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ABSTRACT Outlier detection is an important sub-field of data mining and studied intensively by researchers
in the past decades. For neighborhood-based outlier detection methods like KNN and LOF, different settings
in the number of neighbors (indicated by a parameter k) would greatly affect the model’s performance.
Thereby, there are some recent studies which focus on identifying the optimal value of k£ by analyzing
the global or local structure of the dataset. But, we argue that neighborhood-based outlier detection model
could obtain an improvement in performance without parameter tuning. In this paper, from a novel angle
of view, we adopt a uniform sampling strategy to generate a series of local proximity graphs and propose
a new adaptive outlier detection model named anomaly pattern score which does not rely on the k tuning.
In addition, the theoretical analysis of the effectiveness of the proposed model is conducted as well. The
extensive experiments on both synthetic and real-world datasets show that the proposed model outperforms

the state-of-the-art algorithms on most datasets.

INDEX TERMS Adaptive outlier detection, adaptive anomaly detection, neighborhood-based model,

Markov random walk, local proximity graph.

I. INTRODUCTION

Outlier detection as one of the key branch of data min-
ing is designed to automatically discover rare observations,
events or patterns hidden in the dataset, which are dissimilar
with the majority of the data [1]. It has been applied in
a wide range of domains such as finding opinion spam in
online review systems [2]-[4], detecting anomalies in video
surveillance [5], [6], revealing suspicious patterns in medical
images [7], [8], and many others.

Due to the broadly applications in both industry and
academia, a large number of anomaly detection meth-
ods have emerged in the past few decades. Model based
approaches [9], [10] construct a statistical model to represent
the majority of data objects, while the observations that does
not fit the model are considered as the outliers. This type of
methods become incapable when the patterns hidden in the
data change frequently. Cluster based approaches [11]-[14]
take the outliers as the byproducts of a clustering process.
However, as an unexpected result, these methods would
wrongly identify a set of outlier objects with higher simi-
larities as the normal ones since they will be grouped into
a cluster. Neighborhood based approaches utilize a spe-
cific proximity measure (e.g. distance, density etc.) on the

neighborhood around each object to design a scoring model,
which calculates an outlier score to discriminate different
types of objects. Methods under this schema attract the most
attention because of their simplicity and flexibility. Knox
and Ng [15] first modify the ANN framework to adapt to the
problem of outlier detection. The distance from a specific
object to its k-th nearest neighbor is directly used to rep-
resent its outlier-ness. This method is simple but efficient
to find the outliers in evenly distributed datasets, but it is
incapable to find an appropriate k value to capture the out-
liers in datasets with different densities. Breunig et al. [16]
proposed the Local Outlier Factor to solve this issue by
formulating a density definition on the neighborhood around
each object. An outlier object will be assigned with a LOF
score far larger than 1. In contrast, the objects lie in a evenly
distributed area will get a LOF score near 1, which indi-
cates their lower chance to be outlier. COF [17] utilized an
average chain distance to estimate the local density, which
solves the problem that an outlier object could not be distin-
guished if it is close to a sparsely distributed inlier cluster.
INFLO [18] uses a enlarged neighborhood definition includ-
ing the kNN and reverse kNN compared with the LOF model.
RDOS [19] extended the neighborhood definition with a
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FIGURE 1. A synthetic dataset with 750 inlier objects clustering in a circle and 35 outlier objects scattered around. The outlier score for each data
object is calculated by LOF algorithm with different values of k. The circles around the objects represent their outlier scores. The scatter plot of the
dataset is provided in Fig 1(a), and Fig. 1(b) shows the outlier scores computed with the parameter k set to 3. Fig. 1(c) shows the outlier scores
computed by using k set to 770. (a) A synthetic dataset. (b) k = 3. (c) k = 770.

shared neighborhood set, furthermore, it also adopts a kernel
density estimation to estimate the local density.

On the other hand, graph-based approaches are receiving
increasing attention, owing to their robust expressiveness for
various type of data [20], and their capabilities to effectively
capture the potential connections implicit in the dataset [21].
ODIN [22] determines the outlier-ness of an object by the
in-degree of its corresponding node in a directed unweighted
graph, which is constructed by using the k-nearest neighbors
of each object in the dataset. OutRank [23], [24] employs
a Markov random walk process on a fully connected graph.
After the stochastic process reaches equilibrium, the values in
the stationary vector are taken as the outlier scores. A small
score represents that the related object has a lower possibility
to be visited by the random walker, thus indicates it has a
higher chance to be an outlier. HCOD [25] uses a similar
strategy with OutRank, the difference between them is that
it iteratively split the graph by using the Fiedler vector of
the corresponding transition matrix, then the random walk
process is applied on each of the subgraphs, which are natu-
rally treated as the local information. LIGRW [26] explicitly
constructs an asymmetric directed weighted graph to capture
the local information, moreover two different types of restart
vector are devised to ensure that an outlier object would get
more weight to be visited by the random walker.

One of the major challenges for algorithms using local
information is the problem of how to choose an appropriate
neighbor size (usually denoted by a parameter k). The value
for the parameter k greatly affects the performance of the
related algorithms. We apply the LOF algorithm on a syn-
thetic dataset to demonstrate this issue. In Fig. 1, we could
see that with a small value setting to the parameter k, the algo-
rithm could not detect the outlier objects that form a cluster
(Fig. 1(b)). While if it is set too large, the outlier objects
near the inlier cluster could not get enough scores to be
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detected (Fig. 1(c)). The choice for the value of the parameter
k depends highly on the priori knowledge of the dataset, and
it is never an easy task for even an experienced user to choose
the appropriate value.

To solve this particular problem, Ha et al. [27] pro-
posed a new model (INS) using the instability factor to
calculate the outlier score for each object, which aims to
reduce the sensitivity of the algorithm to the parameter k.
Bhattacharya et al. [28] utilized the Daubechies wavelets to
search the optimal parameter. While Zhu ez al. [29], [30]
and Ning et al. [31] try to acquired the appropriate value of
the parameter k by exploring either the natural neighbor-
hood or stable state of the neighborhood.

To the best of our knowledge, currently, there has no
studies bringing the characteristics of the random walk based
graph models into account to determine the suitable local
information. Inspired by the different change patterns on the
probabilities for different types of objects being visited by
the random walker on local information graphs constructed
by various k values, in this study, we proposed an adaptive
outlier detection model named Anomaly Pattern Score (APS).
The proposed APS model constructs a set of local proximity
graphs from the original dataset by using a sequence of auto-
matically determined neighbor size. A Markov random walk
process is performed on the predefined graphs utilizing the
different aspects of local information to calculate the station-
ary distribution vector, which represents the visiting probabil-
ity for each object. Then the anomaly pattern score is deduced
from the multiple stationary vectors. Unlike those methods
that aiming to search for the optimal value of the parameter &,
the proposed APS model analyzes multiple local information
and utilizes the differences between them to characterize
the outlier-ness. Experimental results on both synthetic and
real-world datasets shows that the proposed model obtains
improvements simultaneously on the measures of ROC AUC
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and Precision against the state-of-the-art approaches. The
main contributions of this study could be summarized as
following:

1) We analyze the characteristics of the random walk
based approaches, and find out that the visiting proba-
bilities of different types of objects will show different
patterns as the proximity measure and the neighbor size
are chosen differently to construct the transition matrix.

2) We design a uniform sampling strategy to automat-
ically generate a sequence of values for construct-
ing various local proximity graphs. By applying the
Markov random walk process on multiple graphs,
we deduce the anomaly pattern score for each object
to discriminate the outliers from inlier objects, and
give the theoretical analysis on the effectiveness of the
proposed model as well.

3) We conduct extensive experiments on both synthetic
and real-world datasets (57 datasets in total) , from
which the results show that the proposed APS model
outperforms state-of-the-art approaches.

4) We analyze the flexibility of the proposed APS model
on five high-dimensional datasets. Moreover, the sta-
bility of the proposed model are also analyzed. It shows
that the experimental results are quite stable and not
sensitive to the number of local proximity graphs used
in the model, representing an outstanding advantage of
our model.

The rest of the paper is organized as follows: in section

2 we introduce the related works and some preliminaries.
Then the proposed APS model is described in section 3. The
corresponding algorithm is introduced in section 4. Empirical
study and analysis work are presented in section 5. The
conclusion is given in the last section.

Il. PRELIMINARIES AND RELATED WORKS

In this section, we bring the brief introduction about the
related conceptions in random walk based graph models,
which forms the basis of the proposed APS model. Further-
more, several algorithms that aim to search for the optimal
value for the parameter k are also introduced, which will be
used in the later section to compare with the proposed APS
model.

OutRank firstly proposed to use the stationary distribution
of a random walk process to represent the outlier-ness of
each object. It constructed a undirected fully connected graph
by computing the pairwise similarities of each object, then
a Markov random walk process is applied to calculate the
stationary distribution. The values in the stationary distribu-
tion vector are utilized to denote the visiting probabilities of
a random walker on each object. The lower probability that
an object is visited by the random walker indicates it has a
higher chance to be an outlier. This process is defined from
a global perspective, which can be thought as using all of the
neighbors to form the local information.

HCOD introduces the Fieldler vector to iteratively split the
original fully connected graph into a sequence of subgraphs,
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which are then used as the local information. Although in
theory, it does not depend on any parameters of neighbor size
to form the local information, in practical applications, it is
often difficult to achieve satisfying results.

LIGRW uses Heat Kernel to calculate the similarities
between each of the object, based on which a local informa-
tion graph is defined to capture the asymmetric relationships
between different types of data objects. Then a customized
random walk process along with two individual restart vector
is applied on the predefined local information graph to ensure
that the outlier objects could get more chance to be visited by
the random walker. Unlike OutRank and HCOD, in LIGRW,
a larger value in the stationary distribution vector indicates
the related object has a higher chance to be an outlier.

Given a dataset D with d features and n objects, D =
{x1,x0, -+ ,xpn},x; € RY, the adjacent matrix of the
k-neighborhood graph is defined as following:

w(l, 1) w(l,?2) w(l, n)
w2, 1) w(2,?2) w(2, n)

Akng = . : . (D
w(n., 1) w(n., 2) w(n., n)

where w(i, j) denotes the weight on the edge directed from
node j to i, which can be calculated as:

sim(i,j), 1f 3 € knn(i)

w(i, j) = (@)

0, otherwise
where sim(i, j) denotes the similarity between objects i and j.

A neighborhood graph describes the local information
around each object. With a Markov random walk process
defined on it, the LIGRW model utilized the values in sta-
tionary distribution of the stochastic process to represent the
outlier score for each object. That is to say, LIGRW combines
the local information with a global/local restart vector to
effectively detect the outliers implicit in the dataset. How-
ever, it still suffers the problem of choosing the appropriate
parameter of neighbor size. Without a proper value for the
parameter k, the performance of the model will deteriorate
drastically.

INS [27] was proposed to alleviate the sensitivity of param-
eter selection in neighborhood-based methods. It first defines
a center of gravity for a given neighborhood of a specific data
object. Then the change of gravity centers with different k
values are integrated to form a instability factor to represent
the outlier-ness for each object.

Definition 1: Gravity Center: the gravity center of object
i is defined as the centroid of the objects which belong to the
k-th nearest neighbors of i.

Given a parameter k, the instability factor of i is defined
as the sum of gravity center changes for the different neigh-
borhoods of object i by using a set of values with the range
from 1 to k. If the value of k is large enough, the performance
of the INS tends to be stable. In this way, the INS model
achieves the goal of alleviating the sensitivity to the parameter
of neighbor size. However, the algorithm still needs to set the
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FIGURE 2. Applying random walk based model on the synthetic dataset with different k settings, which is introduced in Fig. 1. Values
in the x-axis represent the ID of the objects, and the bars in the plot represent the outlier score for each of the object. Scores for the
outlier objects are denoted by the red bars, and the inlier objects are denoted by the blue bars. (a) k = 10. (b) k = 400. (c) k = 785.

parameter manually. Besides, it is hard for the algorithm to
find an appropriate parameter to detect both of the local and
global outliers simultaneously.

Different from the idea of INS, NOF [32] calculated the
Natural Outlier Factor by replacing the k-nearest neighbor-
hood in the typical LOF model with a nature influence
space, which equals to the union of the nearest neighborhood
and the reverse nearest neighborhood according to an auto-
matic determined Nature Value. Similarly, NaNE [30] used a
Nature Neighbor Eigenvalue to estimate the optimal k value,
which could be reached by calculating the stable searching
state. MNGApk [31] utilize a mutual neighbor graph based
approach to solve the neighbor size selection problem. Their
algorithm builds a collection of mutual neighbor graphs using
k values ranging from 1 to N-1. As the value of k increases
monotonically, when the Mutual Neighbor Graph reaches its
first stable state (i.e. the number of complete subgraphs does
not change), the corresponding value of k is considered as
the appropriate k. After the value is obtained, a neighbor-
based outlier detection algorithm can be applied to calculate
the outlier score.

All of the above methods focus on searching for the optimal
neighbor size by investigating the inner relationships of the
dataset, which is achieved by constructing the correspond-
ing models (e.g. Nature Value, Nature Eigenvalue, Mutual
Graph etc.). Unlike the aforementioned studies, our model
is free of k parameter and, as a result, not necessary to find
the optimal value of the k. Instead, we focus on using the
multiple proximity graphs to generate the model which can
also guarantee the performance of outlier detection.

lll. THE ANOMALY PATTERN SCORE MODEL

In this section, we first investigate the characteristics of the
random walk based approach, then we describe the details of
the proposed APS model. The effectiveness of the model is
also analyzed from a theoretical perspective.

A. THE PARTICULAR CHARACTERISTICS OF THE
RANDOM WALK BASED APPROACHES

Outlier detection methods based on random walk process are
obviously different from other types of methods, in which the
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structure of the graph related to the stochastic process directly
affects its stationary distribution. This means that, the method
used to construct the graph determines the limiting behavior
of random walk process, thus the outputting graphs could
have a direct impact on the probabilities of objects being
visited by the random walker.

The first major problem is which proximity measure
should used to characterize the interrelationships between
data objects. In some real-wold applications, different prox-
imity measures may be needed according to the specific
scenarios. For example, Euclidean distance can effectively
capture the differences between objects in most cases.
However, when the dimension of the dataset increases,
Kriegel et al. [33] have shown that the variances in angle
between high-dimensional feature vectors are more sensitive
than directly using Euclidean distances. In this case, cosine
similarity can achieve better results. In order to ensure the
effectiveness of the results, most random walk based methods
use a fixed proximity measure when constructing the transi-
tion matrix, which limits the flexibility of the method.

On the other hand, applying the random walk process on a
properly constructed local information graph can be expected
to get excelling results than directly using the global infor-
mation for the task of outlier detection [26]. Using different
neighbors when constructing the local information graphs can
have a significant impact on the outputting outlier scores.
We applied the LIGRW algorithm on the synthetic dataset
shown in Fig. 1(a), using different neighbor sizes. The results
are shown in Fig. 2.

From the results, we can see that as the value of k increases,
the scores of the inlier objects will increase, while the scores
of the outlier objects shows a trend of decline. According
to [26], when the local information graph is constructed with
a small k, in most cases, there are only inliers existing in
the neighborhood of a inlier object, while there may be
some inliers exist in the neighborhood of an outlier object.
In another word, for an inlier object, there may exists some
outlier objects would take it as their neighbors. On the con-
trary, there are few inlier objects would take an outlier object
as their neighbors. Therefore, the random walker could jump
from a inlier object to an outlier object. But when the random
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walker visits an outlier object, the probability that it jumps to
an outlier is much higher than that it jumps to an inlier. In this
case, outliers are visited at relatively high frequencies, their
corresponding scores in the stationary distribution increase
sharply (Fig. 2(a)).

In contrast, as the value of k increases, the connectiv-
ity in the local information graph begins to increase, espe-
cially the edges between the inlier objects. This results in
a higher chance for the random walker to wander between
inlier objects. Therefore, the scores of inlier objects in the
stationary distribution will increase together, meanwhile the
scores of outlier objects will decrease. And the increases
for the scores of the inlier objects will be constrained
(Figs. 2(b) and 2(c)).

Using a specified proximity measure, the visiting probabil-
ities of different types of objects demonstrate different change
patterns as the value of k changes, which constitutes the main
idea of our proposed APS model.

B. THE ANOMALY PATTERN SCORE

According to the definition of outlier detection [1], in most
real-world applications, the number of outliers is far smaller
than that of the inliers. Combined with the characteristic of
the visiting probability changes for different types of objects,
we could infer that when the probability of each inlier object
increases as the value of k changes, its growth rate will be
constrained due to the large number of inliers. Conversely,
when the visiting probabilities of most inlier objects begin
to decrease, those for the outlier objects will increase very
fast for their small number compared with the vast number of
inliers.

When applying the random walk process on graphs con-
structed with different neighbor sizes, the visiting proba-
bilities of different types of objects show different change
patterns. In the following we will describe how to model these
patterns in detail.

Definition 2: Local Proximity Graph: a local proximity
graph is weighted directed graph, which is constructed under
the assumption that if and only if object j lies in the neighbor-
hood of i, there is an edge directed from i to j.

It is worth noticing that the Local Proximity Graph can be
seen as a super-set of the local distance graph and the local
similarity graph. It does not depend on a specific proximity
measure, which guarantees its flexibility to various applica-
tion scenarios.

In order to characterize the changes of visiting probabilities
under different neighbor sizes, in this study, a uniform sam-
pling strategy is adopted to automatically generate a set of
values for the parameter k, which is formulated as following:

2, a=0

k, =
*T koot 121, 1<a<m
m

3

where m represents the number of proximity graphs,
0 < o < m, and n is the number of objects in the
datasets.
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As long as the number of graphs is specified, the sampling
process described above could help to automatically obtain m
values for the parameter of neighbor size, which are evenly
distributed across the sample spaces.

Let G, denotes the local proximity graph constructed by
using the parameter k., A, represents its adjacent matrix,
then the transition matrix can be calculated by normalizing
the adjacent matrix by column:

Ty =Ay-D7! )

where D is a diagonal matrix, and D(i, i) = ZJ- Ay, D).

Using local information may cause the proximity graph to
be split into several isolated subgraphs, which is known as the
dangling link problem. Therefore, a random walk with restart
process is adopted to solve this issue. The probability of the
object i being visited after the stochastic process reaching
equilibrium on proximity graph G, can be computed by using
the following iterative method:

1
P0G =y - PR V)Z To(i.)) - 200 (5
jex

where p((xt )(i) denotes the probability which is calculated for
object i at step ¢ of the process, y is a restart factor satisfying
0 < y < 1, and usually setting to the value of 0.15.
n represent the number of objects in the dataset.

Definition 3: Deviation Value: The deviation value of an
object on a specific local proximity graph is defined as the
difference between its corresponding value and the minimum
value in the stationary distribution of a random walk, which
is performed on the graph.

The deviation value of object i on proximity graph G, can
be computed as:

De (i) = pa (i) — min(pa(j)) (6)
jex

where py () denotes the i-th value in the stationary distribu-
tion vector of a random walk process, which is performed on
the local proximity graph G .

Definition 4: Anomaly Pattern Score: the anomaly pattern
score of an object is defined as the average of the deviation
values it obtains on all of the local proximity graphs.

The anomaly pattern score for object i on m automati-
cally generated local proximity graphs can be calculated as
following:

2 aem Dal)
ZjeX Zotem Da(i)

where X denotes the original dataset.

According to the above definition, the proposed APS
model is based on the local proximity graph, which ensures its
adaptiveness on different proximity measures. Furthermore,
it automatically generate a sequence of neighbor sizes instead
of specifying the parameter kK manually. The anomaly pattern
score of an object represents the average deviation values of
its visiting probabilities on various random walk processes,
which are applied on different local proximity graphs. In most

S@) = N
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case, as the number of outlier objects are much smaller than
the inlier objects, their anomaly pattern scores will be much
larger than the inlier objects. Therefore, an object with a
larger anomaly pattern score represents that its visiting proba-
bilities on different local proximity graphs change drastically,
which indicates it has a higher chance to be an outlier.

C. THEORETICAL ANALYSIS

Assumption 1: For most applications, compare to the sig-
nificant differences between the outlier objects, the similari-
ties between inlier objects are relatively large.

According to the above assumption, there would exists
high similarities between the inlier objects, each inlier object
will be visited by the random walker with an approximate
chance. Therefore, after the random walk process reaches
equilibrium, the visiting probabilities for the inlier objects
should roughly near the same values.

Theorem 1: For a given inlier object I and an outlier
object O, the proposed APS model will assign a relatively
larger anomaly pattern score to object O than I.

Proof: When the neighbor size k is set to a small
value u, there may exists an edge directed from / to O in
the local proximity graph G, . Since the similarities between
inlier objects is relative higher, the random walker could only
transit from another inlier object to node /. As aresult, the vis-
iting probability of I is smaller than the outlier object O,
which can be formulated as following:

pu(0) = pul) ®)

On the contrary, when a large value £ is set to the neighbor
size, there may also exist some edges directed from an outlier
node to a inlier node. Under this circumstance, once the
random walker jumps to a inlier node, it will wander between
inlier objects for a long time, thus the visiting probabilities
for the inlier objects will increase.

pe(0) = pe() €))

As mentioned above, the visiting probabilities for all inlier
objects should roughly reach the same value. Therefore, when
the visiting probabilities for the inlier objects increase, their
growth are constrained, which makes the following equation
hold:

pe) —pe(0) =< pp(0) — pu(l) (10)

According to the definition of the anomaly pattern score in
Eq. 7,

APS(0) — APS(I)
Y Du(0) XDl
T Y XDa() Yjex X Dali)
Y. Da(0) = X Dul)

ZjeX Z Dq U)
_ 2 [pa(0) = minpe()] = 3 [pa) — min pe(i)]
ZjeX Z Dy 0]
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2 [pa(0) — pa(D)]

ZjeX Zpa(j)
_ 2 pa(0) =3 pa(l)
T Yex 2Dal)
_ ppO)+ -+ pe(O)] — [pp(D) + - - + pe(D)]
- Yjex 2 Dali)

According to Eq. 10, we could infer that

pu(O) + -+ pe(0) = pu() + - - - + pe()

In addition, by the definition of deviation value in Eq. 6,

DY Du()=0

jex
Therefore,
APS(O) — APS(I) > 0

which indicates that the anomaly patter score for an outlier
object will be greater than or equal to that for an inlier
object. U

IV. ALGORITHM

Algorithm 1 APS Algorithm

Input: Dataset X € RV*9, B represents the restart proba-
bility of the Markov random walk process, default set to
0.15, m represents the number of graphs, default set to
50.

Output: S e RN: a vector contains the anomaly pattern
score for each object.

I: fora =1tomdo

2: calculate k, using Eq. 3.

3: calculate the adjacent matrix A, of the local proxim-
ity graph.

4: calculate the transition matrix 7, using Eq. 4

> calculate the visiting probability of each object

5: n<«[1/N, -, 1/N]

6: i< [1/N,---,1/N]

7: while not converged do

5 pepii+(=p) Taji
9: " <— W)p”—]

10: end while

> calculate the deviation value of each object
11: Dy (i) = p(i) — min(p)
12: end for

> calculate the outlier score

13: fori=1to N do

14: S (i) < calculating the anomaly pattern score using
Eq. 7.

15: end for

16: Return S
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FIGURE 3. Comparison on synthetic dataset 1. The top 35 objects with largest outlier scores are marked as outliers. (a) APS. (b) MNGApk(LOF).

(c) NaNE(LIGRW). (d) HCOD. (e) OutRank.

The proposed APS algorithm consists of two major steps.
The first step is to construct different local proximity graphs
using a specific proximity measure and various k values,
then apply a Markov random walk process on these graphs
to calculate the stationary visiting probability. Next, we cal-
culate the deviation values on each of the local proximity
graphs for every object. In the second step, we combine the
deviation values of each object on all of the graphs to obtain
the anomaly pattern scores.

For a specified local proximity graph, the time complex-
ity for calculating its stationary distribution is O(N?), thus,
the time complexity for the first major step is O(m - N?).
The second step has a time complexity of O(N). To sum
these up, the overall time complexity for the APS model is:
0(m~N2)—|—0(N) ~ O(m-N?). In addition, there is no sequen-
tial dependencies when calculating the deviation values on
different local proximity graphs, therefore, the proposed APS
algorithm could easily extended to the parallel paradigm to
accelerate the calculation process.

V. EMPIRICAL STUDY AND ANALYSIS

In this section, we conduct experiments on two synthetic
datasets and 57 real-world datasets to compare the proposed
APS model against four state-of-the-art algorithms. Then,
the adaptiveness of the APS model by using different prox-
imity measures, and its sensitivity to the number of the local
proximity graphs adopted are analyzed, respectively.

A. EXPERIMENT SETUP

Both MNGApk and NaNE are proposed to search for the
optimal value of neighbor size, which could be used to
combine with a neighborhood based algorithm. In the fol-
lowing experiments, we combine the result from MNGApk
with LOF, which is one of most distinguished neighborhood
based algorithm, to form a new method MNGApk(LOF).
The value returns from NaNE is chosen as the neighbor
size of the LIGRW algorithm, which can be seen as a rep-
resentative random walk based graph model. This consti-
tutes another new algorithm NaNE(LIGRW). With this setup,
neither MNGApk(LOF) nor NaNE(LIGRW) depend on a
user-specified parameter of neighbor size. In addition, HCOD
which automatically calculates the local information from the
original dataset, and OutRank which can be thought of as
using all of the neighbors of the object as local information,
are also being selected to compare the proposed APS model.
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It is worth noticing that both HCOD and OutRank take
the objects with smaller scores as outliers. For the sake of
comparison, we used a linear transformation to convert their
outlier scores so that a larger score indicates the related object
has a higher chance to be an outlier. Let S, be a vector
with the same size as the number of objects in the dataset,
which contains the original outlier score for each object.
E'O(i) denotes the original score of object i, then the converted
score S’n(i) can be calculated as following:

—_— (11)
max7 —minT

B. SYNTHETIC DATASETS

The first dataset is introduced in Fig. 1, which contains
a circular-shape dense cluster with 750 inlier objects, and
35 randomly distributed outlier objects. 21 outlier objects in
the left bottom corner form a sparse cluster. The aforemen-
tioned five algorithms are applied on the dataset without need
of any parameter to indicate the neighbor size. We select the
top 35 objects with largest scores as outliers. The results are
shown in Fig. 3. From the results, we can see that the pro-
posed APS as well as the MNGApk(LOF) algorithm correctly
detected all of the outlier objects. The OutRank algorithm
wrongly classifies two inlier objects in the upper left of the
cluster as outliers. Both NaNE(LIGRW) and HCOD do not
correctly detect the outlier objects within the sparse cluster.
Besides, some inliers in the middle of the inlier cluster are
also mistakenly recognized as outliers.

The second dataset consists of three inlier clusters, includ-
ing a spiral-shape cluster with 550 inlier objects and two
Gaussian clusters centered at (—10,10) and (10, —10), respec-
tively, each of which contains 100 inlier objects. There are
30 outlier objects distributed in a field of (—15,15), (—15,15).
We mark the top 30 objects with largest score as outliers,
the results are shown in Fig 4. From the results, we can
see that MNGApk(LOF) incorrectly marked the objects in
the tail of the spiral cluster as outliers. NaNE(LIGRW)
recognizes some objects within the inlier clusters as outliers
while ignoring some outlier objects close to inlier clusters.
HCOD improperly identifies a segment of the spiral cluster
consisting of inlier objects as outliers. OutRank makes the
same mistake with HCOD, and ignores the majority of the
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FIGURE 4. Comparison on synthetic dataset 2. The top 30 objects with largest outlier scores are marked as outliers. (a) APS. (b) MNGApk(LOF).

(c) NaNE(LIGRW). (d) HCOD. (e) OutRank.

true outliers. Compared with these algorithms, the proposed
APS model gets a better satisfying result. It basically identi-

TABLE 1. The characteristics of the selected 57 real-world datasets.

fied all Of the OllﬂiGI' ObjeCtS id Datasets # of records # of features # of outliers ratio of outliers
1 Blood-Transfusion-Easy 391 4 7 1.79 %
C. REAL-WORLD DATASETS © bt Tt tind | - . . e
The lack of widely accepted benchmark datasets to compare 4 Blood-Transfusion- Very-Hard 468 4 i 1795 %
. . 5 Breast-Cancer-Wisconsin-Easy 545 30 188 34.50 %
the performance of the emerging algorithms has long been 6 Breast-Cancer-Wisconsin-Medium w5 20 8 450%
: : o : : 7 Breast-Cancer-Wisconsin-Hard 362 30 5 1.38 %
an open issue in the field of outlier detection. Many of the S DTt o y o s
related studies either use some synthetic datasets, or select 9 Breast-Tissue-Medium 7 0 5 7.04%
. . N 10 Breast-Tissue-Hard 69 9 3 435 %
class(es) with a small number of samples as outliers in the Il BreastTissue-Very Hard st 0 s 1852 %
datasets to evaluate different anomaly detection algorithms. 12 Cardiotocography-Easy 1974 z 143 724%
X 13 Cardiotocography-Medium 1917 27 86 449 %
Emmott et al. [34] proposed a new method to systematically 14 Candiotocography-Hard 1879 2 a8 255%
construct the outlier datasets from the real-world datasets. o ey Vet e 7 o i
First, each dataset is converted into a binary problem. Then, 17 Ecoli-Medium 232 7 7 1164 %
. . . . . o 18 Ecoli-Hard 214 7 9 421 %
each outlier object is assigned with a difficulty score accord- 19 Ecoli-Very-Hard 219 7 14 639%
ing to the probability it belongs to the outlier class estimated 20 Glass-Easy 189 10 » 3968 %
. . h 21 Glass-Medium 134 10 20 14.93 %
by a kernel logistic regression process. Afterwards, each 2 GlassHard 1 10 3 256 %
. . . . 23 Glass-Very-Hard 116 10 2 1.72 %
dataset is transformed into several variants by combing all " Habm;yhsy 20 N . L5
of the inlier objects and the outlier objects under the same B HabemanMedum e : " B0
o 26 Haberman-Har 24 7.79 %
dlﬁlculz‘y level. 27 Haberman-Very-Hard 272 3 47 17.28 %
: _ 28 Tonosphere-Easy 261 33 36 13.79 %
In this study, we adopt 57 real-world datasets constructed 3 lomhere Modium n - « e
following the Emmott’s method, and the detail preprocessing 30 Tonosphere-Hard 28 3 3 132%
. . 31 Iris-Eas; 144 4 44 30.56 %
process refers to [35]. The characteristics of the datasets are o 0 . 5 1 06%
described in Table 1. ij if?*'j““‘“ , :gz : ; 122;
Normally, the unsuperv1sed outlier detection methods 35 Libras-Easy 331 9% 115 3474%
. . . . . 36 Libras-Medium 244 90 28 11.48 %
could return a collection of scores indicating the outlier-ness T Mliple-Feanes Easy 168 o0 p 1505,
of each object in the dataset. A small subset of the data objects 38 Multile-Features-Medium 1937 649 737 38.05%
. . . 39 Parkinsons-Easy 178 2 31 17.42 %
with larger outlier scores are commonly interested from the 20 Parkinsons Medium 160 » 3 13 %
user’s perspective. Let n be the number of outlier objects a :; ﬁ"ﬁ‘i’jﬁ"ﬁ‘;ﬁ ;: 282 131 f:;f;
user expect to get from the outlier detection algorithm, TP 43 Pima-Indians Medium 576 8 76 13.19%
- . . . 44 Pima-Indians-Hard 545 8 45 8.26 %
and FP denote the number of true outliers and true inliers in 5 P i oy Hard i . P o
the top-n objects with largest outlier scores, respectively. FN 4 SonarEasy 166 60 55 33.13%
. 47 Sonar-Medium 153 60 42 2745 %
represents the number of outliers whose scores are not ranked 48 Statlog-Vehicle-Easy 75 18 46 681%
: _ ot 49 Statlog-Vehicle-Medium 715 18 86 12.03 %
in top-7. The Precision, Recall and F1 can be calculated as % Sttt o . o e
followin g: 51 Statlog-Vehicle-Very-Hard 649 18 20 3.08%
52 Synthetic-Control-Chart-Easy 597 60 197 33.00 %
P .. _ TP R 11 _ TP 53 Synthetic-Control-Chart-Medium 403 60 3 0.74 %
recision = TP + FP ecall = TP + FN 54 Vertebral-Column-Hard 478 6 68 1423 %
.. 55 Vertebral-Column-Very-Hard 552 6 142 2572 %
Precision x Recall 56 Wine-Easy 172 13 65 37.79 %
Fl = 57 Wine-Medium 113 13 6 531%

" Precision + Recall
In particular, if # is set to the number of true outliers in the

dataset, the following relationship holds: n = TP+ FP. Under
this circumstance, we could infer that the values of Precision,
Recall and F1 will be the same.

Please note that, when the number of true outliers is
extremely small, the precision measure becomes less valuable
to evaluate the performance of the algorithm. The Receiver

VOLUME 7, 2019 16015



IEEE Access

C. Wang et al.: Applying APS for Outlier Detection

TABLE 2. The ROC AUC scores and Precision scores of the APS model against four other algorithms.

AUC Score Precision Score

id Datasets APS MNGApk(LOF) NaNE(LIGRW) OutRank HCOD APS MNGAPpk(LOF) NaNE(LIGRW) OutRank HCOD
1 Blood-Transfusion-Easy 0.980 0.945 0.623 0.859 0.056 0.286 0.286 0.143 0.000 0.000
2 Blood-Transfusion-Medium 0.804 0.747 0.692 0.836 0.188 0.444 0.444 0.222 0.000 0.000
3 Blood-Transfusion-Hard 0.547 0.503 0.470 0.719 0.600 0.122 0.061 0.061 0.000 0.020
4 Blood-Transfusion-Very-Hard 0.452 0.482 0.438 0.469 0.523 0.167 0.107 0.179 0.131 0.000
5 Breast-Cancer-Wisconsin-Easy 0.893 0.677 0.619 0.735 0.077 0.755 0.527 0431 0.564 0.000
6 Breast-Cancer-Wisconsin-Medium 0.860 0.939 0.791 0.868 0.127 0.500 0.667 0.333 0.444 0.000
7 Breast-Cancer-Wisconsin-Hard 0.791 0.923 0.540 0.897 0.087 0.000 0.000 0.000 0.000 0.000
8 Breast-Tissue-Easy 0.989 0.840 0.757 0.501 0.485 0.882 0.647 0471 0.059 0.000
9 Breast-Tissue-Medium 0.824 0.691 0.770 0.382 0.485 0.400 0.200 0.200 0.000 0.000
10 Breast-Tissue-Hard 0.227 0.374 0.417 0333 0.485 0.000 0.000 0.000 0.000 0.000
11 Breast-Tissue-Very-Hard 0.376 0.444 0.510 0.383 0.485 0.000 0.200 0.133 0.000 0.000
12 Cardiotocography-Easy 0.747 0.566 0.548 0.685 0.481 0.063 0.105 0.098 0.000 0.000
13 Cardiotocography-Medium 0.753 0.621 0.625 0.677 0.483 0.105 0.070 0.140 0.058 0.000
14 Cardiotocography-Hard 0.631 0.516 0.555 0.644 0.591 0.021 0.000 0.000 0.000 0.021
15 Cardiotocography-Very-Hard 0.662 0.558 0.538 0.641 0.591 0.000 0.000 0.000 0.000 0.056
16 Ecoli-Easy 0.753 0.482 0.556 0.729 0.528 0432 0.284 0.358 0.494 0.321
17 Ecoli-Medium 0.773 0.644 0.695 0.731 0.455 0.259 0.222 0.296 0.222 0.185
18 Ecoli-Hard 0.793 0.538 0.528 0.573 0.132 0.111 0.000 0.000 0.000 0.000
19 Ecoli-Very-Hard 0.617 0.339 0.424 0.573 0.352 0.000 0.000 0.000 0.000 0.071
20 0.594 0.505 0.475 0.765 0.646 0.360 0.400 0.360 0.547 0.520
21 Glass-Medium 0.961 0.731 0.528 0.589 0.291 0.650 0.400 0.300 0.300 0.100
22 Glass-Hard 0.959 0.988 0.652 0.322 0.763 0.667 0.667 0.333 0.000 0.000
23 Glass-Very-Hard 0.991 1.000 0.746 0.294 0.833 0.500 1.000 0.000 0.000 0.500
24 Haberman-Easy 0.953 0.843 0.780 0.863 0.713 0.000 0.000 0.000 0.000 0.250
25 Haberman-Medium 0.873 0.884 0.594 0.780 0.538 0.364 0.182 0.273 0.455 0.000
26 Haberman-Hard 0.883 0.844 0.631 0.645 0.783 0.368 0.158 0.105 0.263 0.053
27 Haberman-Very-Hard 0.458 0.490 0.505 0.458 0.439 0.106 0.191 0.170 0.149 0.043
28 Tonosphere-Easy 0.716 0.850 0.719 0.867 0.605 0.250 0.389 0.500 0.444 0.250
29 Tonosphere-Medium 0.852 0.771 0.919 0.897 0475 0.593 0.628 0.767 0.802 0.267
30 Tonosphere-Hard 0.739 0.573 0.757 0.545 0.049 0.000 0.000 0.000 0.000 0.000
31 Iris-Easy 0.320 0.437 0.462 0.001 0.543 0.182 0.227 0.295 0.000 0.295
32 Iris-Medium 0.735 0.815 0.932 0.120 0.555 0.000 0.000 0.500 0.000 0.000
33 Iris-Hard 0.575 0.650 0.625 0.095 0.450 0.000 0.000 0.000 0.000 0.000
34 Iris-Very-Hard 0.345 0.425 0.670 0.180 0.800 0.000 0.000 0.000 0.000 0.000
35 Libras-Easy 0.513 0.443 0.440 0.517 0.481 0.365 0.287 0.313 0.400 0.348
36 Libras-Medium 0.454 0.516 0.689 0.420 0.484 0.071 0.143 0.143 0.036 0.000
37 Multiple-Features-Easy 0.761 0.535 0.359 0.068 0516 0.095 0.143 0.000 0.032 1.000
38 Multiple-Features-Medium 0.494 0.471 0.500 0.188 0.499 0.292 0.372 0.395 0.096 0.000
39 Parkinsons-Easy 0.739 0.686 0.492 0.727 0.459 0.290 0.161 0.161 0.226 0.000
40 Parkinsons-Medium 0.460 0.582 0.543 0.549 0.386 0.000 0.077 0.077 0.077 0.077
41 Parkinsons-Hard 0.410 0.509 0.731 0.497 0.486 0.000 0.000 0.000 0.000 0.250
42 Pima-Indians-Easy 0.800 0.770 0.597 0.635 0.187 0.416 0.307 0.257 0.297 0.000
43 Pima-Indians-Medium 0.689 0.727 0.557 0.633 0.277 0.276 0.250 0.211 0.197 0.000
44 Pima-Indians-Hard 0.530 0.449 0.395 0.538 0.389 0.000 0.044 0.022 0.022 0.022
45 Pima-Indians-Very-Hard 0.460 0.439 0.507 0.518 0.420 0.043 0.022 0.087 0.043 0.000
46 Sonar-Easy 0.483 0.499 0.413 0.518 0.425 0.255 0.273 0.291 0.309 0.255
47 Sonar-Medium 0.671 0.672 0.778 0.652 0.346 0.405 0.381 0.548 0.310 0.119
48 Statlog-Vehicle-Easy 0.735 0.350 0.473 0.659 0.299 0.000 0.000 0.065 0.000 0.000
49 Statlog-Vehicle-Medium 0.629 0.483 0.516 0.520 0.289 0.070 0.116 0.128 0.047 0.000
50 Statlog-Vehicle-Hard 0.565 0.486 0.525 0.480 0.359 0.015 0.077 0.092 0.015 0.000
51 Statlog-Vehicle-Very-Hard 0.534 0.434 0.407 0.483 0.442 0.000 0.000 0.000 0.000 0.000
52 Synthetic-Control-Chart-Easy 0.867 0.626 0.595 0.761 0.220 0.680 0.518 0.416 0.619 0.051
53 Synthetic-Control-Chart-Medium 0.886 0.921 0.795 0.588 0.380 0.000 0.333 0.000 0.000 0.000
54 Vertebral-Column-Hard 0.747 0.553 0.336 0.627 0.176 0.206 0.191 0.000 0.279 0.000
55 Vertebral-Column-Very-Hard 0.570 0.538 0.408 0513 0.366 0.310 0.303 0.007 0.289 0.000
56 Wine-Easy 0.311 0.414 0.414 0.521 0.302 0.169 0.277 0.323 0.400 0.015
57 Wine-Medium 0.609 0.614 0.745 0.642 0.369 0.000 0.167 0.333 0.500 0.000

Average 0.673 0.620 0.584 0.560 0.425 0.220 0.219 0.185 0.160 0.089

Operating Characteristics (ROC) curves capture the trade-off
between true positive rate and false positive rate by using
different threshold. The Area Under Curve (AUC) summarize
the ROC curve into a single value by calculating the area
under the ROC curve, which ranges from 0 to 1. An algorithm
with a larger ROC AUC score indicates that it has a higher
probability to rank the true outliers before the inlier objects,
hence is more preferable.

To better demonstrate the performance of the proposed
model, in this study, both of the Precision and ROC AUC
score measures are utilized to evaluate the detection result.
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Particularly, the value of  is set to the number of true outliers
when calculating the Precision.

For the proposed APS model, the Euclidean distance is
adopted to generate the proximity graph on each of the
dataset. For the number of the proximity graphs, we use
50 for all datasets. The rest of the algorithms use their default
settings. The ROC AUC scores and Precision scores on all of
the 57 datasets are shown in Table 2.

Taking the dataset Glass-Easy for example, we select the
top 75 objects with largest outlier scores as the outlier objects,
then the corresponding Precision score (equals to the Recall
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FIGURE 5. Comparison of the number of winners for the algorithms in outlier detection on all of the real-world datasets. The values in each bar
indicate the number of datasets when the corresponding algorithm outperforms the others. (a) Comparison by ROC AUC. (b) Comparison by Precision.

and F1 measure) and ROC AUC score are computed, sepa-
rately. From Table 2, we can see that, generally, the perfor-
mance of each algorithm decreases on dataset with a higher
difficulty level. whether ROC AUC or Precision is used,
there is no algorithm can outperform the others on all of the
57 datasets. However, the proposed APS model has the largest
average ROC AUC score and Precision score on all datasets,
which means that the it has better average performance than
the compared algorithms. In addition, on the measure of
ROC AUC, the proposed APS model achieves the best on 24
(42.11%) datasets. And on the measure of Precision, it out-
performs the compared algorithms on 20 (38.6%) datasets,
which is demonstrated in Fig. 5.

D. THE EFFECT OF THE PROXIMITY MEASURE
Many graph-based outlier detection algorithms rely on a
specific proximity measure to construct the neighborhood
graph. Taken OutRank for example, it either uses cosine
similarity or uses the RBF kernel to calculate the similarities
between the objects. Once the proximity measure changes,
the performance of the algorithm could not be guaranteed.
On the contrary, the proposed APS model does not directly
use the visiting probability of the random walker as the outlier
score. Instead, the visiting probabilities obtained on different
graphs are combined together to calculate an anomaly pattern
score, which indicates the outlier-ness of the related object.
Therefore, the proposed APS model can accommodate differ-
ent proximity measures, which can be freely chosen accord-
ing to the specific features of the datasets. We provide an
example to illustrate the above idea. It is recommended by
Kriegel et al. [33] that using the variances of angles between
the feature vectors in high dimensional datasets could achieve
a better results than the distance criteria. We equip the pro-
posed APS model with different proximity measures, and
apply it on several real-world datasets to demonstrate its
adaptiveness.
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The original KDDCup99 dataset! contains different types
of network attacks, which has 60,839 inlier objects, and
246 objects belong to the following attacks: buffer_overflow,
ftp_write, imap, load_module, multihop, nmap, perl, phf,
pod, rootkit, and teardrop are taken as outliers. After
using One Hot Encoding to map the categorical features
into numerical ones, there are 79 features for each of
the data object. We randomly selected 1000 inlier objects,
and some random outlier objects to construct five differ-
ent datasets. The characteristics of the datasets are shown
in Table. 3.

TABLE 3. The characteristics of the KDDCup99 datasets.

id Datasets # of records # of features # of outliers ratio of outliers

1 KDDCup99_v1 1060 79 60 5.66 %
2 KDDCup99_v2 1030 79 30 291 %
3 KDDCup99_v3 1040 79 40 3.85%
4 KDDCup99_v4 1150 79 150 13.04 %
5 KDDCup99_v5 1070 79 70 6.54 %

We constructed the local proximity graphs using Euclidean
distance and Cosine similarity, separately. Then we apply
the proposed APS model. The results are shown in Fig. 6.
From the results, we can see that on the high-dimensional
KDDCup dataset, the performance of the APS model con-
structed by using cosine similarity outperforms its coun-
terparts using the Euclidean distance by both of the ROC
AUC measure and the Precision measure. This suggests that
the proposed APS model has the flexibility to use differ-
ent proximity measures when facing datasets with different
characteristics.

E. THE EFFECT OF GRAPH COUNT
Another important parameter in the proposed APS model is
the number of proximity graphs it uses to capture the change

1 http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
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FIGURE 7. Comparison of the APS model using various number of proximity graph on several real-world datasets. (a) ROC AUC Score.

(b) Precision Score.

pattern for each of the object. In this subsection, we conduct
experiments to analyze the effect of this parameter. Without
lose of generality, we randomly selected eight real-world
datasets with different difficulty levels. A sequence of values
[5, 10, 20, 30, 50, 100, 150, 200, 300, 400, 500, 600] are
utilized to represent the number of proximity graphs used in
the APS model, respectively. The results are demonstrated
in Fig. 7.

From the results, we can see that as the number of
graphs increases, the performance of the algorithm begins
to increase. When this value reaches up to 50 or so,
the performance tends to be stable. Moreover, the trend
nearly holds for all tested datasets. This means that our
proposed APS model is not sensitive to the number of
graphs.

16018

VI. CONCLUSION

After analyze the particular characteristics of the random
walk based graph models, in this study, we proposed a
new outlier detection model named Anomaly Pattern Score.
Unlike the former methods, it does not depend on a spe-
cific proximity measure, which ensures its adaptiveness on
different application scenarios. Moreover, the proposed APS
model does not rely on a user-specified parameter of neighbor
size, which is achieved by applying multiple random walk
processes on various local proximity graphs. Besides, it is not
sensitive to the number of graphs adopted. Extensive exper-
iments were conducted on synthetic and real-world datasets,
and the results suggested that the proposed APS model out-
performs the state-of-the-art algorithms by the measures of
average ROC AUC score and Precision score.
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