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ABSTRACT The gold cyanidation leaching process (GCLP) is the central unit operation in hydrometallurgy,
and satisfactory gold recovery is highly significant in practice. However, GCLP faces the challenge of an
irregular slow time-varying feature (STVF), which seriously affects gold recovery, and blind treatment for
STVF also has drawbacks, which results in the need for the recognition of STVF for purposeful, rather
than blind, treatment. Meanwhile, it also faces the problem of change of working condition (COWC) due to
the variability of mineral resources. Both STVF and COWC may cause degradation of the soft-measuring
model, which presents the need for model correction. Therefore, a coping strategy is proposed to solve these
existing problems. First, an improved model-based principal component analysis monitoring is proposed to
detect model mismatch and monitor the change of process feature. Next, a support vector machine-based
process feature change recognition method is presented to recognize change type, which not only provides
guidance in treating STVF but also makes it possible to implement targeted model correction for STVF
and COWC. Finally, an adaptive model correction strategy that combines case-based correction and just-in-
time learning-based correction is proposed. The simulation studies have verified the validity of the proposed
coping strategy.

INDEX TERMS Gold cyanidation leaching process, model-based principal component analysis, process
feature change recognition, adaptive model correction.

I. INTRODUCTION
The gold cyanidation leaching process (GCLP) has been the
dominant process for the extraction of gold from ores in
alkaline cyanide pulp due to its advantages of simple struc-
ture, little occupied space, ease of adjustment and low cost
for construction and maintenance [1]–[5]. Actually, GCLP
usually occurs in a cascade of continuous stirred tank reactors
(CSTRs) to ensure longer residence time of pulp and higher
gold recovery [1]–[4], [6]. As the most significant produc-
tion target, gold recovery rate has an important influence
on total gold production, production efficiency and so on
[1], [2], and thus a satisfactory gold recovery is required in
practice.

In GCLP, however, large-sized ore fines gradually sink
and accumulate in the bottom of CSTRs, forming an ore-
accumulation phenomenon, due to the gravitational setting
function. The ore accumulation, hereinafter referred to as
the slow time-varying feature (STVF), is a slow process of
change in process feature that occurs over months because
large-sized ore fines are a tinyminority of the total. STVFwill
not have much impact on GCLP in the short term, but it can
seriously affect gold recovery after a period of accumulation
because it gradually encroaches on the volumes of CSTRs
and the residence time of ore pulp. This directly leads to a
reduction of time for the chemical reaction between ores and
leaching solution and then results in an increase of residual
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gold concentration in the ore (RGC-O). Hence, the plant will
take some effective measures to treat STVF, i.e., accumulated
ores will be pumped out from the bottom of CSTRs, ground
into fine grains and then re-injected into CSTRs. However,
due to the irregularity of STVF, it is very difficult for the
plant to obtain useful information for guiding the treatment of
STVF. Concretely, it is hard to determine when and how long
STVF should be treated. A practical method for operators is
to frequently or continuously treat it by virtue of experience.
However, such operation has the disadvantages of wasting
energy and leading to an overly small granularity of ore fines.
Thus, a monitoring scheme that is capable of determining the
occurrence of STVF is to be desired to guide operators in
carrying out purposeful rather than blind treatment.

Affected by the variability of mineral resources, the initial
gold concentration in the ore (IGC-O) is going to shift, which
causes the multimode characteristic of GCLP. Thus, there
is another change type in the process feature — change of
working condition (COWC). Both STVF and COWC may
cause the degradation of the soft-measuring model (SMM) of
RGC-O. COWC is an abrupt change in the process feature,
and it will cause SMM to be immediately unavailable. STVF
is a gradual change in the process feature, which will lead
to a gradual drift of model precision. In this case, SMM
will be available in the short term, but it will no longer be
applicable after a period of ore accumulation. Apparently,
GCLP also faces an model correction problem derived from
both COWC and STVF. Therefore, it is theoretically and
practically significant to correct SMM while being able to
recognize the type of change in the process feature.

However, GCLP affected by STVF and COWC has the
following specificities: (1) a need to recognize STVF to guide
the treatment of STVF; (2) both STVF and COWC have
relatively low occurrence frequencies, so STVF treatment
and model correction can be activated only after confirming
that the process feature has changed; (3) STVF and COWC
generally do not appear at the same time, so it is reasonable
to respectively take countermeasures for them. Thus, accord-
ing to the above specificities, a coping strategy should have
the following characteristics and abilities: (1) recognizing
and pre-judging the occurrence of STVF online to practi-
cally guide its treatment; (2) monitoring SMM performance
online and activating countermeasures only when it does not
meet accuracy requirements; and (3) recognizing the type of
change in the process feature based on model performance
monitoring and then implementing targeted countermeasures
for STVF and COWC. Such a coping strategy is proposed in
this study.

Firstly, an improved model-based principal component
analysis (MBPCA) monitoring scheme is presented to mon-
itor SMM performance and the process feature. In tradi-
tional MBPCA [7]–[10], the error between the actual process
output and the estimated model’s output is taken as input
information to build a principal component analysis (PCA)
model. The improved one in this study takes not only error
information but also error change information as the input of

PCA model. This monitoring scheme can achieve two func-
tions: (1) SMM mismatch and changes in the process feature
can be detected; and (2) feature information of STVF and
COWC can be reflected in their statistics. Compared with
traditional MBPCA, the improved one has the advantage of
being able to detect STVF much earlier.

Secondly, a wavelet analysis (WA)-based feature extrac-
tion method and a support vector machine (SVM)-based
process feature change recognition method are proposed to
extract the main feature from the statistics and then recognize
the type of change in the process feature. In [11], a state
classifier was proposed to diagnose the type of change in the
process feature according to the discrete Fourier transforms
of the model performance index sequence. By referring to
the basic thought in [11], this work presents a classifier used
for recognizing the type of change in the process feature
(hereinafter referred to as the type classifier). Such a type
classifier is essentially a classification model, in which the
characteristic variables that respectively characterize STVF
and COWC are taken as the input and two types of change
in the process feature (STVF and COWC) are taken as the
output. Because STVF and COWC have entirely different
features, their monitoring statistics can reflect their respective
feature information. Thus, a WA-based feature extraction
method can be introduced to extract the main feature of the
statistical sequence that will be taken as the input informa-
tion of the type classifier. SVM is a very efficient tool for
classification, especially when the sample size is small, and it
has been successfully applied to various classification tasks in
chemistry [12]–[14]. Therefore, SVM is used for the training
type classifier in this study.

Thirdly, an adaptive model correction strategy that com-
bines case-based correction and just-in-time learning (JITL)-
based correction is proposed for COWC. Not only STVF but
also COWC can be online recognized using a type classifier,
and then respective countermeasures for STVF and COWC
should be implemented. For STVF, the STVF treating system
can be turned on to treat it until the statistics return to their
respective control limits. With the assistance of the proposed
recognition approach, the blindness in treating STVF can be
avoided. For COWC, an adaptive model correction approach
is proposed to solve the problem of SMM degradation. This
correction approach involves two model correction schemes,
case-based correction and JITL-based correction, whichwork
separately according to the level of similarity between the
current working condition (WC) and historical WCs (also
called historical cases). If the similarity reaches an appropri-
ate threshold, then the models (including SMM and monitor-
ing model) of the most similar case are directly switched to
perform soft measurement and process monitoring under the
current WC. Case-based correction is based on the idea of
the case-based reasoning (CBR) methodology [15]–[17], and
it can improve the utilization rate of historical information
and avoid repetitive modeling for similar WCs. If there are
no similar cases that have enough similarities to the current
WC in the historical case base (HCB), there is always one
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case that is closest to the current WC. Then, this closest case
is selected, and its process data that are most relevant to the
data under the current WC are chosen by correlation-based
JITL [18]. The chosen similar data, together with the existing
data of the current WC, are utilized to reconstruct an SMM.
Then, this reconstructed SMM can be updated with a moving
window (MW) by incorporating new data of the current WC
and discarding the borrowed data until all of the borrowed
data are discarded. After that, the monitoring model under
this new WC is also built. The combination of the SMM,
monitoring model and process data is stored in the HCB as
a new case, which achieves the update of HCB.

The remainder of this paper is organized as below.
Section 2 gives a brief process description and mechanistic
model of GCLP and the main theoretical methods used in
this paper. In Section 3, the recognition of change in the
process feature is presented. The adaptive model correction
strategy is described in Section 4. The overall framework
of the proposed coping strategy is discussed in Section 5.
Finally, the study’s conclusions are presented in Section 6.

II. PRELIMINARIES
A. BRIEF PROCESS DESCRIPTION AND MECHANISTIC
MODEL OF GCLP
The procedure to extract gold from ores in this plant is
mainly composed of floatation, washing and conditioning,
gold cyanidation leaching, two-stagewashing and gold recov-
ery by zinc, of which gold leaching is the most crucial.
In this study, a GCLP plant with four ideal pneumatic CSTRs
is investigated. The simplified plant flowsheet of GCLP is
shown in Fig. 1 [1]. For a detailed process description of
GCLP, please refer to [1]–[3] and [5]; it will not be covered
here.

FIGURE 1. Simplified plant flowsheet of GCLP.

The mechanistic model presented in [4] and [6] is used to
simulate the reality of GCLP, and the dynamical model for
the ith CSTR is composed of the following mass conservation

equations of gold in the ore, gold in the liquid and cyanide in
the liquid [1]:

Qsi
Msi

(Csi−1 − Csi)− rAu,i =
dCsi
dt

, (1)

Qli
Mli

(Cli−1 − Cli)+
Msi
Mli

rAu,i =
dCli
dt
, (2)

Qli
Mli

(Ccni−1 − Ccni)+
Qcni
Mli
− rcn,i =

dCcni
dt

, (3)

with:

rAu,i = (1.13× 10−3 − 4.37× 10−11d̄2.93)

×(Csi − Cs∞(d̄))1.1Ccn0.991i Co0.228i , (4)

rcn,i = (
1.69× 10−8

d̄0.547 − 6.40
)Ccn2.91i , (5)

Cs∞(d̄) = 0.357(1− 1.49e−1.76×10
−2d̄ ), (6)

where Qsi, Msi, and Csi respectively represent the ore flow
rate, ore hold-up and ore gold concentration in the ith CSTR;
Qli, Mli, and Cli are the liquid flow rate, liquid hold-up and
liquid gold concentration, respectively;Qcni and Ccni are the
cyanide addition flow rate and the liquid cyanide concen-
tration; rAu,i and rcn,i are the gold dissolution rate and the
cyanide consumption rate; Coi is the oxygen concentration
in solution; and d̄ is the average diameter of ore particles.
The subscript i represents the corresponding variable in the ith
CSTR. In addition, because of the negligible segregation and
well-mixed reactants in the reactor assumption, the average
residence time τi of the solid particles, liquid and ore pulp is
given by [6]:

τi =
Vi

Qsi
ρs +

Qli
ρl

× 1000, (7)

with:

Qli = Qsi

(
1
Cwi
− 1

)
, (8)

where Cwi is the weight concentration of solid in the pulp,
Vi is the volume of the ith CSTR, and ρs and ρl are the solid
and liquid densities, respectively. Then, Msi and Mli can be
formulated as [3]:

Msi = Qsi × τi, (9)

Mli = Qli × τi. (10)

The differential equations (1) to (3) with the kinetic reaction
rate expressions given by (4) to (6) and the corresponding
variable expressions given by (7) to (10) can be solved simul-
taneously by the ODE45 solver in MATLAB to obtain the
final RGC-O and gold leaching rate.

The mechanistic model described above is applied to sim-
ulate the reality of GCLP, and the used model parameters are
listed in Table 1.
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TABLE 1. Parameters used in the mechanistic model.

B. THEORETICAL METHODS USED IN THIS STUDY
1) MODEL-BASED PRINCIPAL COMPONENT ANALYSIS
PCA is a widely used multivariate statistical method for
process monitoring [8], [19]. The detailed procedures of
establishing a PCA model can be found in [8]; they will not
be covered here. An MBPCA technique was presented by
Wachs and Lewin [20] and has been widely used in pro-
cess monitoring [7]–[10]. In this approach, model errors, e,
between actual outputs and estimated outputs are calculated
and subsequently used as input information to construct a
PCA model, as is shown in Fig. 2(a). For a new observed
data point xnew, its associated T 2 and Q are compared with
their respective control limits T 2

lim and Qlim to determine if
the criteria:

T 2 < T 2
lim, Q < Qlim, (11)

is satisfied. If so, the system can be considered under the
normal condition with 100(1 − α)% confidence. Otherwise,
some faults may occur in the process, and the monitoring
system will alarm. For the detailed procedures of MBPCA,
please refer to [8] and [9].

FIGURE 2. MBPCA monitoring scheme. (a) Traditional MBPCA.
(b) Improved MBPCA.

2) WAVELET ANALYSIS THOERY
WAwas developed by Grossmann andMorlet [21] during the
1980s and has already been an effective time-frequency signal
processing tool [22]. WA can be considered as an extension
of classic Fourier analysis, but it demonstrates the advantage
of providing better time-frequency in contrast to Fourier anal-
ysis [23], [24]. Recently, WA has been widely used in feature
extraction for pattern classification and recognition due to
its function in decomposing a signal into components that
appears at different scales (or resolutions) [25]–[27].

3) SUPPORT VECTOR MACHINE
SVM is known as a powerful classifier that has been applied
to a large range of pattern recognition problems [12]. The aim

of SVM is to split data into two groups by using an optimal
hyperplane (classifier), which is defined by an orthogonal
weight vector that has its vector length minimized with con-
straints [12], [13]. The effect is to leave the largest possi-
ble fraction of points of the same group on the same side
and maximize the distance of either group from the hyper-
plane [12]. SVM has strong generalization capabilities to
effectively avoid the over-fitting problem because it is based
on the structural risk minimization principle from computa-
tional learning theory, which always converges to a global
optimum [12], [14]. Please see [14] for more details of SVM.

4) CASE-BASED REASONING METHODOLOGY
CBR has received considerable attention with its ability to
use historical data, such as cases or experiences, to predict
a solution to the current problem [15]–[17]. The general
principle of CBR is that similar problems have similar solu-
tions [28]. In CBR, past experiences are stored as cases, each
of which encloses the description of a source problem and
its associated solution (source solution), and a new problem
named the target problem can be solved by retrieving themost
similar cases and relying on the source solutions [28].

5) CORRELATION-BASED JUST-IN-TIME LEARNING
Recently, JITL has attracted increasing attention in process
modeling and soft sensor development of nonlinear systems
[18], [29], [30]. The correlation-based JITL [18] is used to
select the dataset that can most correctly describe the cor-
relation fit for the current data sample for local modeling.
In this approach, statistics of T 2 and Q are integrated into
a comprehensive index for the dataset selection [31]:J =
λT 2
+ (1 − λ)Q, 0 ≤ λ ≤ 1. For more details regarding

correlation-based JITL, please refer to [18]; they will not be
covered here.

III. PROCESS FEATURE CHANGE RECOGNITION
As outlined above, GCLP concurrently faces the challenges
of STVF and COWC, which results in the need to determine
and recognize their occurrence.

A. DETERMINATION OF CHANGE IN PROCESS FEATURE
1) THE IMPROVED MBPCA-BASED MONITORING
In this section, an improved MBPCA-based monitoring
scheme will be proposed to monitor SMM performance
and the process feature; refer to Fig. 2(b) for its basic
schematic diagram. This approach can be primarily split
into an offline training phase and online monitoring phase,
as shown in Fig. 3.

Suppose that a datasetZ = {X, y} = {xi, yi}ni=1 is collected
as the modeling database. When collecting modeling data,
it is necessary to avoidmodeling data being affected by STVF
and COWC. Thus, the modeling data should be collected
under a steady state after treating STVF, and meanwhile,
the IGC-O should be offline measured once a day to make
sure that there is no COWC occurring during data collection.
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FIGURE 3. Improved MBPCA-based process monitoring scheme.

Note that the offline measurement of IGC-O can only be
acceptable and necessary in collecting modeling data for
initial modeling work to ensure that the modeling data are
not affected by COWC. It is difficult to realize frequent
offline measurement for IGC-O in actual normal production
because there are other important process variables (RGC-O,
for instance) that need to be measured offline. Moreover,
it is also unnecessary to frequently measure IGC-O because
decision-makers care about RGC-O value but not IGC-O
value. Normally, RGC-O is only measured three times a
day due to the complexity of offline measurement. Thus,
the offline measurement of IGC-O will not play an important
role and would only increase the field burden.

After SMM f (·) is developed and put into use, the esti-
mated outputs ŷi can be obtained according to the input
variables xi. The errors between actual outputs yi and esti-
mated outputs ŷi, and the change information of errors can be
obtained:

ei = yi − ŷi, (12)

1ei = ei − ei−1. (13)

Then, a PCA model FPCA that takes ei and 1ei as input is
constructed, and the control limits T 2

lim andQlim under normal
conditions are respectively calculated.

For the newly observed data Dnewi = (xnewi , ynewi ), we have

ŷnewi = f (xnewi ), (14)

enewi = ynewi − ŷ
new
i , (15)

1enewi = enewi − e
new
i−1. (16)

Then, (enewi ,1enewi ) is fed toFPCA to calculate their respective
statistics, T 2

i and Qi. If T 2
i and Qi are smaller than their

respective control limits T 2
lim and Qlim, then SMM is con-

sidered to be working under normal conditions and the cur-
rent process feature has not changed; otherwise, once model
degradation is detected, it is indicated that some changes in
the process feature may have occurred in GCLP.

2) SIMULATION STUDIES OF IMPROVED MBPCA-BASED
MONITORING
The SMM of GCLP is developed based on PLS regres-
sion [32], where the flow rates of added cyanide, Qcni, are
taken as input variables and RGC-O,Csr , is taken as an output
variable. The number of modeling data is set to 10. STVF is
an ongoing process, and it is simulated by gradually reducing
the volumes of CSTRs linearly to simplify problems. COWC
is simulated by abruptly changing the IGC-O. The MBPCA-
based monitoring model is developed to evaluate SMM per-
formance and monitor the process feature. The Q statistic is
used as a performance evaluation index in this study. The
simulation results of modeling and process monitoring under
normal conditions (without STVF and COWC), with STVF
and with COWC are shown in Fig. 4.

Under normal conditions, SMM has accurate soft mea-
surement performance in tracking the actual value, and both
model error and Q statistic have stable distributions below
their respective control limits. During STVF, the measure-
ment accuracy of SMM can be acceptable in the short term,
but model error will be larger and larger with accumu-
lation of STVF until SMM does not meet the precision
requirement, which leads to a similar change in Q statistic.
However, we can see that Q statistic alarms much earlier
than model error, which provides an opportunity to anticipate
the occurrence of STVF in advance and to deal with STVF
before it affects model availability. When COWC occurs
(600-750 mg/kg), if SMM under a WC of 600 is continually
used for a new WC of 750, then model error will suddenly
increase and result in model mismatch, which causes Q
statistic to abruptly go beyond its control limit. Therefore,
the simulation results have indicated that changes in the
process feature can be determined with process monitoring
when STVF and COWC occur, which is consistent with our
previous theoretical analysis.

The difference between improvedMBPCAmonitoring and
a traditional one is the introduction of model error change
information, 1e. Next, the advantages of introducing 1e
into MBPCA will be illustrated in detail through simulation
experiments.

Firstly, when traditional MBPCA is applied to the moni-
toring task in this study, because the input to PCA model has
only one variable (model error, e), the principal component
of input variable is the model error, and there is no residual
information that is used to calculateQ statistic. That is to say,
only the T 2 statistic can be calculated by applying traditional
MBPCA. Thus, the introduction of 1e can firstly solve the
problem that the Q statistic cannot be calculated.

Secondly, from Fig. 4, it is indicated that1e has an abrupt
pulse signal when COWC occurs, which makes COWC very
unique due to the identical and stable trends of 1e under
normal conditions and STVF. Therefore, it seems that the
introduction of1e is able to increase the difference of feature
information between COWC and STVF. However, it is obvi-
ously infeasible to recognize STVF and COWC only with
1e due to the identical trends of1e under normal conditions
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FIGURE 4. Simulation results of modeling and process monitoring under normal conditions, STVF and COWC.

and STVF. Traditional MBPCA and improved MBPCA are
respectively used to monitor SMM performance and the
process feature when STVF occurs; see Fig. 5 for simulation
results, by which the following conclusions can be given:
(1) MBPCA can detect STVF earlier than model error, which
proves the importance and necessity of using MBPCA in
process monitoring; and (2) Q statistic of improved MBPCA
achieves the best performance in detecting STVF as soon as
possible, which not only indicates the superiority of improved
MBPCA but also proves the rationality in selectingQ statistic
as the performance evaluation index.

B. TYPE RECOGNITION OF CHANGE IN THE PROCESS
FEATURE
1) WA-BASED FEATURE EXTRACTION AND DEVELOPMENT
OF AN SVM-BASED TYPE CLASSIFIER
As described above, the proposedMBPCA-based monitoring
is applied to monitor SMM, and the changes in process fea-
ture can be detected. STVF andCOWChave entirely different
change features in Q statistic, and they can be effectively dis-
tinguished and recognized according to such obvious differ-
ence in the change feature of Q statistic. An effective method
is to train a type classifier by taking these unique features

FIGURE 5. Simulation results of traditional MBPCA and improved MBPCA
monitoring when STVF occurs.

in the change trend of Q statistic as input information. The
type recognition by type classifier can be split into an offline
training phase and online recognition phase. The following
two steps are carried out to fulfill the offline training task of
the type classifier. In the first stage, modeling data for devel-
opment of the type classifier are obtained. However, note that
the type classifier is unavailable during the offline training
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phase and that the type of change in the process feature cannot
be recognized by the type classifier, so an MBPCA-based
monitoring system is needed to assist in distinguishing STVF
and COWC. Once the monitoring system alarms, which indi-
cates that the process feature has changed, then a statistical
sequence Seq that contains Lseq continuous statistical data
points before the over-limit point (including the over-limit
point) is captured, and then themain feature of Seq is extracted
usingWA, as shown in Fig. 6. Meanwhile, field operators will
artificially observe the change trends of statistics to determine
which change in the process feature caused the current alarm
of the monitoring system. If the statistic gradually deviates
from the normal state until it exceeds its control limit, then
the current change in the process feature is caused by STVF;
if the statistic abruptly jumps out of its control limit, then
it is COWC causing the current change in the process fea-
ture. The captured statistic sequences in both cases of STVF
and COWC are taken as input variables, and type tags of
0 (COWC) and 1 (STVF) are taken as output variables. After
obtaining adequate modeling data, the second step of training
the type classifier with the SVM training algorithm is then
implemented. Then, the type classifier will be used to online
recognize STVF and COWC. The schematic diagram of the
type recognition of the change in the process feature is shown
in Fig. 7.

FIGURE 6. Schematic diagram of acquisition of modeling data for the
type classifier.

2) SIMULATION STUDIES OF DEVELOPING AN SVM-BASED
TYPE CLASSIFIER
When developing a type classifier, there are three parameters
to be determined, including the length of the captured Q
statistic sequence Lseq, kernel function of SVM and sample
number in the training dataset Ntrain.
Determination of Lseq. In simulation experiments, a train-

ing set that includes 9 samples (4 for STVF and 5 for COWC)
is utilized to train the type classifier, and a testing set that
contains 31 samples (16 for STVF and 15 for COWC) is used
to test it when Lseq equals 5, 8, 9 and 10. The accuracies
of type classifiers with different values of Lseq are shown
in Table 2, which indicates that the classification accuracy of

FIGURE 7. Schematic diagram of type recognition of changes in the
process feature.

TABLE 2. Accuracies of type classifiers with different values of Lseq.

the type classifier increases to 100%with the increase of Lseq.
Thus, Lseq = 10 is selected in this study.

Selection of the kernel function. Three types of commonly
used kernel functions, including linear, polynomial, and RBF
kernels [20], are attempted to develop an SVM-based type
classifier. The sample sizes for training are the same as in
the determination of Lseq. For the simulation results of com-
paring the accuracies of type classifiers with different kernel
functions, please refer to Table 3, which indicates that a linear
kernel function is the best choice.

TABLE 3. Accuracies of type classifiers with different kernels.

Determination of Ntrain. Due to the complexity of data
collection for training of the type classifier, the amount of
modeling data should be as small as possible to shorten the
offline training phase. Therefore, we try to reduce the number
of samples in the training set. However, the number of sam-
ples in the testing set is still 31 to effectively verify the validity
of type classifier. The simulation results of comparing the
accuracies of type classifiers with different values of Ntrain
are listed in Table 4, which gives the optimum sample size of
Ntrain = 3.
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TABLE 4. Accuracies of Type Classifiers With Different Values of Ntrain.

IV. ADAPTIVE SMM CORRECTION STRATEGY
Either way, after recognizing STVF and COWC, the respec-
tive countermeasures in correcting SMM for STVF and
COWC will be carried out, as shown in Fig. 8. For STVF,
the STVF treating system can be enabled to eliminate its
effect on the process until the statistics return to their respec-
tive control limits. Once the STVF is gone, the accuracy of
SMM is naturally restored. For COWC, an adaptive model
correction approach that combines case-based correction and
JITL-based correction is proposed in this study.

FIGURE 8. Respective countermeasures in correcting SMM for STVF and
COWC.

A. ADAPTIVE MODEL CORRECTION APPROACH
FOR COWC
The proposed adaptive model correction approach mainly
consists of the following two parts: (1) case-based correction;
and (2) JITL-based correction, as shown in Fig. 8. The central
difference between the two correction approaches is whether
there are any cases in the HCB that are sufficiently similar to
the current WC.

Although GCLP is characterized by multiple WCs,
the number ofWCs that can be encountered is always limited.
According to field experience, there is a high probability
that the WCs that are the same or sufficiently similar to
the historical WCs will occur in the production process.

In this case, the process data, SMM and monitoring model
of historical WCs can therefore be effectively reused, and
thus the frequency of remodeling can be greatly reduced
to lighten the burden of calculation when COWC occurs.
In this approach, each WC is defined as a case, and an
HCB is essential for fulfilling case-based correction. A HCB
mainly contains historical process data, SMM and process
monitoring model under various WCs. In this study, there is
no such HCB at first, and it is constructed from scratch and
is constantly being updated with the emergence of newWCs.

Assume that the current HCB has Nc historical cases:

HCB =



(
Z1, f1, FPCA,1

)(
Z2, f2, FPCA,2

)
· · ·

· · ·

· · ·(
ZNc, fNc, FPCA,Nc

)


, (17)

and Dc = (xc, yc) is a data point of the current WC that has
just changed from the last WC, i.e., Dc is a data point whose
statistics have exceeded the control limits — the over-limit
point. The correlation-based similarity index Ji between the
current WC and the historical WCs in the HCB is represented
by the correlativity between their process data [24]:

Ji = λT 2
c,i + (1− λ)Qc,i, 0 ≤ λ ≤ 1, (18)

where T 2
c,i and Qc,i represent the T

2 statistic and Q statistic
when Dc is fed to the SMM and monitoring model of the ith
case (i = 1, 2, · · · ,Nc), as is briefly described as follows:

Dc = (xc, yc)→ fi⇒ (ec,i,1ec,i)→ FPCA,i⇒ (T 2
c,i,Qc,i).

(19)

If there is only one case in the HCB that satisfies the
criteria Jj ≤ Jlim, then the models of the jth case will
directly be used for soft measurement and SMMperformance
monitoring under the current WC. If more than one case
(Ns, for instance) satisfies the criteria, then the J values of
these cases that satisfy the criteria, Jk (k = 1, 2, · · · ,Ns), will
be compared to select a case with a minimum value of J , and
the SMM and monitoring model of this case will be utilized
in the current WC. The two situations described above are
obviously subject to case-based correction.

However, if there is no case in the HCB that satisfies the
criteria Ji ≤ Jlim, then a case whose process dataset has the
maximum similarity withDc will be selected, and correlation-
based JITL will be used to chose the data most similar to Dc
in the dataset of this case. The chosen data will be borrowed
to reconstruct the SMM of the current WC, and the SMM
will be updated with an MW (with a size of LMW data points)
by incorporating new data of the current WC and discarding
the borrowed data until all the borrowed data are discarded.
After a period of data collection, a combination of process
data, SMM and monitoring model under the current WC is
taken as a new case to update the HCB. A schematic diagram
of JITL-based correction is shown in Fig. 9.
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FIGURE 9. Schematic diagram of JITL-based correction.

B. SIMULATION STUDIES OF COUNTERMEASURES IN
CORRECTING SMM FOR COWC
Actually, there are two types of situations for COWC.
The first is that RGC-O, Csr , does not exceed a threshold
of 15 mg/kg when WC changes, i.e., Csr still meets the
production requirements. In such a situation, the field oper-
ators will not adjust their operating conditions. However,
the second is that Csr > 15, which means that Csr no longer
meets the production requirements. Thus, field operators will
adjust their operating conditions to reduce Csr until it falls
below the production index of 15 mg/kg. In this study, a data-
driven control scheme named data-driven optimal iterative
learning control (DDOILC) [33] will be used as a controller
to simulate the operating condition adjustment in the field.
Then, the simulation results of case-based correction and
JITL-based correction will be illustrated.

Firstly, case-based correction will be implemented when
there are cases that are sufficiently similar to the current WC
in the HCB (J < Jlim). The simulation results of case-based
correction are shown in Fig. 10 and Fig. 11 depending on

FIGURE 10. Simulation results of case-based correction under COWC with
Csr > 15.

FIGURE 11. Simulation results of case-based correction under COWC with
Csr < 15.

the type of COWC. As shown in Fig. 10, Csr changes from
approximately 14.8 mg/kg to 17.8 mg/kg when COWC with
Csr > 15 occurs (IGC-O: 600 to 750 mg/kg), and DDOILC
will intervene to adjust the operating conditions until Csr
meets the production requirements. Meanwhile, a sufficiently
similar case selected from the HCB is applied to the current
WC of 750 mg/kg. The simulation result indicates that both
the model error and Q statistic return to their control limits
after case-based correction. Due to the switch of monitoring
model, the control limit of Q statistic has also changed.
However, because of STVF, model error and Q statistic are
still going to drift gradually until STVF is detected, and then
STVF treatment system will be used to treat it. In Fig. 11,
both model error and Q statistic exceed their control limits
due to COWC with Csr < 15 (IGC-O: 900 to 700 mg/kg),
but Csr changes from approximately 14.8 to 12.2 mg/kg.
Thus, there is no adjustment of operating conditions in the
field, and only case-based correction is needed for the SMM.
The simulation results in Fig. 11 verify the validity of the
case-based correction strategy. Similarly, model error and
Q statistic will still drift away due to STVF, so the field
operators turns on STVF treatment system to eliminate its
effects when it is detected, as is shown in Fig. 11. Moreover,
we can also see that model error is still below its control limit
when STVF is detected (the Q statistic exceeds its control
limit), so the simulation results demonstrate the feasibility
of detecting STVF in advance and dealing with it before it
affects SMM performance.

Secondly, if there are no cases that are sufficiently similar
to the current WC in the HCB (J > Jlim), then JITL-based
correction will be utilized. This study first takes COWC
from 600 to 750 mg/kg as an example and then carries out
JITL-based corrections by respectively borrowing data from
various WCs, such as 600, 650, 680 and 700 mg/kg based
on correlation-based JITL, in which the MW size is defined
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FIGURE 12. Simulation results of JITL-based correction by borrowing data
from various WCs.

as LMW = 10. These simulation results are compared and
plotted in Fig. 12, which reveals that the best modeling effect
can be obtained by borrowing process data under a WC
of 700 mg/kg. Therefore, it is not feasible to reconstruct
the SMM by borrowing data from any one of the WCs in
the HCB, and it is necessary to select a WC whose dataset
has the greatest correlation to the existing data under the
current WC. Similarly, the simulation results of JITL-based
correction under two types of COWC are respectively shown
in Fig. 13 and Fig. 14. As shown in Fig. 13, Csr changes
from approximately 14.2 to 16.9 mg/kg when COWC
(IGC-O: 750 to 900 mg/kg) occurs, which activates the
DDOILC adjustment and JITL-based correction simultane-
ously. The model error and Q statistic return back to their
control limits after JITL-based correction. In this situation,
the monitoring model of the current new WC also needs to
be reestablished. When the MW is filled with process data
under the current new WC, the SMM and monitoring model

FIGURE 13. Simulation results of JITL-based correction under COWC with
Csr > 15.

FIGURE 14. Simulation results of JITL-based correction under COWC with
Csr < 15.

of this newWCwill be developed and applied to the following
soft measurement and process monitoring. The analysis for
simulations in Fig. 14 is similar to that in Fig. 11 except for
the different model correction approach, and it will not be
described in detail here.

Finally, comparative simulations are implemented to ver-
ify the advantages of proposed model correction strategy.
Compared with other situations, such as no correction (S-1),
remodeling by waiting for 10 sets of data under new
WC (S-2), and traditional MW correction by borrowing data
from last WC until the borrowed data are all discarded with
the collection of data under new WC (S-3), two simulation
experiments (please refer to the simulation conditions shown
in Fig. 11 and Fig. 13 ) are carried out. The simulation
results shown in Fig. 15 indicate the advantages of case-based
correction and JITL-based correction when COWC occurs.

FIGURE 15. Comparative simulation results of proposed model correction
strategy with other methods when COWC occurs.
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FIGURE 16. Schematic diagram of the overall framework of the proposed
coping strategy.

V. OVERALL FRAMEWORK OF THE PROPOSED COPING
STRATEGY FOR GCLP
Either the recognition of changes in the process feature or the
adaptive SMM correction approach belong to an overall
strategic framework proposed in this study, as is shown
in Fig. 16. The overall strategic framework is mainly divided
into an offline phase and online phase, which will be
described in detail below.

A. OFFLINE PHASE
In the offline phase, there are three main modules: the initial
modeling, building initial HCB and training type classifier.
The first and third modules have been described in detail in
the previous sections, and they will not be covered here.

It is assumed that there are no historical data and models
in the initial phase to form an HCB and that an initial HCB is
constructed from scratch during the offline phase. An initial
SMM, f1, and an initial MBPCA-based monitoring model,
FPCA,1, should be developed and applied to the current WC
(defined asWC-1) at the beginning of the coping strategy. The
combination of process data, f1, and FPCA,1 under WC-1 is
defined as Case 1. Once the change in the process feature is
detected, with the assistance of MBPCA-based monitoring,
the type of process change is offline recognized by artificially
observing the change trends in statistics. The STVF treatment
system can be activated to treat STVF. However, if COWC
occurs (from WC-1 to WC-2), and there must be no similar
case in the HCB at this time, JITL-based correction is the only

method to use. Then, the process data under WC-1 that are
most relevant to the current data under WC-2 are selected to
reconstruct the SMM, f2, which will be continually updated
by an MW method until the MW is fully filled with process
data under WC-2. After that, a monitoring model, FPCA,2,
is also constructed to monitor the current SMM performance
and process feature. The SMM f2 and monitoring model
FPCA,2, together with the process data under WC-2, are
defined as Case 2. Thus far, there have been two cases in the
HCB. The difference between the constructions of Case 2 and
the following Case 3 is that the similarity between WC-1 and
WC-3 should be evaluated to determine whether a case-based
correction method is available. If WC-3 is sufficiently similar
to WC-1, then a case-based correction is utilized, and the
models of WC-1 can be used in WC-3 while waiting for the
arrival of a new WC, i.e., WC-3 is not defined as a new
WC. If not, JITL-based correction can be activated, and a
combination of the SMM,monitoring model and process data
under WC-3 is defined as Case 3. The following construction
of cases in the initial HCB can be completed by repeating the
above steps in constructing Case 3. In this manner, the initial
HCB can be built during the offline phase.

B. ONLINE PHASE
After building an initial HCB and a type classifier, the online
phase is activated. The steps for the online phase are illus-
trated as follows:
Step 1: When a new offline measurement (xnew, y) is

obtained, it is first stored in the historical database, and then
the respondingmodel estimate ŷ is calculated to further obtain
(enew,1enew).
Step 2: (enew,1enew) is fed to the monitoring model to

calculate T 2
new and Qnew.

Step 3: If T 2
new ≤ T 2

lim, Qnew ≤ Qlim, go to Step 7;
otherwise, go to Step 4.
Step 4: Utilize the type classifier to recognize the change

type in the process feature. If STVF, go to Step 5. If COWC,
go to Step 6.
Step 5:The STVT treatment system is utilized to eliminate

its effects.
Step 6: The adaptive model correction strategy for COWC

is applied, go to Step 7.
Step 7: Utilize the current SMM for online estimation

until the next offline measurement arrives, and then go to
Step 1.

C. OVERALL SIMULATION STUDY OF THE
ONLINE PHASE
The previous simulation studies have individually verified the
effectiveness of various parts of the proposed coping strategy.
In this section, an overall simulation study of the online
phase in a simulated GCLP is performed, and the simulation
results are shown in Fig. 17 and Fig. 18, which proves the
effectiveness of the proposed coping strategy.
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FIGURE 17. Overall simulation results of RGC-O for the proposed coping
strategy.

FIGURE 18. Overall simulation results of SMM error and Q statistic for
the proposed coping strategy.

VI. CONCLUSION
In this study, a coping strategy that involves a type recognition
approach of changes in the process feature and an adaptive
model correction approach is proposed, not only to solve the
problem of model correction for COWC but also to guide
the field operators to deal with STVF at the theoretical and
practical levels. Firstly, the SMM performance and process
feature are monitored with an improvedMBPCA-based mon-
itoring to confirm whether the process feature has changed.
Secondly, an SVM-based type classifier is developed to
online recognize the type of change in the process feature.
Such a type recognition strategy has two main roles: the first
is to determine the occurrence of STVF and then provide
guidance in treating STVF for field operators; the second is
to recognize COWC and carry out an adaptive model correc-
tion strategy. Then, effective countermeasures for STVF and
COWC are respectively implemented. For STVF, the STVF
treatment system in the field can be enabled to eliminate
its negative effects. For COWC, an adaptive model correc-
tion strategy that is composed of case-based correction and
JITL-based correction is proposed. Lastly, simulation studies
are performed in a simulated GCLP to verify the validity of
proposed coping strategy.
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