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ABSTRACT Fault monitoring of multiphase batch process is a difficult problem in multivariate statistical
process monitoring. It needs to consider not only the process monitoring under stable mode, but also the
transition mode with strong dynamic nonlinearity. Since the data has different correlations under different
operating modes, it is necessary to establish different monitoring models for each process mode, especially
the transition process between stable modes. The biggest feature is the dynamic characteristics of the
variables. This feature can be better reflected in this transition using a time-varying covariance instead of
a fixed covariance during the transition phase. In this paper, a new strategy for batch process sub-phase
partition and process monitoring is proposed. Firstly, the three-dimensional data matrix is expanded into a
new two-dimensional data according to the time slice expansion strategy. Secondly, the data of each time
slice is transformed by Kernel Entropy Component Analysis (KECA), and then the production process is
divided into phases according to the spatial angle of the kernel entropy. The production operation process
is divided into a stable phase and a transition phase, and monitoring models are respectively established to
monitor the production process; Finally, the application of the penicillin fermentation simulation platform
shows that the Sub-MKECA phase partition results can reflect the mechanism of the batch process well,
and the fault monitoring of the process shows that it can detect faults in time and accurately, and has high
practicality value.

INDEX TERMS Batch process, fault monitoring, fault diagnosis, phase partition, kernel entropy component
analysis.

I. INTRODUCTION
Multiphase is the inherent characteristic of batch process with
not only their specific, unique operating modes and potential
process characteristics [1]–[5], but also different key pro-
cess variables and specific control objectives [6]–[10]. Tra-
ditional modeling methods such as MPCA [11], MPLS [12],
MICA [13], and their extension algorithms model all data
from a complete batch as a whole [14]–[19]. This idea of
whole modeling uses the mean and variance information of
all process data [20]–[24], describes the historical average
trajectory of the process operation, and is susceptible to such
effects as noise and outliers. When applied to process mon-
itoring, it tends to produces a high miss alarm rate and false
alarm rate. The main reason is that the whole model neglects
the multiphase characteristics of batch process. Because the
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mean and variance of process variables in batch process are
significantly different in each phase, it is difficult to reveal the
change of process variables correlation by using themean and
variance of the whole modeling idea, and cannot be directly
applied to batch process monitoring or fault diagnosis with
multiphase characteristics. In other words, using the whole
model to describe the whole production process, will make
its overall control limit in the monitoring of each stage, either
too loose or too strict, leading to a large number of miss
alarms. In either case, it can lead to misjudgment of process
monitoring and even complete failure of process monitor-
ing. At present, a lot of work has been done by domestic
and foreign scholars on the monitoring of multiphase batch
processes [6], [25]. For example, Lu et al. [26] used the
load matrix decomposed by PCA to divide the batch pro-
cess into multiple operation phase and establish sub-models
of each phase for process monitoring and achieved good
results. However, the above methods are hard partitioning
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methods, which cannot reflect the characteristics of the tran-
sition phase, so that the characteristic changes of the tran-
sition process in the adjacent phase have a great influence
on the detection result. This is because the transition process
between phase and phase is not a mainstream mechanism
process, but it is a ubiquitous phenomenon and an important
process behavior compared to the stable phase as the main
operating mode. This transitional phase appears as a dynamic
gradual trend, not only in the variation of the batch process
variables, but also in the changes in the correlation of the
batch process variables. Because of the instability of batch
production process in the transition stage, the production
process in the transition stage is vulnerable to external inter-
ference and deviates from the normal process trajectory, thus
affecting the final product quality and production process
safety. Therefore, in order to ensure the whole production
process, safe and stable, fault monitoring of the transition
process is of great significance. In view of the unique process
mechanism characteristics of the transition phase compared
with the stable mode, it is necessary to identify the transition
region for modeling and analysis independent of the stable
stage. To this end, Zhao et al. [27] proposed a K-means-
based sub-phase partitioning and process monitoring method
for batch process. This method introduces fuzzy membership
degree as the weight coefficient of two sub-phase models
adjacent to the transition mode based on the stable sub-phase
partitioning. The characteristics of the adjacent two stable
sub-phases are integrated to approximate the characteristics
of the transition sub-phase, and the monitoring accuracy of
the model is improved. However, the above method only
uses PCA to analyze the data and describe the production
process with the load matrix without discarding any infor-
mation. The load matrix is used to divide the phase, but if
the load matrix contains outliers and noise, it will inevitably
affect the correctness of the phase partition. For this reason,
Wang et al. [28] proposed a two-step phase partitioning
method. First, PCA was used to roughly divide the batch
process according to the number of principal components
after time slice data matrix analysis. Then, in each rough
stage, the batch process was subdivided according to the
change of process variables correlation. After two stages,
the number of principal components in the same stage is the
same and the variation direction of variables is similar. But
in the transitional stage, the whole monitoring model is used,
that is, a whole PCA model is used to monitor the process in
the transitional stage, without considering the dynamic and
non-linear characteristics of the transitional process, so its
monitoring effect in the transitional stage is not good. Qi [29]
introduced the concept of 0∼1 fuzzy membership degree
to monitor the non-linear data in the transition stage. After
dividing the stages with FCM, it proposed to establish PCA
monitoring model in the stable stage and KPCA monitoring
in the transition stage. The monitoring model in the transition
stage fully considered the non-linear characteristics of the
batch process and achieved successful application. However,
FCM needs to input the number of clusters in advance when

dividing the stages, which requires knowing the number of
stages in advance. However, the actual batch process may not
always know the number of stages in advance, which affects
its application to unknown processes. Through the above
analysis, the above methods have the following two short-
comingsčž1) The input of clustering algorithm is the load
matrix decomposed by MPCA, and MPCA is a linearization
method which cannot deal with the non-linear information of
batch process. The decomposed load matrix will inevitably
lose the non-linear characteristics, and the non-linearity is
the inherent characteristics of batch process, resulting in the
loss of non-linear information; 2) K-means or FCM clus-
tering algorithm needs to specify the number of phases in
advance. Once the number of phases is not selected properly,
the result of partitioning will not conform to the real structure
of the data set, that is, the actual operation mechanism of
the process. Its monitoring of the process will cause a lot of
false alarms and missed alarms. In order to solve the above
problems, an integrated method based on MKECA similarity
phase partition and monitoring is proposed for fault moni-
toring in batch process. The method maps three-dimensional
historical data into high-dimensional kernel entropy space
according to time slice expansion to calculate their similarity.
Finally, the production process is divided into stable phase
and transition phase. In each sub-phase, a monitoring model
is constructed to monitor the batch process. When abnormal
conditions are released, the time contribution graph method
is used to diagnose the fault.

II. PHASE PARTITION OF SIMILARITY SPECTRUM
CLUSTERING BASED ON KECA
A. SPECTRAL CLUSTERING OF KECA
KECA [30]–[34] clustering belongs to spectral clustering.
The process of clustering depends entirely on the difference
of features between samples. After the data is mapped to the
high-dimensional kernel entropy space by KECA, the ori-
gins of different clusters and nuclear entropy feature space
form different angles, and maintain a certain angle distance
between different clusters. It is found that KECA clustering
is based on the divergence of kernel entropy. The divergence
of KECA clustering is studied and two corresponding diver-
gences are summarized.

1) INTEGRATED SQUARED ERROR DIVERGENCE, ISE
The Integrated Squared Error Divergence can be esti-
mated by Parzen window. The definition of ISE is given
here.

DISE (pi, pj) =
∫ [

pi(x)− pj(x)
]2dx

= V (pi)− 2
∫
pi(x)pj(x)dx′ + V (pj) (1)

Here when pi(x) = pj(x), DISE (pi, pj) ∈ [0,∞], Replace

pi(x), and pj(x), with
_pi(x) and

_pj(x) respectively. Then the
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estimated value of ISE is obtained:

DISE (
_pi,

_pj) =
1

N 2
i

∑
xi∈D

∑
xi′∈D

kσ (xi, xi′ )

= −
1

NiNj

∑
xi∈D

∑
xj∈D

kσ (xi, xj)

+
1

N 2
i

∑
xj∈D

∑
xj′∈D

kσ (xj, xj′ )

=
∥∥mi −mj

∥∥2 (2)

Here, mi =
1
Ni

∑
xi∈D

φ (xi) and mj =
1
Ni

∑
xj∈D

φ
(
xj
)
are the

average vectors of the clusters corresponding to the data
of the density _pi(x) and

_pj(x) in the kernel feature space,
respectively.

The ISE can be extended to:

DISE
(
_p1, . . . ,

_pC
)
=

C−1∑
i=1

∑
j>i

∫ [
pi(x)− pj(x)

]2dx
=

C−1∑
i=1

∑
j>i

∥∥mi −mj
∥∥2 (3)

2) CAUCHY-SCHWARZ DIVERGENCE AND MEAN VECTOR
The probability density function of the i-th cluster pi(x) and
the probability density function of the population p(x) are
known. Then the CS divergence can be defined as:

DCS (pi, pj) = − log

∫
pi(x)pj(x)dx√∫

p2i (x)dx
∫
p2j (x)dx

(4)

DCS (pi, pj) = −log
∫
pi(x)pj(x)dx

−
1
2

_

H (pi)−
1
2

_

H
(
pj
)

(5)

Here p̂(x) =
1
N

∑
xi∈D

kσ (x, xi), then _pi(x) =

1
Ni

∑
xi∈D

kσ (x, xi) and
_pj(x) =

1
Nj

∑
xi∈D

kσ
(
x, xj

)
. The specific

form is given as (6) shown at the bottom of this page.
The divergence estimate of VCS has the following corre-

spondence with DCS . The specific form is as follows:

DCS (pi, pj) = −logVCS
(
_pi,

_pj
)

= −logcos6
(
mi,mj

)
(7)

Here, mi =
1
Ni

∑
xi∈D

φ (xi) and mj =
1
Ni

∑
xj∈D

φ
(
xj
)
are

the average vectors of the clusters corresponding to the data
of the density _pi(x) and

_pj(x) in the kernel feature space,
respectively. The CS divergence can be extended to C clusters
by Parzen window density estimation. The specific form is as
follows:

DCS (p1, . . . , pC ) = −log
1
κ

C−1∑
i=1

∑
j>i

∫
pi(x)pj(x)dx√∫

p2i (x)dx
∫
p2j (x)dx

(8)

From the above derivation, it can be concluded that the
CS divergence is mainly measured by the cosine of the angle
formed by these average vectors, and the specific form is as
follows:

max
D1,...,DC

DCS (p1, . . . , pC )

= max
D1,...,DC

−log
1
κ

C−1∑
i=1

∑
j>i

∫
pi(x)pj(x)dx√∫

p2i (x)dx
∫
p2j (x)dx

(9)

Figure 1 shows the CS divergence and ISE divergence
based on the Parzen window Renyi entropy estimation in the
kernel feature space. m1, m2 represent two mean vectors,
CS divergence represents the angle between the two mean
vectors, ISE divergence represents the Euclidean distance
between the two mean vectors. Clustering can be represented

VCS
(
_pi,

_pj
)
=

1
NiNj

∑
xi∈D

∑
xi∈D

kσ (xi, xj)√
1
N 2
i

∑
xi∈D

∑
xi′∈D

kσ (xi, xi′ ) 1
N 2
j

∑
xj∈D

∑
xj′∈D

kσ (xj, xj′ )

=

〈
1
Ni

∑
xi∈D

φ (xi)

〉 〈
1
Ni

∑
xj∈D

φ
(
xj
)〉

√√√√〈 1
Ni

∑
xi∈D

φ (xi), 1
Ni

∑
xi′∈D

φ (xi′)

〉 〈
1
Ni

∑
xj∈D

φ
(
xj
)
, 1
Ni

∑
xj′∈D

φ
(
xj′
)〉

=

〈
mi,mj

〉√
〈mi,mi〉

〈
mj,mj

〉 = cos 6
(
mi,mj

)
(6)
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FIGURE 1. CS divergence, ISE divergence and mean vectors in Mercer
kernel feature space.

by an angle-based value function as follows:

J (C1, . . . ,CC ) =
C∑
i=1

Ni cos6
(
mi,mj

)
(10)

B. KECA-BASED SIMILARITY INDEX
Since the nonlinear mapping function φ is unknown at the
time of kernel mapping, the load matrix m of nonlinear data
in the kernel space cannot be explicitly expressed, which
means that the clustering algorithm such as k-means cannot
be directly applied for time division. Although the loadmatrix
m cannot be explicitly expressed, the angle and distance of
the load matrix can be explicitly expressed by introducing
the kernel matrix. Therefore, this section derives the kernel
KECA similarity based on the angle definition. The calcula-
tion formula of the similarity of the load matrix in the kernel
entropy space is derived below. According to the cosine
formula and the inner product definition, the cosine between
the j-th column vectors of the load matrices M1 andM2 is:

cos(m1
j ,m

2
j ) =

〈
m1
j ,m

2
j

〉
√

N∑
n=1

(m1
nj)

2

√
N∑
n=1

(m2
nj)

2

(11)

The angle betweenM1 andM2 can be defined as:

θ1,2 =
∑A

j=1
ωjθj (j = 1, 2, . . . ,A) (12)

where ωj is the weighting factor and θj is the angle between
the j-th column vector ofM1 andM2, defined as follows:

θj =


180arc cos(m1

j ,m
2
j )

π
cos(m1

j ,m
2
j ) > 0

180−
180arc cos(m1

j ,m
2
j )

π
cos(m1

j ,m
2
j ) > 0

(13)

The similarity indicator according to the angle can be
defined as:

SKECA−Angle = (cos(θ1,2))2 (14)

It is known from the above definition, SKECA−Angle ∈ [0, 1].

C. SUB-PHASE PARTITION BASED ON KECA SIMILARITY
Suppose the modeling data of a batch process is a three-
dimensional array X (I × J × K ), and the three dimensions
represent the number of batch operations (i =1, . . . , I ),
the number of process variables (j = 1, . . . , J), and sam-
pling time (k =1,. . . ,K ). By cutting the data X (I × J × K )
vertically along the time direction, K two-dimensional data
slices Xk (I × J) can be obtained, which consist of all batch
process measurements at the k-th sampling instant, called the
‘‘time slice matrix’’. Using the KECA method to extract the
nonlinear characteristics of each time slice matrix, the load
matrix Vk characterizes the correlation information between
the process variables of K sampling moments, and becomes
the basic data unit of the time division. The detailed steps of
the time division algorithm are as follows:

a) Calculate the density indicator for each data point
according to the following formula:

Dk1 =
k∑

h=1

exp

{
−
(1− sk,h)

(γa
/
2)2

}
(k = 1, 2, . . . ,K )

(15)

where sk,h = λsKECA−angle represents the similarity
between the k-th time slice and the h-th time slice,
and the weight coefficient 0 6 λ 6 1. The positive
number γa is the radius of the area of the data pointMk .
When the other data points are not within the radius
γa, these points contribute little to the density index of
Mk . Therefore, if the density index of dataMk is high,
it means that theremust bemultiple adjacent data points
similar to each other around the point.

b) After calculating each data point density indicator,
select the data point with the highest density indicator
as the first cluster center. Let the number of cluster
centers c=1, the selected points be recorded asM∗c and
item D∗c as their density indicators, then the density
index of each data point Mk can be corrected by the
density index of the c-th cluster center:

Dkc+1 = Dkc − D
∗

c

k∑
h=1

exp

{
−
(1− s∗c,k )

(γb
/
2)2

}
(k = 1, 2, . . . ,K ) (16)

where s∗c,k represents the similarity between the k-th
time slice and the c-th cluster center. The constant γb
defines a field in which the density index is signifi-
cantly reduced, and γb > γa is satisfied to avoid the
two cluster centers being closer together. In this way,
the density index of the data points close toM∗c will be
significantly reduced, so these points are unlikely to be
the next cluster center.

c) After correcting the density indicator for each data
point, if the maximum value Dmax

(c+1) in Dk(c+1)(k =
1, 2, . . . ,K ) satisfies the following cluster termination
criteria:

Dmax
c+1

/
D
∗

1 < υ (17)
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where υ is a sufficiently small number. The physical
meaning of the termination criterion is that the current
highest density value is very small compared to the
initial highest density value, that is, the current cluster
center contains very few data points, so the cluster
center can be ignored and the clustering can be ended.
Otherwise, accept the data point with the highest den-
sity indicator as the c+1-th cluster center.

d) Let c=c+1, cycle through the above process until the
final C0 initial cluster centers are finalized.

e) After determining the cluster center, calculate the sim-
ilarity between the K time slice load matrices and the
cluster center, and the similarity magnitude represents
the degree of similarity. According to the principle
of large similarity, K time slices are divided into C0
categories, which characterize different process char-
acteristics of C0.

f) The time slices are arranged in order, and the time
slices whose category attributes are the same and which
are consecutive in time are divided into the same time
period.

g) Due to problems such as noise or measurement error,
it may happen that the data of a certain time or several
consecutive moments and the data of the time period
before and after it do not belong to the same period in
the classification process form a ‘‘jump’’ phenomenon.
This situation is treated as a singularity problem in the
clustering process and still falls into temporally adja-
cent sub-phases. After processing, the batch process is
divided into C sub-phases according to the change of
process characteristics.

III. OFF-LINE MODELING AND ONLINE MONITORING
BASED ON SUB-PHASE PARTITION
For each sub-phase, a uniform time-representation model can
be used to characterize the stable correlation characteristics
between process variables from the perspective of the entire
time period. Based on the data point index contained in each
class, the data of the same sub-period in the original data
space are put together to establish a KECA model.

A. FAULT DETECTION
1) OFFLINE MODELING

a) K time slice matrices Xk (I × J) are obtained by cut-
ting the three-dimensional data set X (I × J × K ) of
batch operations collected under normal working con-
ditions along the time axis.

b) Normalize the i-th (i = 1, 2,. . . , I) samples in the
k-th time slice matrix:

x̄kij =
xkij − v

k
j

skj
(j = 1, 2, . . . , J ) (18)

where vkj =
1
I

I∑
i=1

xkij and
(
skj
)2
=

1
I

I∑
i=1

(
xkij − vj

)2
represent the mean and variance of the j-th variable,
respectively.

c) The K load matrix is divided into C sub-phases using
the time division algorithm introduced in the previous
section, and the length of each sub-phases is Lc.

d) The standardized time slice matrices belonging to a
sub-period are put together to form a large data matrix
X̃ (LcI × J )(c = 1, 2, . . . ,C)

e) Using the data matrix X̃c (LcI × J) to directly establish
a unified KPCA model representing C sub-phases.

f) Calculate the T2 and SPE statistic for all data in each
phase and determine the control limits for the statistic
for each sub-phase.

2) ONLINE MONITORING
a) Obtain the current sample xk and perform data normal-

ization preprocessing according to the historical mean
and variance of the corresponding time:

x̄k,j =
xk,j − vkj

skj
(j = 1, 2, . . . , J ) (19)

b) According to the process time indication, it can be
determined which sub-phase the new data belongs to,
and the corresponding monitoring model is directly
called.

c) Calculate T2 and SPE statistics for current sample.
d) Determine if the T2 and SPEstatistics are outside the

normal control limits. If neither of them exceeds the
limit, the current time process is considered to be
normal operation, and the process returns to step 1;
otherwise, the process is abnormal, and the cause of the
failure is analyzed and diagnosed.

B. FAULT DIAGNOSIS
In this section, the contribution of process variables to the
two monitoring statistics T2 and SPE is deduced by using
the gradient descent algorithm of the kernel function. The
maximum contribution of each variable to the twomonitoring
statistics is used to judge the fault. The Gaussian kernel
function is used to calculate the kernel matrix. Assuming the
existence of vector v = [v1, v2, . . . vm]T , (i = 1, 2, . . .m),
the kernel function can be written as:

k(xj, xk ) = exp(−
∥∥v · xj − v · xk∥∥2/σ ) (20)

The partial derivative of the i-th variable vi can be calcu-
lated by the following formula:

∂k(xj, xk )
∂vi

=
∂k(v · xj, v · xk )

∂vi

= −
1
σ
(vixj,i − vixk,i)2k(v · xj , v · xk )

= −
1
σ
(vixj,i − vixk,i)2 k(xj, xk )

∣∣
vi=1

(21)

where xj,i is the i-th variable of the j-th sample, and the partial
derivatives of the products of the two kernel functions are:

∂k(xj, xnew)k(xk , xnew)
∂vi

= −
1
σ

[(
xj,i − xnew,j

)2
+
(
xk,i − xnew,i

)]
× k(xj, xnew)k(xk , xnew) (22)
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Define two new statistics to calculate the contribution of
each variable to the monitoring statistic:

CT 2,new,i =

∣∣∣∣∂T 2

∂vi

∣∣∣∣ , CSPE,new,i =

∣∣∣∣∂SPEnew∂vi

∣∣∣∣ (23)

CT 2,new,i and CSPE,new,i respectively represent the contri-
bution rate of the i-th process variable of the new time test
data to the two process monitoring statistics T2 and SPE. The
monitoring statistic T2 of the KECA model can be calculated
by the following formula:

T 2
new = tTnew3

−1tnew = K̄
T
newa3

−1aT K̄new

= trace(aTK̄newK̄
T
newa3

−1) (24)

This is represented by using a mean Gram matrix as (25)
shown at the top of the next page, and the contribution rate of
the i-th variable to the statistic T2 can be expressed as:

CT 2,new,i =

∣∣∣∣∂T 2

∂vi

∣∣∣∣ = ∣∣∣∣ ∂∂vi (trace(aT K̄newK̄
T
newa3

−1)

∣∣∣∣
=

∣∣∣∣trace(aT ( ∂∂vi K̄newK̄
T
new)a3

−1)

∣∣∣∣ (26)

The definition of SPEmonitoring statistics in kernel space
is as follows:

SPEnew = k(xnew, xnew)−
2
N

N∑
j=1

k(xj, xnew)

+
1
N 2

N∑
j=1

N∑
i=1

k(xj, xi)− tTnewtnew (27)

The contribution rate of the i-th variable to the statistic
SPE can be expressed as (28) shown at the top of the next
page. The key question in the above solution process is how
to solve the key question in the above solution process is
how to solve the K̄newK̄

T
new matrix. The solution process is

given below. Each row vector in the Gram matrix consists
of 4 items, and the 2nd and 4th items are composed of
training samples. Constant Sp = 1

N

∑N
j=1 k(xp, xj) and S =

1
N 2

N∑
j=1

N∑
i=1

k
(
xj, xi

)
during the test, therefore, the P row and Q

column elements of matrix K̄newK̄
T
new are represented as (29)

shown at the top of the next page. The partial differentiation
of element [K̄newK̄

T
new]pq to variable vi can be expressed as

(30) shown at the top of the next page. Finally, the amount by
which CT 2,new,i and CSPE,NEW ,i vary greatly is extracted as
a fault characteristic variable. Figure 2 illustrates the offline
modeling and online monitoring procedures.

IV. ALGORITHM VERIFICATION
A. NUMERICAL EXAMPLE SIMULATION
This section uses a simple numerical example to show that
due to the unsynchronized trajectories between production
batches and the transition between phases, there is often a
stronger dynamic nonlinearity between the variables in the
transition process. The main purpose of the experiment here

FIGURE 2. Illustration of offline modeling and online monitoring
procedures 3.

FIGURE 3. Trajectories of three process variables from a batch run.

is to prove the following points: (1) The process data based
on the phase is nonlinear; (2) The data characteristics of the
transition phase have stronger nonlinear characteristics than
the stable phase;

Assume that the following numerical process has three
process variables x1, x2, x3, which are obtained as follows:

x1 = t + e1
x2 = 2(t − 1.1)2 + e2

x3 =

{
exp(t)+ e3 t < 0.5
5× exp(−2t)+ e3 t > 0.5

(31)

where t∈[0.01,2], e1, e2, e3 are white noises that follow
the normal distribution of N(0, 0.012). Figure 3 shows the
variation of the three process variables over the domain of
the sample sequence t. It can be seen from the figure that
the nonlinear process in this example can be more clearly
divided into three piecewise approximation linear processes.
Furthermore, it can be seen from the figure that the vari-
able x2 has a distinct smooth transition characteristic near
the turning point (t=1.1). If the sampling interval is 0.01,
a batch of 200×3 data matrix can be generated for each
batch. In order to simulate the characteristics of the actual
batch process and realize the unequal length of each batch
stage, the methods of translation or scaling are adopted for x2
and x3, so that the turning point of x2 (t=1.1) falls randomly
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K̄new =



k(x1, xnew)−
1
N

N∑
j=1

k(x1, xj)−
1
N

N∑
j=1

k(xnew, xj)+
1
N 2

N∑
j=1

N∑
i=1

k(xj, xi)

k(x2, xnew)−
1
N

N∑
j=1

k(x2, xj)−
1
N

N∑
j=1

k(xnew, xj)+
1
N 2

N∑
j=1

N∑
i=1

k(xj, xi)

...

k(xN , xnew)−
1
N

N∑
j=1

k(xN , xj)−
1
N

N∑
j=1

k(xnew, xj)+
1
N 2

N∑
j=1

N∑
i=1

k(xj, xi)


(25)

CSPE,new,i =

∣∣∣∣∂SPEnew∂vi

∣∣∣∣ =
∣∣∣∣∣∣− 1
σ
(−

2
N
∂

∂vi

N∑
j=1

k(xj, xnew)−
∂

∂vi
tTnewtnew)

∣∣∣∣∣∣ (28)

=

∣∣∣∣∣∣ 1σ ( 2N ∂

∂vi

N∑
j=1

k(xj, xnew)+ trace(aT (
∂

∂vi
K̄newK̄

T
newa)))

∣∣∣∣∣∣
[K̄newK̄

T
new]pq = k(xp, xt )k(xq, xt )+ (S − Sp)k(xq, xt )+ (S − Sq)k(xp, xt )−

1
N

N∑
j=1

k(xt , xj)(k(xp, xt )

+ k(xq, xt ))+
1
N
(Sp + Sq − 2S)

N∑
j=1

k(xt , xj)+
1
N 2

N∑
j=1

N∑
i=1

k(xt , xj)k(xt , xi) (29)

∂(K̄newK̄
T
new)pq

∂vi
= −

1
σ

{ [
(xp,i − xt,i)2 + (xq,i − xt,i)2

]
× k(xp, xt )k(xq, xt )

+ (S − Sq)(xp,i − xt,i)2 × k(xp , xt )+ (S − Sp)(xq,i − xt,i)2 × k(xq , xt )

−
1
N

N∑
j=1

[(
xj,i − xt,i

)2
+ (xp,i − xt,i)2

]
× k(xj, xt )k(xp, xt )+

1
N
(Sp + Sq + S)

N∑
j=1

(xj,i − xt,i)2 × k(xj, xt )

+
1
N 2

N∑
j=1

N∑
k=1

[(
xj,i − xt,i

)2
+ (xk,i − xt,i)

]
× k(xj, xt )k(xk , xt )

}
(30)

between 1.0 and 1.2, and the turning point of x3 (t=0.5)
falls randomly between 0.4 and 0.6, resulting in 20 batch
data. The average trajectory is extracted from 20 batches of
data, and the numerical process is divided into stable phase
(0∼0.4), (0.6∼1), (1.2∼2) and transitional phase (0.4∼0.6),
(1.0∼1.2). Then analyze the correlation between the variables
of each phase, Fig 4 (a) shows the relationship of variables
in stable phase 1. When the two variables satisfy the linear
relationship, they correspond to straight lines. Red lines rep-
resent the relationship between variables x2 and x1, and blue
lines represent the relationship between variables x2 and x3.
It can be seen from the graph that in the stable phase 1, x2
and x1 do not satisfy the linear relationship, and neither do x2
and x3. Figure 4(b) represents the relationship of the variables
in the stable phase 2. As can be seen from the relationship
curve in the figure, in the stable phase 1, x2, x1 and x2, x3 do
not satisfy the linear relationship. Figure 4(c) and Figure 4(d)
represent the relationship between the variables in transition
phase 1 and transition phase 2, respectively. From the blue
and red lines, we can see that there is a strong non-linear

relationship between x3 and x2, x3 and x1. In summary, it can
be analyzed as follows: in the stable phase, the variables
show a strong non-linear relationship, while in the transition
phase, so the linear PCA method is obviously inappropriate
to establish a statistical model in the transition phase.

B. PENICILLIN SIMULATION PLATFORM VERIFICATION
In this paper, penicillin fermentation simulation platform
PenSim2.0 is used as the simulation test platform of the
algorithm. The main purpose of the experiment here is to
prove the following points: (1) The process data based on
the phase is nonlinear and multi-phase coexistence, not single
existence; (2) The monitoring model based on the phase
has effective fault monitoring capability; (3) The monitor-
ing model based on the phase is conducive to the diagno-
sis of intermittent process faults. The monitoring strategy
proposed in this chapter was comprehensively tested. The
reaction time of each batch of penicillin fermentation was
400h, the sampling interval was 1 hour, and 10 process
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FIGURE 4. Correlation of process variables in different phases and
transitions.

variables (Agitator power, Aeration rate, Substrate feed flow
rate, Substrate feed temperature, DO conc, CO2, PH, Temper-
ature, Generated heat, Cold water flow rate) were selected.
In order to make the training sample data reliable, assuming
that there are enough training sample data, 100 batches of
normal batch data are produced as the reference database

TABLE 1. Summary of fault types introduced in process.

TABLE 2. Summary of monitoring results for MKPCA, sub-MKPCA and
sub-MKECA.

of the model. The three-dimensional data of the monitoring
model is X(100 × 10 × 400) after KECA data conversion.
In the high-dimensional space, the batch process was divided
into five phases according to the phase partition method
in this paper. The fermentation process of penicillin was
eventually divided into five sub-phases, of which 1-44h,
92-152h, 298-400h were stable phases, 45-91h, 152-297h
were transitional phases. In order to verify the effective-
ness of the proposed monitoring algorithm, we compare it
with MKPCA and sub-MKPCA. The experimental kernel
parameters are selected as 200. The fault type is shown
in Table 1. The monitoring effect is shown in Table 2. Due to
the limitation of the space, only themonitoring effect diagram
and fault diagnosis diagram of fault 1 and fault 2 are given
here. The method is compared with the MKPCA method
and the sub-MKPCA method. Among them, MKPCA uses
the cumulative variance contribution rate method and deter-
mined 17 principal components; in sub-MKPCA, the three
stable phases of PCA modeling use cross-validation method
to determine the principal components. In the sub-MKPCA
method, PCA modeling is used in three stable phases,
and the number of principal elements is determined by
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cross-validation method is 14, 13, 16 respectively. The two
transition phases are modeled by KPCA, and the principal
component is determined by the variance contribution rate
method, which number is 25 and 27 respectively; the three
stable phases in sub-MKECA are modeled by PCA, and
the number of principals is determined by cross-validation
method to be 6, 8, 6 and 2 transition phases are modeled
by sub-MKECA. The entropy contribution rate method deter-
mines the number of principals to be 10 and 12, respectively.

C. MONITORING RESULTS AND DISCUSSION
Table 2 gives a comparison of the monitoring performance of
the three methods. It can be seen that the method proposed
in this paper is effective for the detection of various types
of faults, and the false alarm rate (type I error rate) is the
lowest among the threemethods, indicating themethod of this
paper can improve the reliability of the monitoring process
to a certain extent. For faulty batches, the proposed method
can achieve fast and accurate detection of faults with a small
miss alarm rate (type II error rate). In addition, in some
fault detection, the MKPCA and sub-MKPCA methods have
higher false alarm rates. The reason for the analysis shows
that for some of the faults, no abnormality is detected in
the T2 chart of the MKPCA and sub-MKPCA methods, and
the miss alarm rate in the SPE chart is also significantly
higher than the method in this paper. Figure 5 shows the
batch monitoring effect for fault type 1. The fault is a slope
disturbance with a slope of+5%, and 200h is introduced until
the end of the reaction. Under normal circumstances, the stir-
ring power is the main factor affecting the dissolved oxygen
concentration, and the decrease of the stirring power will
cause the concentration of dissolved oxygen in the medium
to decrease, thereby causing the growth rate of the bacteria
to slow down and finally reducing the yield of penicillin.
It can be seen from Figure 5 that the method detects an
abnormal situation at 200h, that is, almost at the same time
as the fault occurs, which is about 20h and 14h earlier than
the conventionalMKPCA and sub-MKPCAmethods, respec-
tively. In the T2 monitoring chart, the sub-MKPCA method
lags the detection method by about 62 h, while the T2 chart
of the MKPCA method lags the method by about 136 h.
The analysis shows that the fault in the experiment hap-
pens in the transition phase 2. Because sub-MKPCA divides
the model into different sub-phases, the connection between
adjacent process stages is separated, and the characteristics
of the transition stage cannot be reflected. Therefore, failures
occurring during the transition process can not be detected in
time and effectively, and there is a large lag. Some are even
obscured by the changes in the correlation of the variables
in the transition phase, and the change in the correlation of
the process variables caused by the fault is considered to be
caused by the phase transition; The MKPCA method treats
the complete batch data as a whole, and cannot accurately
describe the characteristics of all phases of the process; Or it
uses a monitoring model to characterize the entire operating
range, resulting in too loose monitoring limits. It can be

FIGURE 5. Monitoring results using MKPCA, sub-MKPCA and the
proposed method for test batch 1.

FIGURE 6. Fault diagnosis a) the contribution of the overall time diagram
method b) the contribution of the phase time diagram method.

seen that the MKPCA method based on the overall modeling
idea is no longer applicable when monitoring the multi-phase
production process.

Figure 7 is the result of monitoring batches of fault type 2.
The failure batch was that the feeding rate reduced by 15%,
by adding step disturbance at Aeration rate of 100 h until
the end of the reaction. It can be seen from the monitor
chart that this method detects faults in 100 hours, 27 hours
ahead of the traditional MKPCA method and 12 hours ahead
of the sub-MKPCA method. In the T2 monitoring chart of
sub-MKPCA method, it not exceeded until 123 hours, and

125684 VOLUME 7, 2019



C. Peng et al.: Phase Partition and Fault Diagnosis of Batch Process Based on KECA Angular Similarity

FIGURE 7. Monitoring results using MKPCA, sub-MKPCA and the
proposed method for test batch 2V. SOME COMMON MISTAKES.

delay fault occurs for 23 hours. In addition, there are some
false alarms in SPE monitoring chart of MKPCA and sub-
MKPCA methods at the beginning of fermentation. All these
fully show that the multi-phase monitoring model based on
sub-MKECA is superior to the traditional MKPCA and sub-
MKPCA methods in both accuracy and robustness.

After the fault is monitored, the time contribution diagram
is used to diagnose the cause of the fault. Take fault 1 as
an example, where the fault is caused by variable 1, and
the contribution of process variables to the two statistics
is shown in Figure 8. For the SPE statistics of MKECA,
it accurately identifies the contribution of variable 1 to the
abnormal change of the statistical index. But for T2 statistics,
from Figure 6, besides variable 1, variables 5, 6 and 7 show a
certain contribution to T2 statistics at different times, indicat-
ing that theymay be fault variables, but from the overall trend,
the contribution of variable 1 in the whole cycle is the most
significant, which is also where the time contribution graph
is superior to the traditional contribution graph. It is based on
the overall periodic trend of fault diagnosis, so as to avoid a
single variable at a particular time contributing significantly
to the statistics, mistaken as a fault. In addition, Figure 6(b)
graph shows the contribution of the monitored variable to the
fault at each sampling instant, effectively reduces the amount
of calculation, and can quickly locate the source of the fault.
This is very necessary in the production process. The earlier
the fault source is located, the sooner the fault can be handled
correctly and the impact of the fault on the quality of the pro-
duction. After detecting the fault, it is necessary to trace the

FIGURE 8. Fault diagnosis a) the contribution of the overall time diagram
method b) the contribution of the phase time diagram method.

TABLE 3. Time contribution of pattern recognition fault variable results.

fault variable. Figure 6 shows the statistical time contribution
graph of the stable phase 3 obtained by the time contribution
graph method. As can be seen from the figure, the T2 and
SPE monitoring statistics are given. The same diagnostic
result, that is, the fault is caused by the abnormality of the
variable 2. The test found that the phased contribution graph
based on the kernel function takes about 1 minute, which can
fully meet the real-time requirements of fault diagnosis of
general industrial processes, while the overall contribution
graph calculation time takes about 15 minutes. The results
of other fault identification are shown in Table 3. The fault
source can be identified accurately based on the phase-time
contribution diagram method.

D. SUMMARY
In summary, the method proposed in this paper can better
reveal the change of process variable’s correlation, objec-
tively reflect the diversity and uniqueness of the character-
istics of each stage and transition process. Because there
are obvious differences between different phases, the per-
formance of process variables is that there are obvious
differences in the mean and variance of process variables
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between different stages. The monitoring model must accu-
rately describe the characteristics of each phase. The idea of
phase based modeling used in this paper satisfies this condi-
tion. It can effectively reduce the false alarm rate and miss
alarm rate of the system. Especially when the fault occurs in
the transitional stage, it reflects a higher fault recognition rate.

V. CONCLUSION
Fault monitoring of multi-phase batch process is a diffi-
cult problem in multivariate statistical process monitoring.
It needs to consider not only the process monitoring under
stablemode, but also the transitionmodewith strong dynamic
nonlinearity. Since the data has different correlations under
different operatingmodes, it is necessary to establish different
monitoring models for each process mode, especially the
transition process between stable modes. The most obvious
feature is the dynamic characteristics of the variables. This
feature can be better reflected in this transition using a time-
varying covariance instead of a fixed covariance during the
transition phase. In this paper, a new strategy for batch
process sub-phase partition and process monitoring is pro-
posed. Firstly, the three-dimensional data matrix is expanded
into a new two-dimensional data according to the time slice
expansion strategy. Secondly, the data of each time slice
is transformed by KECA, and then the production process
is divided into phases according to the spatial angle of the
kernel entropy. The production operation process is divided
into a stable phase and a transition phase, and monitoring
models are respectively established to monitor the production
process; Finally, the application of the penicillin fermentation
simulation platform shows that the Sub-MKECA phase par-
tition results can reflect the mechanism of the batch process
well, and the fault monitoring of the multi-modal process
shows that it can detect faults in time and accurately, and has
high practicality value.
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