

Received January 8, 2019, accepted January 22, 2019, date of publication January 25, 2019, date of current version February 14, 2019.

*Digital Object Identifier 10.1109/ACCESS.2019.2895201*

# A Deep Learning-Based Approach to Power Minimization in Multi-Carrier NOMA With SWIPT

JINGCI LUO<sup>[1](https://orcid.org/0000-0003-0619-0338)</sup>, JIE TANG<sup>O1,2</sup>, (Senior Member, IEEE),

DANIEL K. C. S[O](https://orcid.org/0000-0002-7642-1755)<sup>®3</sup>, (Senior Member, IEEE),

GAOJIE CHE[N](https://orcid.org/0000-0003-2978-0365)<sup>®4</sup>, (Senior Member, IEEE),

KA[N](https://orcid.org/0000-0002-9735-7019)APATHIPPILLAI CUMANAN<sup>®5</sup>, (Senior Member, IEEE),

AND JONATHON A. CHAMBERS $\rm ^4$ , (Fellow, IEEE)

<sup>1</sup> School of Electronic and Information Engineering, South China University of Technology, Guangzhou 510641, China

<sup>2</sup>National Mobile Communications Research Laboratory, Southeast University, Nanjing 210096, China

<sup>3</sup>School of Electrical and Electronic Engineering, The University of Manchester, Manchester M13 9PL, U.K. <sup>4</sup>Department of Engineering, University of Leicester, Leicester LE1 7RH, U.K.

<sup>5</sup>Department of Electronic Engineering, University of York, York YO10 5DD, U.K.

Corresponding author: Jie Tang (eejtang@scut.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 61601186, in part by the Natural Science Foundation of Guangdong Province under Grant 2017A030313383, in part by the Guangzhou Science Technology and Innovation Commission under Grant 201707010159, and in part by the Open Research Fund of the National Mobile Communications Research Laboratory, Southeast University, under Grant 2019D06.

**ABSTRACT** Simultaneous wireless information and power transfer (SWIPT) and multi-carrier non-orthogonal multiple access (MC-NOMA) are promising technologies for future fifth generation and beyond wireless networks due to their potential capabilities in energy-efficient and spectrum-efficient system designs, respectively. In this paper, the joint downlink resource allocation problem for a SWIPT-enabled MC-NOMA system with time switching-based receivers is investigated, where pattern division multiple access (PDMA) technique is employed. We focus on minimizing the total transmit power of the system while satisfying the quality-of-service requirements of each user in terms of data rate and harvested power. The corresponding optimization problem is a non-convex and a mixed integer programming problem which is difficult to solve. Different from the conventional iterative searching-based algorithms, we propose an efficient deep learning-based approach to determine an approximated optimal solution. Specifically, we employ a typical class of deep learning model, namely, deep belief network (DBN), where the detailed procedure of the developed approach consists of three parts, i.e., data preparation, training, and running. The simulation results demonstrate that the proposed DBN-based approach can achieve similar performance of power consumption to the exhaustive search method. Furthermore, the results also confirm that MC-NOMA with PDMA outperforms MC-NOMA with sparse code multiple access, single-carrier non-orthogonal multiple access, and orthogonal frequency division multiple access in terms of power consumption in SWIPT-enabled systems.

**INDEX TERMS** Non-orthogonal multiple access (NOMA), simultaneous wireless information and power transfer (SWIPT), machine learning.

# **I. INTRODUCTION**

With the dramatically rapid development of mobile Internet and the exponential growth of connected devices, the future wireless networks are expected to provide much higher

The associate editor coordinating the review of this manuscript and approving it for publication was Fuhui Zhou.

data rate which enables supporting the proliferation of the Internet of things (IoT), massive machine-type communications (mMTC), etc [1]. However, the available radio spectrum is far from sufficient to support the unexpected high demands for data services, and hence it is particularly important to improve spectrum efficiency (SE) in the spectrum-limited systems. The conventional orthogonal

2169-3536 2019 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications\_standards/publications/rights/index.html for more information.

multiple access (OMA) schemes, including orthogonal frequency-division multiple access (OFDMA) which is widely used in the fourth generation (4G) cellular systems, are increasingly arduous to fulfill the aforementioned unprecedented requirements due to the limited improvement of SE in orthogonal channel access [2]. The non-orthogonal multiple access (NOMA) technique, which allows multiple users to share the same time-frequency resource element (RE), has been recognized as the potential multiple access technique to achieve higher SE in future fifth generation (5G) and beyond wireless networks [3]. Furthermore, heterogeneous requirements such as ultra-low latency, ultra-reliability and massive connectivity are more likely to be realized in NOMA systems.

Since the system-level performance of NOMA has been proved to be superior to OMA under various wireless environments in [4]–[6], NOMA has attracted a significant attention in both academia and industry. Several forms of NOMA techniques have been proposed for 5G and beyond wireless networks. Depending on whether the total available spectrum resource is or is not divided into several subcarriers, NOMA can be classified into two main types, namely single-carrier NOMA (SC-NOMA) and multi-carrier NOMA (MC-NOMA), respectively. The power-domain NOMA (PD-NOMA) is a well-known and promising SC-NOMA technique [7], in which multiple users are multiplexed with different transmit power levels in the same frequency RE and successive interference cancelation (SIC) is employed at the receiver ends to remove the corresponding co-channel interference so that better performance in terms of SE, energy efficiency (EE) or proportional fairness can be achieved [8], [9]. On the other hand, sparse code multiple access (SCMA) [10] and pattern division multiple access (PDMA) [11] are two most well-known techniques of MC-NOMA. In fact, these two MC-NOMA techniques can be considered as the superposition of multiple PD-NOMAs in different frequency REs [12].

In addition to the efficient spectrum utilization, energy saving is another key issue in future green communication, as the contradiction between the tremendous energy consumption caused by wireless communication systems and the global energy shortage is intensifying. Thus, it is crucial to improve EE in future wireless networks for their sustainability. Motivated by the progress in the research on wireless power transfer (WPT) [13] and the fact that the radio frequency (RF) signal is the carrier of both information and energy, an advanced technology namely simultaneous wireless information and power transfer (SWIPT) has been identified to meet the demanding requirements in future wireless networks in [14]. In order to deal with the sensitivity difference between the information receiver and the energy receiver, two practical receiver architecture designs namely time switching (TS) and power splitting (PS) have been developed in [15] where information decoding (ID) and energy harvesting (EH) could be separated through time domain and power domain, respectively.

The purpose of SWIPT is to reduce energy waste and prolong the battery-life of communication terminals by simultaneously harvesting energy and receiving information. Furthermore, SWIPT is viewed as a potential energy-efficient solution for 5G and beyond wireless networks [13] and a great deal of research has been carried out on the application of SWIPT technology in different systems, including OFDMA systems [16], multiple-input single-output (MISO) systems [17], [18], multiple-input multiple-output (MIMO) systems [19], heterogenous cellular networks [20] and two way cooperative networks [21], etc.

# A. RELATED WORKS

In the literature, many works have explored the combination of SWIPT technology and NOMA network to reduce the power consumption of the terminals. For instance, studies on SWIPT-based SC-NOMA systems have been investigated in [22]–[26]. Specifically, the work in [22] considered incorporating the SWIPT in cooperative MISO SC-NOMA systems and developed a strategy of jointly optimizing PS ratio and the beamforming vectors to maximize the data rate of the ''strong user'' while satisfying the QoS requirements of ''weaker user''. In [26], sum secrecy rate (SSR) maximization problem was addressed in a SWIPT-based SC-NOMA system, and the numerical results demonstrated that the performance gains in terms of SSR could be achieved over the conventional OMA as well as the SWIPT-based OMA systems.

Additionally, Zhai *et al.* have combined the SWIPT with MC-NOMA in [27] by employing SCMA technique where an optimization framework was developed to strike a good balance between the conflicting performance metrics, namely, data rate and harvested energy. Nevertheless, the performance of the combination of the SWIPT and the MC-NOMA with PDMA remains unknown. Since Zeng *et al.* have confirmed that PDMA outperforms SCMA in terms of both system throughput performance and block error ratio (BLER) performance [28], it is worth studying on SWIPT-aided MC-NOMA systems with PDMA technique.

# B. CONTRIBUTIONS

In this paper, we solve a power minimization problem in the downlink of SWIPT-enabled and PDMA-based MC-NOMA system with TS-based receivers. In particular, we aim to develop a joint optimal solution of subscarrier assignment, power allocation as well as the TS ratio. In general, this kind of joint resource allocation problems are non-deterministic polynomial (NP) hard, and thus the corresponding optimal solutions are of great computational complexity with conventional approaches. Recently, deep learning methods have been exploited to solve the fundamental high complex resource allocation problems in wireless communication systems. More specifically, deep learning methods were developed for solving the problem of route estimation in [29], network traffic classification in [30], mobility prediction [31], resource allocation [32], etc. Motivated by the aforementioned works, we exploit deep



<span id="page-2-0"></span>**FIGURE 1.** The system model of a downlink SWIPT-enabled MC-NOMA with TS-based receivers and PDMA technique.

learning technique to determine an approximated optimal joint resource allocation strategy for the complicated optimization problem in the considered system.

The main contributions in this work are summarized in the following:

- A deep learning-based resource allocation framework is developed to solve the high complex power minimization problem, which consists of three parts:
	- 1) *Data preparation:* we randomly generate a set of channel gains, i.e., the input of the training sample; and then we apply the well-known genetic algorithm to determine the corresponding optimal solution, i.e., the output of the training sample.
	- 2) *Training:* we establish a deep belief network (DBN) for each parameter to be optimized, and train the DBNs based on the obtained samples through both unsupervised and supervised trainings.
	- 3) *Running:* with a given input (channel gains), the well-trained DBNs are exploited to directly approximate the optimal solution of the considered power minimization problem.
- Numerical results demonstrate that the developed deep learning-based approach can achieve a similar performance of power consumption to the exhaustive search method as well as the genetic algorithm.
- It is also proven that the performance of the proposed MC-NOMA with PDMA is superior to that of the existing MC-NOMA with SCMA, SC-NOMA and OFDMA in SWIPT-enabled systems in terms of power saving.

The remainder of this paper is organized as follows. In Section II, we present the system model of the considered SWIPT-enabled MC-NOMA system with PDMA and mathematically formulate the total transmit power minimization problem. The proposed deep learning-based resource allocation framework is defined and developed in Section III. In Section IV, we evaluate the performance of our proposed algorithm through numerical simulations. Finally, the conclusions of this work are provided in Section V.

The following notations are used throughout the paper. We use the lower-case boldface letters for vectors and uppercase boldface letters for matrices. N denotes the natural number set while  $\mathbb{R}_+$  denotes the non-negative real number set.  $\mathbb{E}[|x|^2]$  represents the energy of signal *x* and **x**<sup>*'*</sup> indicates the transposition of **x**.

## **II. SYSTEM MODEL AND PROBLEM FORMULATION**

In this section, we first present the system model of the downlink of SWIPT-enabled MC-NOMA with TS-based receivers and PDMA technique. Then the total transmit power minimization problem is mathematically formulated.

# A. SYSTEM MODEL

As shown in Fig. [1,](#page-2-0) the considered downlink SWIPT-enabled MC-NOMA system consists of a base station (BS) and *K* users superposed on *N* subcarriers through PDMA technique. It is assumed that the transmitter and all the receivers are equipped with one single antenna. Let us denote the set of all users' indexes by  $K \triangleq \{1, 2, ..., K\}$  while the set of all subcarriers' indexes by  $\mathcal{N} \triangleq \{1, 2, ..., N\}$ . The total bandwidth

*B* is equally divided into *N* subcarriers and thus the bandwidth of each subchannel is denoted as  $B_c = B/N$ . It is assumed that there is no interference between different subchannels due to the orthogonal frequency division. Note that PDMA is based on SIC amenable multiple access (SAMA) technique which can be completed in different domains such as code domain, power domain, space domain or their combinations. In particular, the design of PDMA includes unequal diversity at the transmitter side and equal diversity at the receiver side. For convenience, the mapping of transmitted signal to a group of subcarriers can be described as a  $N \times K$  characteristic pattern matrix  $Q_{\text{PDMA}} \in \mathbb{N}^{N \times K}$ . The element in the *n*th row and the *k*th column of  $\mathbf{Q}_{\text{PDMA}} q_{n,k} = 1$  indicates the signal transmitted to the *k*th user (UE*<sup>k</sup>* ) is superposed on the *n*th subcarrier ( $RE_n$ ) while  $q_{n,k} = 0$  indicates the opposite. Let  $\mathcal{N}_n = \{k | q_{n,k} = 1 \}$  ( $n \in \mathcal{N}$ ) and  $|\mathcal{N}_n| = \sum_{k=1}^K q_{n,k}$  ( $n \in \mathcal{N}$ ) respectively denote the set and the number of UEs mapped on RE*n*.

For example, the corresponding characteristic pattern matrix of the mapping schematic diagram in Fig. [1](#page-2-0) can be given as

$$
\mathbf{Q}_{\mathbf{PDMA}}^{(4,6)} = \begin{pmatrix} 1 & 1 & 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 & 0 & 1 \end{pmatrix}, \qquad (1)
$$

where the signal of the  $UE<sub>1</sub>$  is mapped to all four REs; the signal of the  $UE_2$  is superposed in the  $RE_1$  and  $RE_3$ ; etc. The number of transmission diversity of these six UEs is 4, 2, 3, 3, 3 and 2, respectively. Moreover,  $\mathcal{N}_1 = \{1, 2, 4, 5\}$  and  $|\mathcal{N}_1| = 4$ , etc.

We denote the transmit power allocated to the UE*<sup>k</sup>* on RE*<sup>n</sup>* as  $P_{n,k}$ . Hence, the received signal of  $UE_k$  via  $RE_n$  can be expressed as

$$
y_{n,k} = h_{n,k} \left( q_{n,k} \sqrt{P_{n,k}} x_{n,k} + \sum_{\substack{j \in \mathcal{K}, \\ j \neq k}} q_{n,j} \sqrt{P_{n,j}} x_{n,j} \right) + z_{n,k},
$$
\n(2)

where  $h_{n,k} = g_{n,k} d_k^{-\beta}$  $k_k^{-\rho}$  denotes the channel coefficient from the BS to  $UE_k$  via  $RE_n$ ;  $g_{n,k}$  represents the small-scale fading and follows a Rayleigh distribution with unit variance. The  $d_k^{-\beta}$  $\int_{k}^{-p}$  denotes the large-scale fading;  $d_k$  is the distance between the BS and  $UE_k$  while  $\beta$  is the related path-loss exponent;  $x_{n,k}$  ( $x_{n,j}$ ) is the data symbol transmitted from the BS to UE<sub>k</sub> (UR<sub>j</sub>) via subcarrier RE<sub>n</sub> with unit energy  $\mathbb{E}[|x_{n,k}|^2]$  $(\mathbb{E}[|x_{n,j}|^2])$ ; and  $z_{n,k} \sim \mathcal{CN}(0, \sigma_n^2)$  is the additive white Gaussian noise (AWGN) on RE*n*. For notation simplicity, we normalize the channel coefficient as  $\widetilde{h}_{n,k} = |h_{n,k}|^2/\sigma_n^2$ , which is redefined as the channel to noise ratio (CNR).

Since the subcarrier sharing will inevitably cause intra-band interference, SIC technology is employed at the receiver side to mitigate the interference and improve the decoding performance. Let  $\pi(n) \triangleq (\pi_n(1), \pi_n(2), \ldots,$  $\pi_n(|\mathcal{N}_n|)$  denote the decoding order of the UEs on RE<sub>n</sub>,

which can be viewed as a vector function of the CNR of each UE mapped on RE<sub>n</sub>, i.e.,  $\bar{h}_{n,k}$  ( $k \in \mathcal{N}_n$ ). In particular, in the downlink of NOMA, the cancellation order at every UE is always to decode the UEs with weaker CNR and subtract the signals of these UEs firstly, and then decode its own data by treating the signals of the remaining UEs on RE*<sup>n</sup>* as interference [33]. Hence, we have  $\bar{h}_{n,\pi(1)} < \bar{h}_{n,\pi(2)} < \ldots <$  $h_{n,\pi(|\mathcal{N}_n|)}$ . Based on SIC technique and with this decoding order, the normalized interference for  $UE_k$  on  $RE_n$  is hence given by

$$
I_{n,k} = \widetilde{h}_{n,k} \sum_{\substack{j \in \mathcal{N}_n, \\ \widetilde{h}_{n,j} > \widetilde{h}_{n,k}}} q_{n,j} P_{n,j}.
$$
 (3)

Accordingly, the signal to interference-plus-noise ratio (SINR) of  $UE_k$  on  $RE_n$  can be written as

$$
\gamma_{n,k} = \frac{\bar{h}_{n,k}q_{n,k}P_{n,k}}{1 + I_{n,k}}.\tag{4}
$$

In practice, the outage may occur if the SINR does not meet the minimum SINR requirement  $\bar{\gamma}$ , which will lead to the failure of SIC process. In order to avoid this outage, we must have the following condition:

<span id="page-3-0"></span>
$$
\gamma_{n,k} \geq \overline{\gamma}, \quad \forall n \in \mathcal{N}, \quad \forall k \in \mathcal{N}_n. \tag{5}
$$

With this condition, the available data rate of UE*<sup>k</sup>* on RE*<sup>n</sup>* can be written as

$$
R_{n,k} = B_c \log_2(1 + \gamma_{n,k}).\tag{6}
$$

Furthermore, we consider SWIPT-enabled UE in our proposed system model, which consists of an ID circuit and an EH rectification circuit. TS scheme is employed to achieve ID and EH in two orthogonal time slots. For UE<sub>k</sub>,  $\alpha_k$  and  $1 - \alpha_k$ correspond to the portion of transmission time allocated to ID and EH, respectively. Hence, the data rate of UE*<sup>k</sup>* based on TS scenario can be denoted as

$$
R_k^{TS} = \alpha_k \sum_{n \in \mathcal{N}} R_{n,k}.\tag{7}
$$

On the other hand, the power that can be harvested by UE*<sup>k</sup>* via RE*<sup>n</sup>* is given by

$$
E_{n,k} = \eta |h_{n,k}|^2 \sum_{j \in \mathcal{K}} q_{n,j} P_{n,j}, \qquad (8)
$$

where  $\eta$  denotes the power conversion efficiency of the EH rectification circuits.

Therefore, the power harvested by  $UE_k$  based on TS scheme can be expressed as

$$
E_k^{TS} = (1 - \alpha_k) \sum_{n \in \mathcal{N}} E_{n,k}.
$$
 (9)

#### B. PROBLEM STATEMENT

From energy-efficient communication systems perspective, we formulate a total transmit power minimization problem with the QoS requirements and transmit power constrains for the system defined in the previous subsection. In particular, the total transmit power is given as

$$
P_{total} = \sum_{n=1}^{N} \sum_{k=1}^{K} q_{n,k} P_{n,k}.
$$
 (10)

The transmit power minimization problem can be mathematically formulated as follows:

<span id="page-4-0"></span>
$$
P1: \min_{\alpha, Q, P} P_{total} \tag{11}
$$

$$
s.t. (5), \qquad (12)
$$

$$
R_k^{TS} \ge R_{req}, \quad \forall k \in \mathcal{K}, \tag{13}
$$

$$
E_k^{TS} \ge E_{req}, \quad \forall k \in \mathcal{K}, \tag{14}
$$

$$
0 < \alpha_k < 1, \quad \forall k \in \mathcal{K}, \tag{15}
$$

$$
q_{n,k} \in \{0, 1\}, \quad \forall n \in \mathcal{N}, \quad \forall k \in \mathcal{K}, \quad (16)
$$

$$
0 \le P_{n,k} \le \overline{P}, \quad \forall n \in \mathcal{N}, \quad \forall k \in \mathcal{K}, \quad (17)
$$

where  $\boldsymbol{\alpha} = [\alpha_1, \alpha_2, \dots, \alpha_K]^T$  is the vector that consists of TS ratios of the all UEs,  $\mathbf{Q} \in \mathbb{N}^{N \times K}$  denotes the PDMA characteristic pattern matrix and  $\mathbf{P} \in \mathbb{R}_+^{N \times K}$  represents the power allocation matrix. The constraints provided in [\(12\)](#page-4-0) define the minimum SINR requirements that ensure a successful implementation of the SIC technique. The inequalities in [\(13\)](#page-4-0) and [\(14\)](#page-4-0) are associated with the constraints of QoS requirements, including data rate and harvested power. In addition, *Rreq* and *Ereq* denote the minimum data rate and harvested power requirements at each UE, respectively. The constraints in [\(15\)](#page-4-0) indicate that the TS ratio for each UE is required to be in the range of (0, 1). In [\(16\)](#page-4-0), every element of the PDMA pattern matrix  $q_{n,k}$  ( $n \in \mathcal{N}, k \in \mathcal{K}$ ) can only be either 0 or 1, indicating whether or not  $UE_k$  is mapped on  $RE_n$ . Besides, the transmit power allocated to UE*<sup>k</sup>* on RE*<sup>n</sup>* should meet the constraint  $0 \leq P_{n,k} \leq \overline{P}$ , where  $\overline{P}$  is the transmit power limitation which ensures maintaining a fairness among UEs.

Note that the convexity of the objective function [\(11\)](#page-4-0) cannot be established in general due to the binary variables *qn*,*<sup>k</sup>* as well as the product of  $q_{n,k}$  and  $P_{n,k}$  ( $n \in \mathcal{N}, k \in \mathcal{K}$ ). Similarly, the convexity of the inequality constraints in [\(12\)](#page-4-0)-[\(14\)](#page-4-0) also does not exist. Consequently, the aforementioned power minimization problem P1 is a non-convex and a mixed integer programming problem. In addition, this is a well-known NP-hard problem [34], which makes it considerably strenuous to determine the joint optimal solution. In addition to the exhaustive searching method, there are many iterative algorithms available in the literature for seeking the optimal solution for non-convex programming, such as the genetic algorithm and the simulated annealing. Nevertheless, these algorithms always require a huge amount of time to converge, which are not suitable for real-time processing networks. To overcome these difficulties, we propose a deep learning-based approach in the following section to determine an approximated optimal solution for the problem P1.

#### **III. TOTAL POWER MINIMIZATION BY DEEP LEARNING**

In this section, we firstly provide a brief description on the framework of the considered deep learning model, namely, DBN. Then, the detailed procedure of the proposed DBN-based approach is developed, which consists of three parts, i.e., data preparation, model training and solution running.

## A. FRAMEWORK OF DBN

Prior to developing a specific procedure of the deep learning-based approach, we first briefly introduce the DBN. This model is a representive class of deep learning networks and is capable of capturing the potential information between the input and the output datas [35]. As shown in Fig. [2,](#page-4-1) the architecture design of the DBN involves an input layer, a set of hidden layers and an output layer, which can be also considered as a series of restricted Boltzmann machines (RBMs). Each RBM consists of a visible layer and a hidden layer. In particular, the neurons between the visible and the hidden layers are fully connected with a certain weight while those neurons within the same layer are disconnected. Furthermore, the first RBM takes the input layer of the DBN as its visible layer and the first hidden layer of the DBN as its own hidden layer; the second RBM takes the hidden layer of the previous RBM as its visible layer and the second hidden layer of the DBN as its own hidden layer; etc. The training procedure for each DBN includes two phases. In the first phase, the RBMs are trained one by one with unsupervised learning to roughly determine the parameters of the DBN. In the second phase, all the parameters of the DBN are fine-tuned with supervised learning according to the back-propagation algorithm. More details of training procedure of the DBNs are given in Section IV-C.



<span id="page-4-1"></span>**FIGURE 2.** An example of the DBN framework used in this work.

## B. DATA PREPARATION PART

To the best of our knowledge, deep learning technique can be considered as a comprehensive tool to derive knowledge from

sufficient empirical data. Hence, a large number of data samples are required to develop a deep learning-based approach to approximate the optimal solution. In our work, we firstly randomly generate channel coefficients  $h_{n,k}(n \in \mathcal{N},$  $k \in \mathcal{K}$ ) and then employ the genetic algorithm to deal with the optimization problem P1 to determine the optimal solution including the characteristic pattern matrix **Q**<sup>∗</sup> , the power allocation  $\mathbf{P}^*$  and the TS ratio control  $\boldsymbol{\alpha}^*$ . In our work, the input of the training sample **x** is composed of the channel coefficients while the output **y** is related to the optimal solution that determined by genetic algorithm, which can be more clearly expressed as

<span id="page-5-2"></span>
$$
\mathbf{x} = [h_{1,1}, \dots, h_{1,K}, \dots, h_{N,1}, \dots, h_{N,K}], \quad (18)
$$

$$
\mathbf{y} = [q_{1,1}^*, \dots, q_{1,K}^*, \dots, q_{N,1}^*, \dots, q_{N,K}^*,
$$
  
\n
$$
P_{1,1}^*, \dots, P_{1,K}^*, \dots, P_{N,1}^*, \dots, P_{N,K}^*,
$$
  
\n
$$
\alpha_1^*, \dots, \alpha_K^*].
$$
\n(19)

Note that there are *K* UEs communicating with the BS via *N* REs in the considered system, the vector **y** is consisted of  $2NK + K$  elements and we need to approximate totally  $2NK + K$  output parameters. Hence, we will establish  $2NK + K$ *K* DBNs for all parameters in the next part, which are denoted as  $DBN_\ell$  ( $\ell \in 1, 2, ..., 2NK + K$ ). In particular, the set of training samples for DBN<sub> $\ell$ </sub> is given by  $\{(\mathbf{x}, y_\ell)\}\)$ , where  $y_\ell$  is the  $\ell$ th component of **y** and  $\ell \in \{1, 2, ..., 2NK + K\}.$ 

#### C. MODEL TRAINING PART

With sufficient training samples obtained in the previous part, we now start training the DBN for each parameter to be estimated one by one. For each RBM in  $DBN_\ell$ , we denote **v** and **h** as the vector of the visible layer and the hidden layer, respectively.

The first stage of the training process is unsupervised learning. First of all, the corresponding parameters of the RBM are initialized, including the weights between the visible and hidden layers **w**, the biases related to the visible layer  $\mathbf{b}_v$ and the biases associated with the hidden layer  $\mathbf{b}_h$ . Let  $\Phi =$  $\{w, b_v, b_h\}$ . Next, these parameters are updated iteratively according to the following expression:

$$
\Phi_{t+1} = \Phi_t + \varepsilon \frac{\partial \log Pr(\mathbf{v}_t)}{\partial \Phi_t},\tag{20}
$$

where  $t$  and  $\varepsilon$  denote the number of iteration and the learning rate in the unsupervised training stage, respectively. Furthermore,  $Pr(\mathbf{v}_t)$  corresponds to the probability of the visible layer in the *t*th iteration **v***<sup>t</sup>* , which can be calculated through the joint probability distribution of the visible and the hidden layers  $Pr(\mathbf{v}_t, \mathbf{h}_t)$ . Hence,  $Pr(\mathbf{v}_t)$  can be defined as

<span id="page-5-0"></span>
$$
Pr(\mathbf{v}_t) = \sum_{\mathbf{h}_t} Pr(\mathbf{v}_t, \mathbf{h}_t)
$$
  
= 
$$
\sum_{\mathbf{h}_t} \frac{\exp(-E(\mathbf{v}_t, \mathbf{h}_t))}{\sum_{\mathbf{v}_t} \sum_{\mathbf{h}_t} \exp(-E(\mathbf{v}_t, \mathbf{h}_t))}.
$$
 (21)

In [\(21\)](#page-5-0),  $E(\mathbf{v}_t, \mathbf{h}_t)$  is the energy function related to the RBM, which can be calculated by

<span id="page-5-1"></span>
$$
E(\mathbf{v}_t, \mathbf{h}_t) = -\mathbf{v}_t' \mathbf{w}_t \mathbf{h}_t - \mathbf{b}_{v_t}' \mathbf{v}_t - \mathbf{b}_{h_t}' \mathbf{h}_t.
$$
 (22)

It should be noted that it takes considerably long time to calculate the joint probability distribution  $Pr(\mathbf{v}_t, \mathbf{h}_t)$  according to [\(21\)](#page-5-0) and [\(22\)](#page-5-1) due to the high computational complexity. For convenience, an approximate of  $Pr(\mathbf{v}_t, \mathbf{h}_t)$  based on Gibbs sampling has been exploited to tackle this complexity issue in our work.

The second stage of training process is supervised learning. The purpose of this stage is to fine-tune the parameters of  $DBN_\ell$  based on the output of the training sample, i.e.,  $y_\ell$ . Denote  $y_\ell^{(i)}$  $\ell$ <sup>(*i*</sup>) as the output of the *i*th training sample and the  $\hat{y}_{\ell}^{(i)}$  $\ell$  as the output predicted by the DBN<sub> $\ell$ </sub> with the given input  $\mathbf{x}^{(i)}$ . The process of fine-tuning can be mathematically formulated as minimizing a loss function namely cross entropy, which is given as

$$
S_{\ell} = -\frac{1}{D} \sum_{i=1}^{D} \left( y_{\ell}^{(i)} \log(\widehat{y}_{\ell}^{(i)}) + (1 - y_{\ell}^{(i)}) \log(1 - \widehat{y}_{\ell}^{(i)}) \right), (23)
$$

where  $D$  is the number of the training samples. In fact, the cross entropy  $S_{\ell}$  is the measure of prediction error of  $DBN_{\ell}$ . At the end, the set of parameters  $\Phi$  is fine-tuned iteratively by the back-propagation algorithm, which can be expressed as follow:

$$
\Phi_{t+1} = \Phi_t - \widetilde{\varepsilon} \frac{\partial \mathcal{S}}{\partial \Phi_t},\tag{24}
$$

where  $\tilde{\varepsilon}$  corresponds to the learning rate of the backpropagation algorithm in the supervised training stage.

## D. SOLUTION RUNNING PART

In the solution running part, we first randomly generate the channel gains  $h_{n,k}(n \in \mathcal{N}, k \in \mathcal{K})$ , and the input layer of DBN is denoted as  $\mathbf{x} = [h_{1,1}, \ldots, h_{1,K}, \ldots,$  $h_{N,1}, \ldots, h_{N,K}$ ]. Then the well-trained DBN networks  $(DBN<sub>1</sub>, DBN<sub>2</sub>, ..., DBN<sub>2NK+K</sub>)$  are loaded. With the given input **x** and the well-trained  $DBN_\ell$ , we can compute and predict the output layer of each  $DBN_\ell$ , denoting as  $\widehat{y}_\ell$ . Finally, we form the approximate of the optimal solution (including  $\mathbf{Q}, \mathbf{P}$  and  $\hat{\boldsymbol{\alpha}}$  of the power minimization problem P1 based on the output of each DBN, i.e.,

$$
\widehat{\mathbf{Q}} = \begin{pmatrix} \widehat{y}_1 & \cdots & \widehat{y}_K \\ \vdots & \ddots & \vdots \\ \widehat{y}_{(N-1)K+1} & \cdots & \widehat{y}_{NK} \end{pmatrix}, \qquad (25)
$$

$$
\widehat{\mathbf{P}} = \begin{pmatrix} \widehat{y}_{NK+1} & \cdots & \widehat{y}_{NK+K} \\ \vdots & \ddots & \vdots \\ \widehat{y}_{(2N-1)K+1} & \cdots & \widehat{y}_{2NK} \end{pmatrix}, \qquad (26)
$$

and

$$
\widehat{\boldsymbol{\alpha}} = [\widehat{y}_{2NK+1}, \dots, \widehat{y}_{2NK+K}]. \tag{27}
$$

<span id="page-6-0"></span>**TABLE 1.** The Complete Procedure of the Proposed DBN-Based Approach for Total Transmit Power Minimization.

```
INPUT:
  The randomly generated channel gains between BS
  and UE<sub>k</sub> on RE<sub>n</sub>, h_{n,k}(n \in \mathcal{N}, k \in \mathcal{K});
OUTPUT:
  The approximation of the optimal solution of resource
  allocation, including the characteristic pattern \dot{Q},
  the power allocation \hat{P} and the TS ratio control \hat{\alpha};
1: Generate sufficient training samples \{(x, y)\}:
2: x corresponds to the randomly generated channel gains
  while y corresponds to the optimal solution determined
  by genetic algorithm; the details are given in (18) and
  (19), respectively.
3: Train the framework of DBNs one by one:
4: set the stopping criteria \epsilon_1 and \epsilon_2;
5: for \ell = 1 : 2NK + K6:for m=1:Minitialize the parameters vector \Phi of the mth RBM;
7:8:Unsupervised learning stage:
9:repeat
10:update the parameters vector \Phi according to (20);
11:until \|\Phi_{t+1} - \Phi_t\| \leq \epsilon_1;
12:Supervised learning stage:
13:repeat
14:fine-tune the parameters \Phi by back-propagation
             algorithm according to (24);
          until \|\Phi_{t+1} - \Phi_t\| \leq \epsilon_2;
15:16:end
17<sub>·</sub> end
18: Predict the optimal resource allocation solution:
19: for \ell = 1 : 2NK + Kload the well-trained framework of DBN_f; compute
20:\hat{y}_{\ell} through DBN<sub>\ell</sub> with the given channel gains;
21: end
22: form the approximation of the optimal solution
    according to (25), (26) and (27);
RETURN: \hat{Q}, \hat{P} and \hat{\alpha};
```
Up to now, the complete procedure of the proposed DBN-based approach to approximate the optimal solution of the formulated transmit power minimization problem is summarized in TABLE [1.](#page-6-0)

## **IV. SIMULATION RESULTS**

In this section, numerical results are provided to evaluate the performance of our proposed deep learning-based joint resource allocation approach for minimizing the total transmit power. It is assumed that the BS is located in the center of the cellular network and all UEs are randomly distributed within a circle with radius of 300 meters. In other words, the distance between BS and the  $k$ th UE  $d_k$  is randomly generated within the range (0, 300). The system bandwidth is assumed to be  $B = 4$  MHz. Referring to the typical 3GPP propagation environment in [36], we set the path-loss exponent  $\beta = 3.76$ . The detailed radio propagation model has been discussed in Section II-A and it is omitted here for brevity. Furthermore, the power conversation efficiency of the EH circuits is set to be  $\eta = 30\%$ ; the minimum data rate

requirement and harvested power for each UE are assumed to be  $R_{req} = 1$  Mbit/s and  $E_{req} = 0.1$  W, respectively. Other system parameters are provided with the corresponding simulation results. In order to construct, train and run the DBNs in our proposed approach, the well-known and powerful offthe-shelf programming tool namely *Tensorflow r1.8* is used by implementing in the *Python 3.6.0* platform.

First, we study the effectiveness of the proposed deep learning-based approach by comparing the predicted result with that obtained by exhaustive search method as well as genetic algorithm. For this study, we consider an example of a system with 4 UEs and 2 REs. The maximum available transmit power is set to be  $\overline{P} = 1$  W and the noise power on the *n*th subchannel is assumed to be  $\sigma_n^2 = 0.01$ W  $(n = \{1, 2\})$ . To the beginning, we randomly generate the channel gains and determine the input of the sample **x** based on [\(18\)](#page-5-2); then solve the problem P1 through genetic algorithm to establish the output of the sample **y** according to [\(19\)](#page-5-2). This process is repeated for 10000 times to generate 10000 training samples {(**x**, **y**)}. Next, these 10000 samples are used to trained the DBNs. Each  $DBN_\ell$  consists of five layers, including an input layer **x**, three hidden layers and an output layer  $y_\ell$ . The number of neurons in each layer is set to be 8, 64, 128, 128 and 1, respectively. In addition, the learning rates are respectively set to be  $\varepsilon = 0.0001$ and  $\tilde{\epsilon} = 0.0001$ ; the number of training epochs is set to be 3000; and the terminating thresholds are set to be  $\epsilon_1$  =  $1e^{-3}$  and  $\epsilon_2 = 1e^{-3}$ , respectively. In the solution running part, we approximate the optimal solution by the well-trained DBNs and the corresponding performance is compared to that of the exhaustive search method and the genetic algorithm. As shown in Fig. [3,](#page-7-0) the performance obtained by the genetic algorithm is very similar to the one derived by the exhaustive search method. However, it takes about 800 iterations to converge, which requiers a lot of time. In particular, it takes much longer time for the genetic algorithm to converge as the number of UEs and REs increases, and thus it fails to meet the fundamental requirements of ultra-low latency in the communication networks. On the other hand, it can be seen in Fig. [3](#page-7-0) that the performance gap between the proposed DBN-based approach and the exhaustive search method is small which is acceptable to some extent. More importantly, it takes less time to approximate the optimal solution through the proposed DBN-based approach, which facilitates to meet the stringent requirement of ultra-low latency.

Next, the performance in terms of the minimum required total transmit power under various system parameters is evaluated in Fig. [4.](#page-7-1) It should be noted that all the simulation results are based on the architecture design of DBNs discussed in the previous simulation, and each result under a certain setting of system parameters is the average of the approximations corresponding to 1000 groups of randomly generated channels. In particular, we assume that the total bandwidth is divided into 4 subcarriers, i.e.,  $N = 4$  and  $B_c =$ 1 MHz. The noise power in any subcarrier is set to be  $\sigma_n^2$  = 0.001/0.01/0.1 W for comparison. As shown in Fig. [4,](#page-7-1) under



<span id="page-7-0"></span>**FIGURE 3.** Performance evaluation of genetic algorithm and the proposed DBN-based approach.



<span id="page-7-1"></span>**FIGURE 4.** Comparison of minimum total transmit power of the proposed approach against different number of UEs with different noise power.

the same setting of noise power, the minimum total transmit power approximated by deep learning-based approach is monotonically increasing with the increase in the number of UEs. Furthermore, the transmit power consumption always increases with the increase in the noise power, regardless of the number of UEs. In particular, the relationship between the minimum transmit power and the number of UEs can be approximated as a linear function and the slope of it will increase with the increase in the noise power.

Next, we study the minimum total transmit power estimated by the proposed deep learning-based strategy with different levels of QoS requirements. The minimum data rate requirement per user is set to vary from 0.2 Mbit/s to 2 Mbit/s while the minimum demand of harvested power is set to vary from 0.02 W to 0.2 W. Furthermore, the number of subcarriers and the noise power are assumed to be  $N = 4$  and  $\sigma_n^2 = 0.01$  W, respectively. The number of UEs is assumed to be 3/4/5 for comparison. As shown in Fig. [5,](#page-7-2) the increasing level of minimum data rate requirement leads to an increasing total transmit power and this tendency becomes more



<span id="page-7-2"></span>**FIGURE 5.** Comparison of minimum total transmit power of the proposed approach with different minimum data rate requirements.



<span id="page-7-3"></span>**FIGURE 6.** Comparison of minimum total transmit power of the proposed approach with different minimum harvested power requirements.

and more obvious as the number of UEs increases. Similar result can be observed in Fig. [6](#page-7-3) where the total transmit power monotonically increases with the increase in the level of minimum requirement of harvested power. These results confirm and validate the effectiveness of the proposed deep learning-based approach.

Finally, we study the performance comparison in terms of transmit power minimization between the MC-NOMA with PDMA scheme and the OFDMA, SC-NOMA or MC-NOMA with SCMA scheme in SWIPT-enabled systems. The number of UEs is set to be 3/4/5 for comparison. Similarly, all the results are averaged over 1000 trials. Specifically, in OFDMA system, the available bandwidth is equally divided into *K* REs and each UE communicates with the BS via one of the REs without any inter-user interference. Furthermore, in the SC-NOMA system, all the UEs communicate with the BS through the entire bandwidth; in the MC-NOMA system with SCMA scheme, the total bandwidth is equally divided into *N* REs and it allows sparse number of UEs to share the same RE; the MC-NOMA system with PDMA scheme is



<span id="page-8-0"></span>**FIGURE 7.** Comparison of minimum total transmit power among OFDMA, SC-NOMA, MC-NOMA with SCMA and MC-NOMA with PDMA in SWIPT-enabled systems.

similar to that with SCMA scheme, but there is no constraint on the number of UEs that share the same RE. The QoS requirements for each UE are the same in different systems. As shown in Fig. [7,](#page-8-0) both SC-NOMA and MC-NOMA systems are more power-efficient than OFDMA system and the performance of the MC-NOMA systems are superior to that of the SC-MOMA system. Furthermore, an additional performance gain can be achieved in MC-NOMA system with PDMA scheme, comparing to that with SCMA technique. This is due to the fact that there is no limitation of sparsity in the PDMA scheme so that it is more likely for the UEs to select REs with better channel conditions to communicate with the BS. Hence, this validates and supports the superiority of our proposed scheme as well as the effectiveness of the developed deep learning-based approach.

#### **V. CONCLUSIONS**

The resource allocation problem for a downlink of SWIPT-enabled MC-NOMA system with PDMA scheme has been studied in this work. In particular, we focus on jointly optimizing characteristic pattern matrix, power allocation as well as TS ratio assignment for the total transmit power minimization problem with QoS requirements as well as the transmit power constraints. With the integer variable and the intra-band interference, the corresponding optimization problem is a non-convex and a mixed integer programming in its original form and thus it is extremely strenuous to determine the optimal solution. To resolve this problem, we have developed a deep learning-based approach which includes three phases, namely, data preparation, model training and solution running. Numerical results validate that our proposed approach can yield a solution which is similar to the ones derived by both exhaustive search method and genetic algorithm while significantly reduces the required computation time. Furthermore, it is also confirmed that the considered MC-NOMA with the application of PDMA outperforms MC-NOMA with SCMA, OFDMA and SC-NOMA

in SWIPT-enabled systems in terms of the required minimum transmit power.

#### **REFERENCES**

- [1] G. Chen, J. Tang, and J. P. Coon, "Optimal routing for multihop socialbased D2D communications in the Internet of Things,'' *IEEE Internet Things J.*, vol. 5, no. 3, pp. 1880–1889, Jun. 2018.
- [2] P. Wang, J. Xiao, and L. Ping, "Comparison of orthogonal and nonorthogonal approaches to future wireless cellular systems,'' *IEEE Veh. Technol. Mag.*, vol. 1, no. 3, pp. 4–11, Sep. 2006.
- [3] Z. Wei, J. Yuan, D. W. K. Ng, M. Elkashlan, and Z. Ding. (Sep. 2016). ''A survey of downlink non-orthogonal multiple access for 5G wireless communication networks.'' [Online]. Available: https://arxiv.org/abs/ 1609.01856
- [4] Y. Saito, A. Benjebbour, Y. Kishiyama, and T. Nakamura, ''System-level performance of downlink non-orthogonal multiple access (NOMA) under various environments,'' in *Proc. IEEE 81st Veh. Technol. Conf. (VTC Spring)*, May 2015, pp. 1–5.
- [5] F. Alavi, K. Cumanan, Z. Ding, and A. G. Burr, ''Beamforming techniques for nonorthogonal multiple access in 5G cellular networks,'' *IEEE Trans. Veh. Technol.*, vol. 67, no. 10, pp. 9474–9487, Oct. 2018.
- [6] F. Alavi, K. Cumanan, Z. Ding, and A. G. Burr, ''Robust beamforming techniques for non-orthogonal multiple access systems with bounded channel uncertainties,'' *IEEE Commun. Lett.*, vol. 21, no. 9, pp. 2033–2036, Sep. 2017.
- [7] Z. Ding, X. Lei, G. K. Karagiannidis, R. Schober, J. Yuan, and V. Bhargava, ''A survey on non-orthogonal multiple access for 5G networks: Research challenges and future trends,'' *IEEE J. Sel. Areas Commun.*, vol. 35, no. 10, pp. 2181–2195, Oct. 2017.
- [8] L. Dai, B. Wang, Y. Yuan, S. Han, C.-L. I, and Z. Wang, ''Nonorthogonal multiple access for 5G: Solutions, challenges, opportunities, and future research trends,'' *IEEE Commun. Mag.*, vol. 53, no. 9, pp. 74–81, Sep. 2015.
- [9] P. Xu and K. Cumanan, ''Optimal power allocation scheme for nonorthogonal multiple access with α-fairness,'' *IEEE J. Sel. Areas Commun.*, vol. 35, no. 10, pp. 2357–2369, Oct. 2017.
- [10] H. Nikopour and H. Baligh, ''Sparse code multiple access,'' in *Proc. IEEE 24th Annu. Int. Symp. Pers., Indoor, Mobile Radio Commun. (PIMRC)*, Sep. 2013, pp. 332–336.
- [11] X. Dai, Z. Zhang, B. Bai, S. Chen, and S. Sun, ''Pattern division multiple access: A new multiple access technology for 5G,'' *IEEE Wireless Commun.*, vol. 25, no. 2, pp. 54–60, Apr. 2018.
- [12] Z. Wu, K. Lu, C. Jiang, and X. Shao, "Comprehensive study and comparison on 5G NOMA schemes,'' *IEEE Access*, vol. 6, pp. 18511–18519, 2018.
- [13] X. Lu, P. Wang, D. Niyato, D. I. Kim, and Z. Han, ''Wireless networks with RF energy harvesting: A contemporary survey,'' *IEEE Commun. Surveys Tuts.*, vol. 17, no. 2, pp. 757–789, 2nd Quart., 2015.
- [14] L. R. Varshney, "Transporting information and energy simultaneously," in *Proc. IEEE Int. Symp. Inf. Theory*, Jul. 2008, pp. 1612–1616.
- [15] X. Zhou, R. Zhang, and C. K. Ho, "Wireless information and power transfer: Architecture design and rate-energy tradeoff,'' *IEEE Trans. Commun.*, vol. 61, no. 11, pp. 4754–4767, Nov. 2013.
- [16] D. W. K. Ng, E. S. Lo, and R. Schober, "Wireless information and power transfer: Energy efficiency optimization in OFDMA systems,'' *IEEE Trans. Wireless Commun.*, vol. 12, no. 12, pp. 6352–6370, Dec. 2013.
- [17] M. Zhang, K. Cumanan, L. Ni, H. H. A. G. Burr, and Z. Ding. (2018). ''Robust beamforming for AN aided MISO SWIPT system with unknown eavesdroppers and non-linear EH model.'' [Online]. Available: https://arxiv.org/abs/1809.04354
- [18] M. Zhang, K. Cumanan, and A. Burr, ''Secrecy rate maximization for MISO multicasting SWIPT system with power splitting scheme,'' in *Proc. IEEE 17th Int. Workshop Signal Process. Adv. Wireless Commun. (SPAWC)*, Jul. 2016, pp. 1–5.
- [19] J. Tang, D. K. C. So, N. Zhao, A. Shojaeifard, and K.-K. Wong, ''Energy efficiency optimization with SWIPT in MIMO broadcast channels for Internet of Things,'' *IEEE Internet Things J.*, vol. 5, no. 4, pp. 2605–2619, Aug. 2018.
- [20] S. Akbar, Y. Deng, A. Nallanathan, M. Elkashlan, and A.-H. Aghvami, ''Simultaneous wireless information and power transfer in *K*-tier heterogeneous cellular networks,'' *IEEE Trans. Wireless Commun.*, vol. 15, no. 8, pp. 5804–5818, Aug. 2016.
- [21] G. Chen, P. Xiao, J. R. Kelly, B. Li, and R. Tafazolli, "Full-duplex wirelesspowered relay in two way cooperative networks,'' *IEEE Access*, vol. 5, pp. 1548–1558, 2017.
- [22] Y. Xu *et al.*, "Joint beamforming and power-splitting control in downlink cooperative SWIPT NOMA systems,'' *IEEE Trans. Signal Process.*, vol. 65, no. 18, pp. 4874–4886, Sep. 2017.
- [23] T. N. Do, D. B. da Costa, T. Q. Duong, and B. An, ''Improving the performance of cell-edge users in MISO-NOMA systems using TAS and SWIPT-based cooperative transmissions,'' *IEEE Trans. Green Commun. Netw.*, vol. 2, no. 1, pp. 49–62, Mar. 2018.
- [24] Z. Yang, Z. Ding, P. Fan, and N. Al-Dhahir, ''The impact of power allocation on cooperative non-orthogonal multiple access networks with SWIPT,'' *IEEE Trans. Wireless Commun.*, vol. 16, no. 7, pp. 4332–4343, Jul. 2017.
- [25] N. T. Do, D. B. da Costa, T. Q. Duong, and B. An, ''A BNBF user selection scheme for NOMA-based cooperative relaying systems with SWIPT,'' *IEEE Commun. Lett.*, vol. 21, no. 3, pp. 664–667, Mar. 2017.
- [26] J. Tang et al., "Optimization for maximizing sum secrecy rate in SWIPTenabled NOMA systems,'' *IEEE Access*, vol. 6, pp. 43440–43449, 2018.
- [27] D. Zhai, M. Sheng, X. Wang, Y. Li, J. Song, and J. Li, ''Rate and energy maximization in SCMA networks with wireless information and power transfer,'' *IEEE Commun. Lett.*, vol. 20, no. 2, pp. 360–363, Feb. 2016.
- [28] J. Zeng et al., "Investigation on evolving single-carrier NOMA into multicarrier NOMA in 5G,'' *IEEE Access*, vol. 6, pp. 48268–48288, 2018.
- [29] B. Mao *et al.*, "Routing or computing? The paradigm shift towards intelligent computer network packet transmission based on deep learning,'' *IEEE Trans. Comput.*, vol. 66, no. 11, pp. 1946–1960, Nov. 2017.
- [30] P. Wang, S. C. Lin, and M. Luo, "A framework for QoS-aware traffic classification using semi-supervised machine learning in SDNs,'' in *Proc. IEEE Int. Conf. Services Comput. (SCC)*, Jun. 2016, pp. 760–765.
- [31] L. Ghouti, "Mobility prediction using fully-complex extreme learning machines,'' in *Proc. 22nd Eur. Symp. Artif. Neural Netw., Comput. Intell. Mach. Learn.*, 2014, pp. 607–612.
- [32] B. Bojović, E. Meshkova, N. Baldo, J. Riihijärvi, and M. Petrova, ''Machine learning-based dynamic frequency and bandwidth allocation in self-organized LTE dense small cell deployments,'' *EURASIP J. Wireless Commun. Netw.*, vol. 2016, no. 1, p. 183, Dec. 2016.
- [33] D. Tse and P. Viswanath, *Multiuser Capacity and Opportunistic Communication*. Cambridge, U.K.: Cambridge Univ. Press, 2005, pp. 228–289.
- [34] L. Lei, D. Yuan, C. K. Ho, and S. Sun, "Power and channel allocation for non-orthogonal multiple access in 5G systems: Tractability and computation,'' *IEEE Trans. Wireless Commun.*, vol. 15, no. 12, pp. 8580–8594, Dec. 2016.
- [35] G. E. Hinton, ''Deep belief networks,'' *Scholarpedia*, vol. 4, no. 5, p. 5947, 2009.
- [36] *Mobile Communications WG Architecture DOC2: Reference Scenarios*, GreenTouch, New York, NY, USA, May 2013.



JIE TANG (S'10-M'13-SM'18) received the B.Eng. degree in information engineering from the South China University of Technology, Guangzhou, China, in 2008, the M.Sc. degree (Hons.) in communication systems and signal processing from the University of Bristol, U.K., in 2009, and the Ph.D. degree from Loughborough University, Leicestershire, U.K., in 2012. He is currently an Associate Professor with the School of Electronic and Information Engineering, South

China University of Technology. He previously held Postdoctoral research positions with the School of Electrical and Electronic Engineering, University of Manchester, U.K.

His research interests include green communications, NOMA, 5G networks, SWIPT, heterogeneous networks, cognitive radio, and D2D communications. He was a Co-Recipient of the 2018 IEEE ICNC Best Paper Award. He also served as a Track Co-Chair for the IEEE Vehicular Technology Conference Spring 2018. He is currently serving as an Editor for the IEEE ACCESS, *EURASIP Journal on Wireless Communications and Networking*, *Physical Communications*, and *Ad Hoc & Sensor Wireless Networks*.



DANIEL K. C. SO (S'96-M'03-SM'14) received the B.Eng. degree (Hons.) in electrical and electronics engineering from The University of Auckland, New Zealand, in 1996, and the Ph.D. degree in electrical and electronics engineering from The Hong Kong University of Science and Technology, Hong Kong, in 2003. From 1997 to 1998, he was a Senior Software Engineer with Orion Health, New Zealand. He joined The University of Manchester as a Lecturer, in 2003, where he is currently a

Reader with the School of Electrical and Electronic Engineering. He has also been serving as the Director of Postgraduate Taught, since 2009.

His research interests include green communications, NOMA, 5G networks, heterogeneous networks, cognitive radio, massive MIMO, D2D communications, cooperative MIMO schemes, multihop communication, channel equalization, and estimation techniques. He also served as a Track Co-Chair for the IEEE Vehicular Technology Conference Spring 2016, 2017, and 2018. He is currently serving as an Editor for the IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS and the IEEE WIRELESS COMMUNICATION LETTERS.



GAOJIE CHEN (S'09–M'12–SM'18) received the B.Eng. and B.Ec. degrees in electrical information engineering and international economics and trade from Northwest University, China, in 2006, and the M.Sc. (Hons.) and Ph.D. degrees in electrical and electronic engineering from Loughborough University, Loughborough, U.K., in 2008 and 2012, respectively. From 2008 to 2009, he was a Software Engineering with DT mobile, Beijing, China, and from 2012 to 2013, he was a Research

Associate with the School of Electronic, Electrical and Systems Engineering, Loughborough University. He was a Research Fellow with 5GIC, Faculty of Engineering and Physical Sciences, University of Surrey, U.K., from 2014 to 2015. Then, he was a Research Associate with the Department of Engineering Science, University of Oxford, U.K., from 2015 to 2018. He is currently a Lecturer with the Department of Engineering, University of Leicester, U.K. His current research interests include information theory, wireless communications, cooperative communications, cognitive radio, secrecy communication, and random geometric networks. He has been serving as an Editor for *IET Electronics Letters*, since 2018.



JINGCI LUO received the B.Eng. degree from the School of Electronic and Information Engineering, South China University of Technology, Guangzhou, China, in 2017, where she is currently pursuing the M.Sc. degree under the supervision of Dr. J. Tang. Her research interests include energy efficiency optimization, machine learning, non-orthogonal multiple access, simultaneous wireless information and power transfer, and 5G networks.



KANAPATHIPPILLAI CUMANAN received the B.Sc. degree (Hons.) in electrical and electronic engineering from the University of Peradeniya, Sri Lanka, in 2006, and the Ph.D. degree in signal processing for wireless communications from Loughborough University, Loughborough, U.K., in 2009. In 2011, he was an Academic Visitor with the Department of Electrical and Computer Engineering, National University of Singapore, Singapore. From 2006 to 2006, he was a Teaching

Assistant with the Department of Electrical and Electronic Engineering, University of Peradeniya. He was with the School of Electronic, Electrical and System Engineering, Loughborough University, U.K. From 2012 to 2014, he was a Research Associate with the School of Electrical and Electronic Engineering, Newcastle University, U.K. He is currently a Lecturer with the Department of Electronic Engineering, The University of York, U.K. His research interests include non-orthogonal multiple access, massive MIMO, physical layer security, cognitive radio networks, convex optimization techniques, and resource allocation techniques.

Dr. Cumanan was a recipient of an Overseas Research Student Award Scheme from Cardiff University, Wales, U.K., where he was a Research Student, from 2006 to 2007.



JONATHON A. CHAMBERS (S'83-M'90-SM'98–F'11) received the Ph.D. and D.Sc. degrees in signal processing from the Imperial College of Science, Technology and Medicine (Imperial College London), London, U.K., in 1990 and 2014, respectively. From 1991 to 1994, he was a Research Scientist with the Schlumberger Cambridge Research Center, Cambridge, U.K. In 1994, he returned to Imperial College London, as a Lecturer, in signal processing

and was promoted to a Reader (Associate Professor), in 1998. From 2001 to 2004, he was the Director of the Center for Digital Signal Processing and a Professor of signal processing with the Division of Engineering, King's College London, where he is currently a Visiting Professor. From 2004 to 2007, he was a Cardiff Professorial Research Fellow with the School of Engineering, Cardiff University, Cardiff, U.K. From 2007 to 2014, he led the Advanced Signal Processing Group, School of Electronic, Electrical and Systems Engineering, Loughborough University, where he is also a Visiting Professor. In 2015, he joined the School of Electrical and Electronic Engineering, and he has been with the School of Engineering, Newcastle University, Newcastle upon Tyne, U.K., since 2017. Since 2017, he has also been a Professor in engineering and the Head of the Department, University of Leicester, Leicester, U.K. He is also the International Honorary Dean and a Guest Professor with the Department of Automation, Harbin Engineering University, Harbin, China. He has advised almost 80 researchers through to Ph.D. graduation and has published over 500 conference proceedings and journal articles, many of which are in IEEE journals. His research interests include adaptive signal processing and machine learning and their application in communications, defense, and navigation systems.

Dr. Chambers is a fellow of the Royal Academy of Engineering, U.K., the Institution of Engineering and Technology, and the Institute of Mathematics and its Applications. He was a Technical Program Co-Chair of the 36th IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Prague, Czech Republic. He is serving on the Organizing Committees of ICASSP 2019, Brighton, U.K., and ICASSP 2022, Singapore. He has served on the IEEE Signal Processing Theory and Methods Technical Committee for six years, the IEEE Signal Processing Society Awards Board for three years, and the Jack Kilby Medal Committee for three years. He was an Associate Editor of the IEEE TRANSACTIONS ON SIGNAL PROCESSING for three terms over the periods 1997–1999, 2004–2007, and a Senior Area Editor, from 2011 to 2015.