means high accuracy of relative localization is hard
to achieve. Second, localization methods should have high
fault tolerance(robustness). When moving the reader antenna
to collect data, it is difficult to control parameters such as
the moving speed, the distance between antenna and tags,
etc., so the robustness is a very important indicator of the
localization method.

In recent years, deep learning, an algorithm that attempts
to abstract data with multiple processing layers consist-
ing of complex structures or multiple nonlinear transforms,
is continuously combined with practical applications to
further improve the accuracy and efficiency of applica-
tions [14]–[16]. Nevertheless, there are very little applica-
tions combined deep learning with RFID localization, let
alone relative localization. In view of the above situation,
this paper puts forward PRDL: Relative Localization Method
of RFID Tags via Phase and RSSI based on Deep Learn-
ing. Using commercial off-the-shelf (COTS) RFID readers
and passive tags, PRDL employs deep learning to extract
information from the variation of RFID phase and RSSI, and
determines the location and the order of RFID tags with high
accuracy. Holding the antenna in hand or clamping them by
instrument, we scanned the aligned RFID tags evenly along a
dimension in one direction and collected relevant data. Small
spacing between tags (only 1-3 cm), measurement errors, etc.
make collected data entangled., But these data show obvi-
ous change characteristics, indicating location information.
According to the Otrack phenomenon and our observations,
when we move the antenna along a dimension in one direc-
tion, as the distance between the antenna and the tag decreases
first and then increases, the RSSI of the tag decreases first
and then increases in proportion to the distance, and becomes
the minimum when the reader is perpendicular above the tag
along that dimension, and the phase also changes signifi-
cantly with the movement of the antenna [9]. We trained the
machine to analysis the dynamic data and find the current
order of tags. To know the order of the tag sequence, we just
need to know the left-right relationship between any two tags.
We collected a large amount of training data, labeled every
two tags with their correct left-right relationship. Then the
training data was input into the deep neural network which
is constructed in this paper, and the model output by deep
neural network is used to obtain the left-right relationship
between any two tags of an unknown tag sequence. After
that, the order of the sequence was derived from left-right
relationships by using a sort algorithm and was visualized.
After studying the bare tag sequence, we applied PRDL to the

book arrangement. The experimental result shows that PRDL
can achieve high accuracy and good robustness.

The main contribution of this paper is to apply deep learn-
ing technology to the relative localization of RFID tags,
breaking through the problem of relative localization under
the condition of high-density RFID tags. Even if the tags
are densely arranged, for exampe when the distance between
tags is 1cm, PRDL can still achieve good results, thereby
increasing the relative localization accuracy to a new level.
In addition, PRDL better handles the robustness of relative
localization and solves the problem that the existing tech-
nology has a severe fluctuation in accuracy as the spacing
between tags decreases.

This paper not only provides a new method for relative
localization, but also combines deep learning technology and
the Internet of Things to provide a new idea for the solution
of related IoT problems, and enriches the application of deep
learning technology.

The rest of paper is organized as follows. In Section II,
a review of related research about RFID location is pro-
vided. In Section III, we discussed some preparations and
attempts before the experiment. In Section IV, we introduce
the design details of our PRDL based relative localization
system. The experiments and evaluation are illustrated in
Section V. Finally, we conclude this paper in Section VI.

II. RELATED RESEARCH
This section discusses the researches on absolute localiza-
tion and relative localization, then analysis their existing
drawbacks.

Absolute localization: In recent years, the localization
technology of RFID has been continuously improved, and the
positioning accuracy is constantly increasing. Landmarc was
the first mature RFID localization system based on Received
Signal Strength Indication (RSSI) [2], later many researchers
ameliorated it. Zhang et al. [3] introduced quantum particle
swarm optimization cubature Kalman filter which makes
the average localization accuracy approximately 17.5 cm;
Xu et al. [4] improved the Landmarc with SVM and the
localization accuracy is about 19 cm.Meanwhile, localization
methods and algorithms based on Time of Arrival (TOA),
Time Different of Arrival (TDOA), Angle of Arrival (AOA),
and Phase come out. Fu et al. [5] proposed a method for
the localization of moving object based on UHF RFID Phase
and Laser Clustering and it achieves approximately 25 cm
localization accuracy; Ma et al.’s [6] localization algorithm
based on AOA and PDOA can achieve decimeter accuracy.
In addition, Zhang et al. [7] presented the Bayesian filter of
variable RF transmission power (BFVP), and its localization
accuracy is less than 0.5m in the actual retail environment;
Wang et al. [11] introduced the first fine-grained RFID posi-
tioning System that is robust to multipath and non-line-of-
sight scenarios, and the test accuracy in the library is about
11 cm; Duan et al. [8] put forward a fast and easy method
called Tagspin to accurately locate the reading using COTS
tags, and the average accuracy in three-dimensional space
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is getting to 7.3 cm; ‘‘Differential Augmented Hologram’’
was proposed by Yang et al. [1], which even improves the
positioning accuracy to the millimeter level.

Relative localization: At present, the research results of
localization based on phase are not fruitful enough, where
existing many breakthroughs. Shangguan et al. [9] first dis-
covered the Otrack phenomenon, a critical region of read-
ing rate when a tag gets close enough to a reader. After
an in-depth study, they presented the first study of relative
object localization ’Spatial-Temporal Phase Profiling-Based
Method for Relative RFID Tag Localization (STPP)’. The
ordering accuracy of STPP for misplaced books is about
84% and 95% for baggage handling [10]. Wang et al. came
up with a relative localization method based on RSSI and
human motion (HMRL), which is efficient and convenient to
deploy and the accuracy can reach 90%-95% [12]. In addi-
tion, Nick T et al. used an unscented Kalman Filter with
relative position information for localization of passive UHF
RFID labels [13]. STPP and HMRL focus on relative object
localization in a two dimensional space by moving the
antenna only once, respectively calculating the accuracy of
the two dimensions on the X and Y axes. The common
drawback of these methods is that the accuracy is not par-
ticularly high, and it is difficult to process high-density
tags.

According to relevant research status, we proposed a rel-
ative localization method of RFID tags via phase and RSSI
based on Deep Learning (PRDL) to improve the accuracy
of relative localization in one dimension, equivalent to X
latitude in STPP and HMRL. When the distance between
objects is large, it is easy to distinguish the relative positional
relationship, while when the distance is small, it is very diffi-
cult. So we focus on the relative localization of high-density
tags in one dimension.

III. EXPERIMENTAL PREPARATION
This section discusses experiment preparations, including
RFID tags processing, data collecting, preliminary data anal-
ysis and the inference about the appropriate localization
method. The symbols used in this paper and descriptions are
shown in Table 1.

A. LABORATORY EQUIPMENT PREPARATION
The process of reading RFID tag is affected by many factors,
including signal propagation medium, angles of the reflected
signal of tags, obstacles around tags, etc. We used H47 pas-
sive tags in the initial experimental stage. After eliminating
various interference factors, we found that tags were easily
bent, which had a great influence on the collected data,
therefore a set of acrylic board laboratory equipment was
designed. As shown in Figure 1, the acrylic boards are made
of plastic, and the influence of those dielectric coefficient on
the RFID signal is within the controllable range. Using two
acrylic plates to sandwich one RFID tag can well eliminate
the influence of the tag bending on the data.

TABLE 1. Main notations.

FIGURE 1. Acrylic board laboratory equipment.

B. CHANGES IN RSSI DURING ANTENNA MOVEMENT
Received Signal Strength Indication (RSSI) is an indication
of the received signal strength, an optional part of the wireless
transmission layer, used to determine the quality of the link,
and whether to increase the broadcast transmission strength.
A RSSI value (dBm) is negative and its maximum is 0.
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FIGURE 2. Theoretical and actual maps of RSSI changes.

Only under the ideal condition the RSSI value of a tag can
be 0, meaning that the tag receives all signals from the
antenna. Ideally, when the antenna scans through a sequence
of tags, RSSI values of tags are periodic and hierarchical.
As shown in Figure 2(a), there are five different colored lines,
each representing a tag, and the left-right relationship of any
two tags can be directly distinguished by the figure. In fact,
RSSI is affected by distance, medium and other factors, and
many studies have shown that the RSSI indoor path loss
follows the log-distance path loss model [17], [18]:

PL(d)(dB)=PL(d0)+10n lg (d/d0)+Xσ , Xσ ∼ N (0, σ )

(1)

where PL(d) is the path loss when the distance between trans-
mitter and receiver is d, and PL(d0) is the reference path loss
at the close distance, which is obtained by actual test. n is the
path loss factor related to the surrounding environment. Xσ
is a normal random variable with a standard deviation of σ .
Affected by various factors, the data for each tag is interlaced,
and the amount of data measured by different tags is different,
even some tags have data missing, so it is difficult to directly
judge two tags’ left-right relationship through visualization.
The actual scan result is shown in Figure 2 (b), and the data
shown in the figure is part of the data collected by the antenna
scanning through 20 tags in Figure 1.

C. CHANGES IN PHASE DURING ANTENNA MOVEMENT
Phase is one of the basic properties of a signal, ranging from
0 to 360 degrees, and the phase value of the RFID signal
describes the extent to which the received signal is offset from
the transmitted signal. The measured phase value output by
the reader is a periodic function and can be expressed as:

θ =

(
2π

2d
λ
+ θT + θR + θTag

)
mod 2π (2)

where d is the distance between the reader antenna and the
tag; λ is the wavelength; the round-trip distance for a signal
from transmitter to receiver is 2d; θT , θR, and θTag are the
phase shifts introduced respectively by the reader’s trans-
mitter circuit, the reader’s receiver circuit, and the reflective
characteristics of the tag [10]. Like RSSI, the actual value of
the phase differs greatly from the theoretical value and the
data of each tag is interlaced and even some data is missing.
As shown in Figure 3, the source of the actual data is the same
as the RSSI data source of part B.

FIGURE 3. Theoretical and actual maps of phase changes.

D. DATA FLUCTUATION
Considering the path loss of the reader energy, the simplest
case is to assume that the antenna radiates energy uniformly
in all directions of the space and is represented in space
as a spherical body of radius r. And the energy actually
received by the tag is proportional to the energy density across
the tag antenna in the area. Therefore, for an antenna with
an effective aperture of Ke, when a plane wave having an
energy density of ρ is received, the actually received energy
is ρKe. The energy density at the distance r is the ratio of the
transmitted energy PT to the spherical surface, so the energy
PR received at the tag is:

PR = PT
Ke

4πr2
, Ke =

λ2

4π
where λ is the wavelength of the corresponding frequency
signal. The energy change in this ideal state is regular, but the
transmission space environment between the reader and the
tag is much more complicated in reality. The multipath effect
and existence of the ionizer make actual energy changes diffi-
cult to quantify and describe. A series of issues such as atten-
uation, tag decoding capability and environmental impact are
all related to RFID recognition performance [30]–[33]. This
makes it impossible to obtain ideal RSSI and Phase data.

The interference signal formed by the signal of the reader
after scattering and reflection is not a simple energy superpo-
sition at the receiving end, but an accumulation of potentials
at each point. For example, the electromagnetic wave emitted
by the reader is superimposed with two reflected waves, and
the energy of the reflected wave is 1/10 of the original elec-
tromagnetic wave, so the superposed potential obtained is:

Gs cos (ωt) = go cos (ωt)+ gr1 cos (ωt + δ1)

+ gr2 cos (ωt + δ2) go=1, gr1=gr2=
1
√
10

where g is the ratio of the amplitude of the reflected wave to
the amplitude of the original electromagnetic wave, δ is the
phase difference between the reflected wave and the original
electromagnetic wave, and the phase difference depends on
the transmission distance of the electromagnetic wave. When
the length is increased by 1/4 of the wavelength, the phase is
changed by π /2, and this small change is difficult to control
in reality [30]–[33]. Consider the case where the phase dif-
ference is 0 and π , respectively, and convert the result into a
decibel value in communication engineering.

VdB = 10 lg
Pout
Pin
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where Pout is the output power, Pin is the input power. When
the phase difference is 0:

Gs = go +
go
√
10
+

go
√
10
≈ 1.632go

Pout
Pin
=

(
Gs
go

)2

≈ 2.7 = 4.27dB

The energy obtained at this time is 4.27 dB higher than
the original electromagnetic wave.When the phase difference
is π , it can be similarly calculated:

Gs = go −
go
√
10
−

go
√
10
≈ 0.368go

Pout
Pin
=

(
Gs
go

)2

≈ 0.14 = −8.69dB

The energy obtained at this time is 8.69dB lower than
the original electromagnetic wave, so that the difference can
reach 4.27+8.69 = 12.96dB. This energy attenuation due
to position or frequency offset is very significant in RFID
systems, and in relative localization, a large number of dense
tags are involved. Mutual influence between the tags is very
serious. We fixed the reader antenna and 20 densely packed
tags, collect data statically, and take the RSSI and Phase data
of a tag as shown in Figure 4. It can be seen that data collected
from static tags will also fluctuates.

FIGURE 4. RSSI and Phase fluctuations.

E. ANALYSIS AND CONJECTURE
Figure 2 and Figure 3 respectively describe the theoretical
and actual changes of RSSI and phase. It is possible to try
to calculate the relative position directly by some algorithms,
but the mismatch between the data will cause a large error.
As analyzed in Part D, data is inevitably fluctuating, and it
is obviously not good enough to represent a tag with a single
attribute value. STPP alsomentions that when the tag arrange-
ment is too dense, every two tags will form two identical
circular loops, which will generate inductive coupling effect.
The tags will be shadowed by each other, resulting in low
reading rate. So the serialized data is used can to compensate
for the reading rate. It will not have a big impact even if there
is some data fluctuations, avoiding using filtering algorithms.
And there is more information for model to extract features.
It can be clearly seen that the RSSI and phase of different
tags have obvious variation tendency, and the overall picture
is very layered, so we suspect that the characteristics of the
variation can be extracted through deep learning, and the

model of the variation tendency can be trained. It can be seen
from the figure that both RSSI and Phase data can reflect the
characteristics of each tag when the antenna moves, so both
RSSI and Phase are selected as part of the training data.
We consider that the experiment on equally spaced bare tags
should be carried out first. In the experiment, we use antenna
scans dozens of data as training data, so that the preliminary
model is outputted, then the model can be applied to the
actual scene of books where each book is labeled with a
passive RFID tag. Because the distance between the books
is not equal, the effect of the preliminary model should be
slightly worse. To solve this problem, data with different tag
spacing needs to be added to the training data to increase the
generalization ability of the model. After the model accuracy
is stable, the speed, distance and other factors should be
considered, that is, by further increasing the training data to
optimize the model and enhance the robustness of the system.

IV. SYSTEM DESIGN
This section elaborates the implementation details of PRDL,
including data acquisition and preparation, deep neural net-
work construction, and sorting algorithm design.

A. SYSTEM ARCHITECTURE
Fig. 5 outlines the work flow of PRDL. When starting to
collect RFID data, the user can control the reader through
the database server, and the reader sends an instruction to
the antenna to transmit the electromagnetic wave to the tag
monitoring area. Then the user sweeps the tags evenly with
the antenna. After the tags receive the electromagnetic wave,
they transmit their own information (including RFID antenna
Port, EPC Number, RSSI, phase, Timestamp etc.) back to
the reader through the antenna to be stored in the database.
After getting a large amount of dynamic data, the server
reads and processes the real-time electromagnetic data from
the database, inputs the training data into the deep neural
network, outputs the model. Finally, the test data is read to
input the model, and the result is output.

FIGURE 5. System work flow.
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B. DATA ACQUISITION AND PREPARATION
Stably and evenly moving the antenna to scan tag sequence
along a dimension in one direction, as shown in Figure 6,
where N is the number of tags, s is the distance between the
tags, d is the distance between the antenna and the tag, and
the distance scanned by antenna is L. Define one piece of
data collected from a tag as ERPT-File (EPC-RSSI-Phase-
Timestamp File), ERPT-File includes EPC (Electronic Prod-
uct Code), RSSI, Phase and Timestamp, and process the data
as follows [19].

FIGURE 6. Data collection.

The data range of Phase is [0, 2π ], which is standardized
by dividing each data P by 2π :

Ps =
P
2π

(3)

The Timestamp value is large, and each data T is
standardized:

Td = T −min (T )

Ts =
Td

max (Td )
(4)

In order to distinguish left-right relationships between the
tags, in the experiment, the last digit of every EPC was set
to be 1-N and was called the serial number. The speed of the
antenna sweeping the label is about 13-15cm/s. For example,
in the early stages of the experiment, we set d to 35 cm, L was
120 cm, and the antenna scan time was about 8-9s, so that
an average of 2500-3500 ERPT-Files can be collected per
scan, and an average of 100-200 ERPT-Files can be collected
per tag in one scan. The ERPT-File for each tag is sorted
by timestamp and placed in a sequence of length 250. The
portion of ERPT-File with less than 250 is padded with 0,
indicating that no data is detected, thus sequence data of n
tags are obtained.

Each two tag sequences can form a pair of data, and the
tag with a small serial number is known to be on the left side
of the tag with a large serial number, so that a training data

can be formed, and label is the left-right relationship of the
two tags. Scanning n tags for m times, m × C2

n training data
can be obtained, and the amount of data collected by us is very
impressive, which ensures the data foundation of the accuracy
and stability of the subsequent training model. Since the
data collected by the RFID system is greatly affected by the
environment, including tag placement status, computer status,
laboratory environment, etc., we collect data in different time
periods and reposition the experiment tags each time, thus
enhancing the generalization of the model, and avoid data
over-fitting.

C. DEEP NEURAL NETWORK
The data collected is serialized whose phase and RSSI change
with time, so Long Short-term Memory (LSTM) should
be a suitable network model. However, in our experiment,
we found that Convolutional Neural Network (CNN) is far
better than LSTM, which may be due to CNN’s better extrac-
tion of features. We refer to the idea of convolutional recur-
rent neural network(CRNN), use CNN to extract the feature,
and then pass it to LSTM [27]–[29]. However, in this case,
CNN has achieved extremely high accuracy and it is difficult
to compare the advantages of CRNN. For the comprehen-
sive consideration of detection speed and equipment cost,
we chose deep neural network based on CNN.

CNN is a feedforward neural network, which is widely
used in the field of image recognition and has significant ben-
efits [20]–[22]. Its weight-sharing network structure makes it
more similar to biological neural networks, reducing the com-
plexity of the network model and the number of weights, and
it mainly includes convolutional layers and pooling layers.
For the convolutional layer, the input data shape is (n, chan-
nel, A, B), n is the number of samples, and channel is the
number of channels. For each channel, each filter, the convo-
lution operation is shown in Figure 7.

FIGURE 7. Convolution operation.

Filter size is m × n, and the stride is s. For each input
corresponding to the filter size, multiply each value x in the
area and weight w, then plus bias b, and O is the output:

Oi,j =
m∑
p=0

n∑
q=0

xis+p,js+qwis+p,js+q + b (5)
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The operation process of pooling layer is similar to
the convolutional layer, except that feature map is usually
non-overlapping partitioned by pooling layer, which means
m = n = s. The process of pooling layer operation is shown
in Figure 8.

FIGURE 8. Pooling layer operation.

This paper uses max pooling, the output is the maximum
value in the calculation area, and the calculation formula is:

Oi,j=max{xis+p,js+q|p∈ (0, 1, · · · ,m), q∈ (1, 2, · · · , n)}

(6)

In terms of activation function, the Sigmoid function is
used in the last layer of the network, and the other layers use
tanh.

The Softmax function compresses the vector to the range
of [0, 1] proportionally and guarantees that the sum of all
elements is 1. As well known that the Softmax function has
a wide range of applications in classification problems. The
function expression is as shown in formula 8, where K is
the number of classifications. The probability P of the input
sample x belonging to the jth class is shown in the following
formula.

tanh(x) =
ex − e−x

ex + e−x
(7)

σ (z)j =
ezj∑K
k=1 e

zk
, j = 1, · · · ,K . (8)

P(y = j|x) =
ex

Twj∑K
k=1 e

xTwk
(9)

Sigmoid is a special case of Softmax at K = 2. Here we
just need to distinguish the left and right relations of the two
labels, so the model only needs to perform binary classifi-
cation, and the last layer of the network uses the Sigmoid
function.

Sigmoid(x) =
1

1+ e−x
(10)

In the practice of this paper, the input data is (n, 3, 2, 250),
as Figure 9 shows. Each piece of data contains information of
two tags a, b, and the three layers of channels are timestamp,
phase, and RSSI. The maximum length of each data is 250,

FIGURE 9. The structure of training data.

which is related to the actual data obtained under our experi-
mental conditions and can be adjusted according to the actual
situation.

Through five convolution layers, one max pooling layer,
two fully connected layers and some dropout layers, final
output is the label, whether a is on the left side of b. The neural
network is shown in Figure 10.

FIGURE 10. Deep neural network structure based on CNN.

D. SORTING ALGORITHM
Enter the relevant data of the two tags a, b into the model and
output a number C which is between 0 and 1 to reflect the
confidence that the a tag is on the left side of the b tag. It is
generally believed that if Cij < 10−4, then the i-th tag is on
the right side of the j-th tag; ifCij > 1−10−4, then the i-th tag
is on the left side of the j-th tag. For instance, if you getC2,3 =

0.61, the model considers that the probability of 2th tag on the
left side of 3th tag is 61%. AndCij+Cji = 1 is not necessarily
true, because the model cannot recognize that a-b and b-a are
two arrangement of tag a and b, and it will only judge the
relationship between two tags based on the input data. Then
for n test tag sequences, an n × n matrix A can be obtained,
where:

Aij =

{
0, i = j
Cij, else

(11)

Obviously, the error of predicting the first tag to the tenth
position is much larger than the error of predicting it to
the second position. Meanwhile, the smaller the difference
in the serial number between the correct position and the
predicted position in the sequence, the smaller the local-
ization error. Therefore, the concept of the sorting error is
defined as follow. The weight of each number in the matrix
is the absolute value of the difference between its row num-
ber and column number, so in each column of the weight
matrix, the weight value on the main diagonal is the lowest,
and increases symmetrically to both sides. Moreover, each
column of the matrix A represents the confidence of the
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left-right relationships between a tag and other tags. Con-
sequently, sorting error of each tag is the sum of product of
each confidence in its column and the corresponding weight,
and the algorithm for computing sorting error is shown in
Algorithm 1.

Algorithm 1 ComputeError(A,j)
Initialize Error = 0;
Input: matrix A(N × N), column number j
Output: Error
for i = 0 to N-1 do

Error+ = |j-i|∗Aij;
end
return Error;

In theory, the matrix A′ formed correctly by the sequence
should be:

A′ =


0 1 · · · 1 1
0 0 · · · 1 1
...

...
. . .

...
...

0 0 · · · 0 1
0 0 · · · 0 0


Exchange the data of the p-th and q-th rows, the data of the

p-th and q-th column of the actual matrix A, to exchange the
positions of the p-th and q-th tag, and repeat this operation to
make A approximate A′. According to the definition of the
sorting error, using the idea of bubble sorting, sort the data to
get the correct sequence.

Assume that the actual order of the tags is [1]–[5],
the weight matrixW(N= 5) at N= 5 and the judgmentmatrix
A (N = 5) of the model output are as follows:

W (N = 5) =


0 1 2 3 4
1 0 1 2 3
2 1 0 1 2
3 2 1 0 1
4 3 2 1 0

A (N = 5)

=


0 0.42 0.93 0.96 0.97

0.07 0 0.84 0.93 0.96
0.09 0.11 0 0.92 0.92
0.06 0.05 0.05 0 0.66
0.04 0.04 0.03 0.03 0


It can be seen from the matrix that the model misjudges the

relationship between tag NO. 1 and tag NO. 2. C1,2 = 0.42
indicates that the model considers that the confidence proba-
bility of tag NO. 1 on the left side of tag NO. 2 is only 42%,
and other numbers in matrix A are consistent with the actual
situation. The matrix is processed using the sorting algorithm
(Algorithm 1 & 2) in PRDL, where ComputeError(A, 0) gets
the ERRORof tagNO. 1: 0×0+1×0.07+2×0.09+3×0.06+
4×0.04 = 0.59, ComputeError(A, 0) gets the ERROR of tag
NO. 2: 1×0.42+0×0+1×0.11+2×0.05+3×0.04 = 0.75.
According to the result of the algorithm, 0.59 < 0.75, so the
tag No. 1 is on the left side of the tag No. 2, so do not

Algorithm 2 Sort(A)
Input: matrix A(N× N)
Output: array Q, the order of books
for i = 0 to N-2 do

for j = 0 to N-2-i do
if ComputeError(A,j)> ComputeError(A,j+ 1) then

exchange column j with column j+ 1 in matrix
A;
exchange row j with row j + 1 in matrix A;
exchange Q[j] with Q[j + 1];

end
end
end
return Q;

interchange the positions of the two tags, and so on. Finally,
the tag order Q [1]–[5] is obtained, which is consistent with
the actual order.

This example shows that PRDL can basically obtain the
order of tags through the judgment matrix, and can reduce
the influence of misjudgment in the judgment matrix through
the sorting algorithm. Mainly because when determining the
position of a tag, the model outputs the relative positional
relationship of each tag to other tags, so that the amount
of information used for sorting is sufficient, instead of just
considering the single attribute value of each tag itself as in
the existing algorithm. And the sorting algorithm reasonably
assigns a weight matrix to the judgment matrix.

V. SYSTEM EVALUATION
A. HARDWARE AND SOFTWARE
The reader used in our system is provided by Impinj, Speed-
way Revolution R420, including an E9208PCRNF UHF
antenna and a set of H47 UHF passive tags [23]. The com-
munication frequency between reader and tags is between
902MHz-928MHz. The reader is connected to the router
through WiFi. So we can connect the computer to the reader
via WiFi wirelessly, then get the data obtained by the reader
directly on the computer.

We programed in python 3.6, using python packages
including tensorflow-gpu 1.1.0, keras 2.1.2, numpy 1.12.1,
pandas 0.23.0, matplotlib 2.2.2, etc. The program is exe-
cuted on a Shinelon PC equipped with an Intel(R) Core(TM)
i7-6700HQ CPU (2.60 GHz, 4 cores), a GTX1060 6G GPU
and 16 GB RAM.

B. DEPLOYMENT
We first experiment on the bare tags, get the initial model and
deploy it to the actual application scenario of the book.

The experimental scene of bare tag is shown in Figure 11 (a).
In order to obtain consistent data for comparison, the number
of tags is set to 20, the distance between the tags is 2 cm,
the reader is 35 cm away from the tag sequence, the lowest
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FIGURE 11. Experimental scene.

end of the antenna is flush with the tag sequence, and the
moving distance of the antenna is 120 cm. The antennamoves
at a speed of 13-15 cm/s, and 2500-3500 ERPT-Files are
collected per scan, with an average of 100-200 ERPT-File per
tag. On this basis, changing the spacing between tags explores
the limits of tag density.

The experimental scene of the book is shown in
Figure 10(b). Except that the spacing between the tags is
determined by books’ thickness, the other parameters are the
same as the bare tags. In this actual application scenario,
control parameters and variables and explore the influence of
the distance between the antenna and the bookshelf and the
moving speed of the antenna on the accuracy.

C. EVALUATION CRITERIA
To predict the order of sequence, we first get the left-right
relationship of any two tags. On this basis, we can get the
order of the sequence through the sorting algorithm. Define
the accuracy of determining the left-right relationship of the
tags as Relative Accuracy. Besides, define the prediction
accuracy of the whole sequence is Absolute Accuracy, which
is determined by the longest common subsequence of the
predicted and actual sequences, and Relative Accuracy has
a significant and direct positive correlation with Absolute
Accuracy. If the actual sequence is [1]–[5], and the left-right
relationship of 3 and 4 are judged incorrectly, resulting in a
prediction sequence of [1]–[5], 1 out of 10 pairs of data is
judged incorrectly, then the Relative Accuracy is 9/10 = 0.9.
The length of the longest common subsequence of the two
is 4, so the Absolute Accuracy is 4/5 = 0.8. The absolute
accuracy here is equivalent to the X-axis accuracy defined
in STPP and the Z-axis accuracy in HMRL. As an auxiliary
evaluation criterion, the Error value is defined as the number
of errors in one scan that is the most misjudged in all scanned
sequences.

Relative Accuracy =
# of tag pairs judged correctly

# of tag pairs in total

Absolute Accuracy =
# of tags ordered correctly

# of tags in total

D. EVALUATION OF BARE TAGS
According to the deployment described in part A, 50 sets
of data were scanned, and the training set and test set were
divided according to the ratio of 8:2. In the test result, Relative

Accuracy is 0.986, the Absolute Accuracy is 0.991, and the
Error value is 1, whichmeans that the PRDL can achieve good
results on bare tags.

FIGURE 12. Judgment matrix.

To study the effectiveness of the sorting algorithm,
Figure 12 shows the matrix of data processed by the sort-
ing algorithm. The sorting result misjudges the order 1-2 as
2-1, and the red squares represent the wrong judge result of
left-right relationship. After employing the sort algorithm,
the effects of misjudgment of 0.32 and 0.44 have been
eliminated.

After that, the sequence can be visually displayed and
corrected. For example, when testing 20 tags, if the correct
sequence is set to: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
14, 15, 16, 17, 18, 19, 20]., Supposing that the sequence
order is adjust to:[1, 5, 3, 2, 4, 6, 8, 9, 10, 7, 11, 12, 13, 14,
16, 15, 17, 18, 19, 20], after the system predicts the current
sequence, the longest common subsequence algorithm is used
to compare the correct sequence with the current sequence,
and then the tags that need to be replaced are found: 5, 3, 7,
16. Correct positions of these tags are marked by Original,
as the Figure 13 shows.

FIGURE 13. Correct sequence visualization.

We further tested the effect of the tag spacing s on the
accuracy. STPP has been tested in the range of [2 cm, 10 cm],
and the accuracy is more than 90% when the spacing is
8 cm or more, while the effect is very poor at 2cm, with
an accuracy of 0.42 for X-axis ordering and 0.23 for Y-axis
ordering [10]. HMRL was tested in the range of [5 cm,
40 cm], the effect is poor at 5 cm, and the comprehensive
accuracy is above 88.10% when spacing is above 10 cm [12].
Part of the test scenarios of PRDL are shown in Figure 14.
The accuracy of PRDL compared with the prior art is shown
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FIGURE 14. Partial test scenario.

FIGURE 15. Accuracy comparison between PRDL and prior art at different
tag densities.

in Figure 15. STPP first proposed the concept of rela-
tive localization, which has groundbreaking significance, but
there are many shortcomings. The ordering accuracy of STPP
decreases dramatically as we slightly narrow the distance
between tags, which means that the stability is insufficient.
And its accuracy has not made a breakthrough. It can be seen
that HMRL has improved on the basis of STPP, and its stabil-
ity has also made great progress, but the accuracy still has a
relatively large room for improvement. It is clear that PRDL
performs better in accuracy and stability. We focus on the
relative localization of the tags at high density, in our research
results, as the distance between tags decreases, the accuracy
decreases slowly and remains at a high level. Table 2 gives
the test results of PRDL in the range [1cm, 5cm]. PRDL
can still achieve accuracy of 0.973 and 0.98 in the case of
a high density of 1cm. The experiment of bare tag proves that
PRDL has a great breakthrough in the relative localization of
high-density tags, and its localization accuracy is remarkable.

TABLE 2. Tag separation distance vs. accuracy.

E. EVALUATION OF BOOKS
The experimental results of bare tag indicate that PRDL is
sufficient for the library’s book arrangement. In the library,
the distance between tags is not uniform, but is determined by
the thickness of different books, mostly distributed in 1-3 cm,
which means that the model trained with the data collected
from the isometric bare tags may not do well. So we ran-
domly selected 20 books, and the first page of each book was
labeled with an RFID tag. Except for the random parameter
s, the experimental parameters were the same with that in the
experiment on bare tags. 50 sets of data were collected to
perform above-mentioned relative localization of sequences.
The training data and test data are for books of the same fixed
position order, and the test results are not much different from
the bare tags. Minor changes in the distance between the tags
do not affect the accuracy of the PRDL too much.

The distribution of books in the library is complex. One of
the tasks of the librarian is to arrange books, and situations
that need to be handled are various. We did different tests
for the different situations, including changing the position
of specific books, adding a book, and taking a book. The
increase and decrease of books can be easily detected by
comparing the EPC code and database data, but the exchange
of book positions is not directly detectable.We randomly took
a few books to misplace their positions and collected test
data separately, and the accuracy does not attain the expected
results. We suspect that the training data is too singular,
the model is sensitive to the fixed spacing of the books in
the training data, so that the detection ability for adjusted
book sequence is poor. To solve this problem, we used a large
number of books of different thicknesses, and repeatedly
randomly disordered the book order, collected 50 sets of data,
and added the data to the previous training data to train the
final model. We randomly arranged all the books and col-
lected 60 sets of test data that were completely independent of
the training data. The final model’s test results are 0.991 for
Relative Accuracy, 0.999 for Absolute Accuracy, and 1 for
Error value. The final model can be well detected. Books out
of order, which is able to detect the order of disorder books
well.

We categorized all the test data. Obviously, the larger the
interval between the tags, the more obvious the data char-
acteristics. Adjacent tags are necessarily the most difficult
to judge, and Figure 16 shows the error rate of tag pairs
at different intervals. When the tags are separated by more
than 6 tags, the model judgment error rate of the PRDL is 0,
except that the error rate of the adjacent tags is 0.16, and the
others are all less than 0.06. Even so, Absolute accuracy of the
test is very good, mainly because the sorting algorithm has a
good correction effect on output data of the model. Therefore,
Relative accuracy is the basis of Absolute accuracy, but the
Absolute accuracy cannot be completely determined by it.

F. ROBUSTNESS ANALYSIS
In the experiment, the distance between the antenna and
the tag sequence and the speed of the antenna movement
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FIGURE 16. Relative accuracy statistics in test data.

TABLE 3. Distance to antenna vs. accuracy.

are fixed. However, in real applications, these parameters are
not completely consistent with the experimental parameters,
so we further explored the robustness of the final model,
determined acceptable range of parameter deviations and
improve the robustness of themodel.We changed the distance
between the antenna and the tag sequence, the speed of the
antenna and the height of the antenna relative to the tag,
and then collected the test data. And we just want to explore
the robustness of the method, so we sweep these books only
about 15 times in each case. Considering the actual situation,
we study the parameters within the possible offset range
based on the original parameter values, and the results are
shown in Table 2, Table 3 and Table 4, where ‘−’ represents
the reduction of the original parameter and ‘+’ represents the
increase of original parameter.

TABLE 4. Antenna moving speed vs. Accuracy.

1) ANTENNA DISTANCE TO TAGS VS. ACCURACY
Reader distance to tags was adjusted up and down based
on original value of 35 cm, so that its impact on accuracy
rate can be found, and the experiment results are shown
in Table 5. We first explored within 1-5 cm, and the accuracy
rate maintains at a very high level. Next, we further expanded
the scope of inquiry. Since the adjustment is based on the
original value, the distance reduction value does not exceed
35 cm at most, but because of the thickness of the antenna,
in order to move the antenna easily, we take the maximum
reduction of the distance of 25 cm; the low-power antenna
we used has a limited reading distance, and the maximum
distance at which antenna can smoothly read tags is about
75 cm, so the maximum increase of the distance is 30 cm.

TABLE 5. Antenna height vs. accuracy.

The experimental results show that, on the one hand,
the larger the adjustment of distance is, the lower the accuracy
is. Moreover, reducing the Reader distance to tags have a
greater impact on the accuracy than increasing it. On the
other hand, in the test range, no matter how the distance is
adjusted, the accuracy rate can reach above 0.9, even when
the distance is extremely large or extremely small, indicating
the robustness of the system.

2) ANTENNA MOVING SPEED VS. ACCURACY
During the acquisition of training data, the moving distance
of the antenna was set to 120 cm and the moving time was
set to 8 s. Due to the error, the actual moving time was 8-9 s
and the speed was 13-15 cm/s. On this basis, the movement
speed of the antenna was adjusted up and down, and its
influence on the accuracy is shown in Table 4. Generally
speaking, the larger the adjustment of speed is, the lower the
accuracy is. However, the accuracy rate has been maintained
at a very high level in the test and its change is not obvious,
so themodel has generalization ability for speed and has good
robustness.
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3) ANTENNA HEIGHT VS. ACCURACY
Keeping the antenna surface perpendicular to the side of
the tag sequence, we adjusted the height of the antenna and
collected the test data. The test results are shown in Table 5,
which shows that the deviation of height within 2 cm has
little effect on the relative localization results. Because PRDL
collects data at a specific height, such as moving the antenna
on a platform and loading the antenna in a fixed position on
the handcart, the height parameters are usually constant and
there is no deviation whenever data acquisition is performed.
Therefore, it is not necessary to explore the influence of
the large deviation on the relative localization results. The
experimental results show that the robustness is good in a
small deviation range.

G. SOME DISCUSSIONS ABOUT PRDL
1) ADVANTAGES AND DISADVANTAGES
The experimental results show that PRDL is remarkably
accurate, and has a huge advantage compared with the exist-
ing relative localization technology in terms of accuracy.
Moreover, PRDL is a breakthrough in the relative localization
of dense tags, although the tag spacing is only 1cm, but still
maintain high accuracy. relative localization. PRDL also has
certain disadvantages. Themain disadvantage is that the work
of collecting training data is cumbersome, and the workload
of the actual scene deployment is increased. This is a com-
mon problem caused by deep learning technology, because
most existing deep learning based systems have to deployed
according to actual scenarios [24], [25].

2) GENERALIZATION
If PRDL collects training data from the actual scene, out-
puts the model, and is deployed in the corresponding scene,
the high detection accuracy of the scene can be guaranteed.
For example, in a library scene, an RFID reader and an
antenna are loaded in a trolley to make a linear movement
between the bookshelves, and the training data is collected
when antenna is scanning the tags in the books. In prac-
tical applications, data collected in the same way can be
used for book sequence detection. Such a model is tar-
geted, but if data of various special situations is added into
the training data, the generalization ability of the model
can be improved to obtain a better practical application
effect.

3) OPERATION TIME
When using deep learning to solve practical problems, pro-
gram run time is an important indicator for evaluating pro-
gram quality. After all, even if the accuracy of the system
is very high, if the running time is too long to achieve real-
time, then the system is not very practical. Using the final
model for 10,000 times sequence arrangement detection takes
only 976 ms, indicating that the system can provide powerful
real-time services.

4) DEEP NEURAL NETWORK SELECTION
In the selection of deep neural networks, we have tried various
networks such as CNN, LSTM [26], and the actual test results
have finally selected CNN. This is only the conclusion of
our experiment, there must be better solution for optimiz-
ing the neural network which requires further research and
exploration.

VI. CONCLUSION
Relative Localization Method of RFID Tags via Phase and
RSSI based on Deep Learning (PRDL) proposed in this paper
bypasses the inherent problems in absolute localization such
as limited accuracy, and creatively applies deep learning to
relative localization. Extracting the characteristics of RSSI
and Phase as the training data to train model, PRDL achieve
precise relative localization of objects. The experimental
results show that PRDL has a good effect and has higher
accuracy than the existing relative localization methods. This
technology can be applied not only to library management,
but also to any field where RFID is currently being used
for relative localization, such as warehouse cargo localization
and supermarket logistics management, which require indoor
real-time relative localization. Additionally, when PRDL is
using for relative localization of objects, the inventory of
object can be carried out at the same time, which means the
inventory system can be naturally embedded in the localiza-
tion system. Meanwhile, if absolute localization is required,
the fusion of relative and absolute localization system can
also be performed. Currently, the deployment of the RFID
system is relatively expensive, so the integration of different
systems can reduce deployment costs.
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