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ABSTRACT Using the hypergraphs as the central data structure in dynamic discrete association problems is
a common practice. The computation of minimal transversals (i.e., the family of all minimal hitting sets) in
those hypergraphs is a well-studied task associated with a large number of practical applications. However,
both the dynamic nature of the problems and the non-polynomial behavior of all currently known algorithms
for that task justify the search for performance optimizations that allow transversal-computation algorithms
to consistently handle the potentially large problems while optimizing the use of computational resources.
This scenario has been extensively studied from the perspective of the hypergraph, rough set, and testor
theories, but this paper presents the first glimpse into a symbolic learning approach. We present a symbolic
learning strategy, for the class of transversal-computation algorithms, designed to guide and optimize the
search process. Since the proposed strategy is based on the background knowledge about the search space
and not on a specific search technique, it can be adapted to a wide variety of algorithms. We present the
learning strategy as well as its adaptation into two representative transversal-computation algorithms. The
comparative experimental results reveal its computational behavior on different problem families.

INDEX TERMS Symbolic learning, learning strategy, transversal hypergraph, minimal hitting set.

I. INTRODUCTION
When faced with discrete association problems, the most
commonly used data structures are hypergraphs. Hypergraphs
allow even fast-changing dynamic phenomena to be modeled
by using sets of vertices and edges that continuously grow in
time [1]. Such scenarios can be found in diverse application
fields such as computational biology, social network analysis,
biochemical molecule testing, data mining, distributed sys-
tems, artificial intelligence, natural language processing, etc.

Finding the complete family of minimal hitting sets in
those hypergraphs is commonly referred to as the transver-
sal generation problem or sometimes just as the TransHyp
problem [2]. This is a common and well known task that has
been studied, not only from the perspective of hypergraph
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theory, but from the perspective of all MONET-equivalent
problems (e.g. prime implicants in boolean functions, typical
testors, reducts in rough sets, etc.) [1], [3]–[5].

At some abstraction level, all algorithms for computing
minimal hitting sets perform a search within their input
hypergraph looking for sets of vertices that satisfy specific
conditions. However, at a lower abstraction level the search
mechanic strongly depends on the representation formalism
used to describe the input hypergraph. Very often, the input
hypergraph is represented only by its incidence matrix, which
is a two dimensional binary matrix showing the membership
of vertices (columns) to hyperedges (rows). A great major-
ity of algorithms that search for minimal hitting sets, upon
receiving such input matrix, will select one or more vertex
subsets and test if they are hitting sets and if they are minimal.
Once the tests are completed, this newly acquired knowledge
is combined with some background knowledge in order to
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decide which other subsets should be tested next. Structural
properties of the search space, as well as of the particular
input hypergraph constitute the background knowledge and
the result of each test performed to selected vertex subsets
conform the acquired knowledge [6]. The synthetic accu-
mulation of acquired knowledge and its combination with
selected background knowledge allows the definition of a
learning strategy for optimizing the search. Such a strategy
can be adapted to work alongside many minimal hitting
set-computation algorithms [7].

In this research we propose a symbolic learning strategy
to guide the search for minimal hitting sets in hypergraphs.
The proposed strategy is general enough to be adapted to
a wide variety of existing algorithms, even when they do
not follow the same search approach. First, the taxonomy of
transversal-computation algorithms is reviewed, then the pro-
posed learning strategy is explained and the performance gain
of adding it to classic algorithms is experimentally tested.
Finally, some conclusions are drawn from the process and
future research lines are outlined.

II. THEORETICAL FRAMEWORK
Definition 1 (Hypergraph): A hypergraphH is an ordered

pair H = (V, E), where V = {v1, . . . , vn} is a finite set of
objects, and E = {E1, . . . , Em} is a covering of V , that is,
a non-empty and exhaustive family of subsets of V , (e.g. Ei 6=
∅ (i = 1, . . . ,m) and

⋃m
i=1 Ei = V).

The elements of V are called vertices, while the elements
of E are called edges or hyperedges. We say that vertex vi ∈ V
hits edge Ej ∈ E when vi ∈ Ej.
When the edges in a hypergraph conform a Sperner family

(e.g. where no set includes any other), then the hypergraph is
referred to as a simple hypergraph,bergebook, and byMin(H)
we denote the simple hypergraph consisting of all theminimal
edges of H with respect to set inclusion.
Definition 2 (Hitting Set): Let H = (V, E) be a hyper-

graph. A subset τ ⊆ V is called a hitting set in H, if it
intersects all edges, that is, when (∀Ei ∈ E) [τ ∩ Ei 6= ∅].
A hitting set is minimal if none of its proper subsets is also a
hitting set in H.
Definition 3 (Transversal Hypergraph): A hypergraph H′

is called the transversal (sometimes called the dual) of
another hypergraphH, if both are defined over the same set of
vertices, and the set of edges in H′ is the complete family of
minimal hitting sets inH. By Tr(H) we denote the transversal
or dual hypergraph of H.
The above condition holds in both ways for simple hyper-

graphs, when H′ = Tr(H), then necessarily H = Tr(H′).
This dual relation implies that, for simple hypergraphs, H =
Tr(Tr(H)), justifying that two hypergraphsH andH′ are said
to be dual, if they are mutually transversal of each other.
Definition 4 (Combination Operators): For two simple

hypergraphs H1 = (V1, {f1, f2, . . . , fm1}) and H2 =

(V2, {g1, g2, . . . , gm2}) there are two combination operators:

1) H1∪H2 = (V1∪V2, {f1, f2, . . . , fm1 , g1, g2, . . . , gm2})

2) H1 ∨H2 = (V1 ∪ V2, {fi ∪ gj|i = 1..m1, j = 1..m2})

Two important properties of simple hypergraphs derive
from the above definitions:

1) Tr(H) = Tr(Min(H)), that explainswhy it is customary
to represent the input to any transversal-computation
algorithm in its minimal form.

2) Tr(H1 ∪ H2) = Min(Tr(H1) ∨ Tr(H2)), that
serves as the foundation for the most famous
transversal-computation strategy, the Berge-
multiplication.

Formal proofs for both properties can be found in [8], where
they appear as corollaries of the vertex-coloring lemma.

Aside from its set-oriented definition, hypergraphs are
commonly specified only by their incidence matrix, which
is a m × n matrix A =

[
aij
]
m×n whose columns and rows

correspond to the vertices and edges respectively, in such a
way that aij = 1 if vi ∈ Ej and aij = 0 otherwise.

III. TAXONOMY OF TRANSVERSAL-COMPUTATION
ALGORITHMS
It can be easily proved that no algorithm can find all the
minimal hitting sets in polynomial time with respect to the
size of its input [1]. However, there are definitely some algo-
rithms that exhibit a more efficient strategy than others while
computing the set of all minimal hitting sets. According to
the strategy they follow, transversal-computation algorithms
can be classified into two groups: those that follow an incre-
mental test-and-generate strategy, and those that follow a
space-delimited search-with-jumps strategy.

A. INCREMENTAL TEST-AND-GENERATE STRATEGY
The first group, algorithms that follow an incremental test-
and-generate strategy, is represented by algorithms, most of
which were developed within the context of hypergraph the-
ory. The idea of these algorithms is to work with only a subset
of edges of the given hypergraph, compute the complete set of
minimal hitting sets in that subgraph, and then incrementally
add more edges to the analysis and update the accumulated
answer set. Commonly, the initial subgraph consists of only
one edge and the algorithm’s main loop analyzes one more
edge with each iteration, updating the answer set until the
whole hypergraph has been analyzed. Evidently, these algo-
rithms do not require the complete hypergraph or its inci-
dence matrix on input, which makes them ideal for modeling
dynamic phenomena. Examples of these algorithms include
the basic Berge-multiplication algorithm [8], Dong and Li’s
(DL) algorithm [9], and Kavvadias and Stavropoulos’ (KS)
algorithm [2]. A variant in this same group, that comes from
testor theory, is the YYC algorithm [10]. The differences from
one algorithm to another lie in the strategies they use to update
the set of MHS.

One of the earliest approaches in this group is the
Berge-multiplication algorithm [8]. Apparently, this algo-
rithm dates back much further and has been rediscov-
ered several times for various applications [2]. Nevertheless,
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the Berge-multiplication algorithm generates the transversal
hypergraph Tr(H) (i.e. finds the complete family of minimal
hitting sets) of a given hypergraph H, by analyzing its input
one edge at a time, and generating a partial answer that
contains all minimal hitting sets for the partial hypergraph
conformed by the set of edges already analyzed.

Several algorithms in this group follow the same incre-
mental principle, although they add a number of performance
enhancements; most notably Dong & Li’s (DL)-algorithm [9]
which simplifies the minimization process by identifying,
on each iteration, the minimal hitting sets that intersect the
current analyzed edge. Since there is no need to combine
those hitting sets any further, they are just immediately added
to the next partial solution set. Also, Kavvadias & Stavropou-
los’ (KS)-algorithm [2] introduces three modifications to the
basic Berge-multiplication algorithm: first, the computation
of transversals is performed in a depth-first fashion, so partial
results can be output on each level. Second, in order to avoid
regenerating vertex combinations already examined, and thus
prune some branches of the search tree, they use the concept
of the appropriate set. And finally, the concept of generalized
node is used to further accelerate the computation.

B. SPACE-DELIMITED SEARCH-WITH-JUMPS STRATEGY
The second group, algorithms that use a space-delimited
search-with-jumps strategy, is somewhat bigger and can be
in turn divided into two sub-groups: algorithms that follow
a divide-and-conquer approach (i.e. search-space delimita-
tion), and algorithms that follow an open search-with-jumps
strategy.

The idea of using a divide-and-conquer approach comes
initially from the domain of Boolean algebras. As the label
suggests, the algorithms in this group look to subdivide their
initial input (set, hypergraph or matrix) into smaller chunks,
compute the MHS in a small search-space and then combine
the results yield by each search. This process can be done
recursively until the entries are small enough to apply a trivial
algorithm. The difference between algorithms within this
sub-group lies fundamentally in theway inwhich the partition
of the original entry is performed, as well as in the way par-
tial results are combined. Probably, the most representative
algorithm using this approach is Fredman and Khachiyan’s
(FK) algorithm [11]. However, latest proposals include
the parallelization of the search process as in [12] or
the use of binary decision diagrams [13] as proposed
by [14].

From testor theory comes a group of algorithms that
perform an ordered search for MHS over the power set of
vertices. Following some predefined search order, each subset
of vertices is tested to determine if it is anMHS or not. How-
ever, the search process is not exhaustive. Some properties of
each tested subset allow the algorithm to infer which other
successive subsets, following the established order, cannot
possibly beMHS, and consequently decide that those subsets
are not worth to be tested. The act of bypassing the test of
some subsets is commonly referred to as jumping. In general,

the selected order for traversing the power set of vertices,
alongwith themagnitude of the jumps (i.e. the number of sub-
sets not tested), and the specific procedure applied to a subset
for testing if it is a MHS or not, determine the differences
among algorithms of this last sub-group. Representative algo-
rithms of this strategy are LEX [15], FastCT [16], and most of
all, the Binary-Recursive (BR) algorithm [17]) that orders the
edges in the input incidence matrix by increasing cardinality,
and then searches the space of vertex subsets following a
particular order which is a combination of the cardinality and
lexicographic orders. It also includes the same appropriate
concept used in the KS algorithm (known as compatible set)
and combines hitting sets from different levels of the ordered
search tree.

C. MIXED STRATEGY
There is also a small number of algorithms that follow a
mixed strategy, that is, they incorporate some elements and
ideas from the incremental test-and-generate group, and some
other elements from the space-delimited search group. This
kind of algorithms will not be analyzed further in this paper,
not only because of its small number of elements, but because
of the fact that, since the proposed learning strategy can be
applied to both latter groups, it can also be applied to the
mixed strategy group of algorithms. Probably the most repre-
sentative algorithm of this mixed strategy group is the Bailey-
Manoukian-Ramamohanarao (BMR)-algorithm [18] which
first orders the set of vertices by increasing number of hits
on the edges, then it recursively partitions the set of edges
of the input hypergraph, by iterating over the vertices and
testing the partition induced by each vertex. When a partition
is sufficiently small, the DL-algorithm is invoked as a subrou-
tine (or any other algorithm from the Brege-mutiplication’s
family) to find the set of minimal hitting sets.

IV. THE PROPOSED LEARNING STRATEGY
Any transversal-computation algorithm, regardless of the tax-
onomic branch it belongs to, selects an initial vertex subset to
test and determines if the selected subset is a hitting-set and
if it is minimal. Upon deciding on that matter, the algorithm
updates its accumulated answer accordingly, and uses its own
strategy to specify the next vertex subset to be tested. All
known search strategies are based on verifying the conditions
needed by a vertex subset to be hitting and to be minimal
(See Definition 2). However, there are many more conditions
that lead to vertex subsets that are neither hitting nor mini-
mal. Therefore, finding the opposite of what the algorithm is
searching for (e.g. vertex subsets that are neither hitting nor
minimal) can help to reduce the search space in a particular
problem.

The proposed learning strategy takes advantage of general
background knowledge about the search space and uses the
local knowledge that the host algorithm learns (e.g. if a partic-
ular vertex subset is hitting and minimal) in order to identify
incompatible vertex combinations that cannot possibly be
part of any minimal hitting set. The learning strategy puts
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that knowledge at the disposal of the algorithm, allowing it
to avoid (mask or jump) the test of any vertex subset that
contains such combinations.

The identification of incompatible vertex combinations is
performed at a structural level, inside the incidence matrix of
the input hypergraph, using the following concept:
Definition 5 (Restricted Matrix): Let Am×n be the inci-

dence matrix of a simple hypergraph H = (V, E), and let
τ ⊆ V . Then, the τ -restricted matrix A|τ is the submatrix
obtained by removing from A all columns (vertices) that are
not in τ .
Using such restrictedmatrix, it is possible to independently

characterize hitting sets and minimal sets in structural (sym-
bolic) terms as follows:
Definition 6 (Structural Characterization of a Hitting

Set): A subset τ ⊆ V is a hitting set in hypergraph H
iff the submatrix A|τ does not contain any row composed
exclusively by zeros (a zero-row).
Definition 7 (Structural Characterization of a Minimal

Set): A subset τ ⊆ V is minimal iff A|τ contains all the rows
of an identity matrix In where n = |τ |.
Evidently, if a subset of vertices is a hitting set and it is also

minimal, then it is a minimal hitting set. Therefore, besides
searching for vertex subsets that satisfy Definition 2, it is pos-
sible to search for vertex subsets that satisfy both definitions 6
and 7. The apparently subtle change from Definition 2 to
Definitions 6 and 7 turns out to be crucial because it allows to
make a complete list of all the possible property combinations
that an arbitrary transversal-computation algorithm may find
during its search. As a consecuence, the search space can
be clearly partitioned and a specific search strategy can be
defined for each search space class.

This structural characterization of the minimal hitting sets
puts in evidence a particular relation between some vertices:
Definition 8 (Domination): (Single domination) Vertex v1

dominates vertex v2 iff (∀Ei ∈ E)[v2 ∈ Ei ⇒ v1 ∈ Ei], that is,
if in any row of the incidencematrixAwhere v2 has a value 1,
v1 also has it.
This phenomenon can also be found as a subset of vertices
dominating another vertex (Multiple domination). In any
case, when there exists a domination between any two ver-
tices or between a subset and a vertex, we say that those
elements are incompatible, and therefore cannot both be part
of any minimal hitting set.

From the above definitions, it follows that the search space
for any transversal-finding problem can always be partitioned
into four classes:
• Hitting sets (not minimal): those subsets that satisfy
Definition 6, but not Definition 7.

• Minimal sets (not hitting): satisfying Definition 7, but
not Definition 6.

• Minimal hitting sets: satisfying both definitions 6 and 7.
• Undetermined sets: satisfying neither Definition 6 nor
Definition 7.

The logic for the learning strategy relies on the following
background knowledge expressed as rules:

1) Finding a hitting set implies that all its supersets must
be excluded from the search process since they cannot
be minimal.

2) Finding a minimal set implies that all its subsets must
be excluded from the search since they cannot be hit-
ting.

3) Finding a minimal hitting set implies that all its subsets
and supersets must be excluded from further search.

4) Any other subset found (undetermined) always con-
tains, at least one pair of incompatible vertices andmust
also be excluded from further search.

While the knowledge expressed by these rules may seem to
be obvious, it becomes crucial to understand that no known
tranversal-computation algorithm implements the full set of
rules. Since minimal hitting sets are at the same time hitting
and minimal, some algorithms traverse the family of hitting
sets, searching for subsets of those with the potential to be
minimal. Other algorithms traverse the family of minimal
sets and search for candidate vertices to complete a hitting
set. By partitioning the search space into four clearly defined
classes and defining a complete set of rules, the learning
strategy is guaranteed to complement the search strategy for
any transversal-computation algorithm.

The main goal at designing the learning strategy was to
preserve the search nature of the host transversal-computation
algorithm while providing it with useful information that
can potentially enhance its search process by showing which
subsets are not worth testing.

V. IMPLEMENTING THE STRATEGY
For implementation purposes it must be noted that rules 1,
2 and 3 above, can only yield a tabu-list [19] as their result
(e.g. a list of items categorically excluded from further test).
Generating such a list has two severe drawbacks. First, since
the list would have to be exhaustively checked to decide if
a particular subset is to be excluded from the search, even a
slight grow in size would severely ruin the host algorithm’s
performance. Second, the knowledge contained in rules 1 to
3 is precisely what all transversal-computation algorithms
embed into their search strategies, therefore its implemen-
tation would not provide any useful information to the host
algorithm.

On the other hand, rule 4 expresses knowledge that is
neither commonly used by transversal-computation algo-
rithms, nor a potential risk to the algorithm’s performance.
Vertex incompatibilities can be learned as the host algorithm
searches for hitting or minimal sets, and the use of an opti-
mized suitable representation of that knowledge minimizes
the risk of yielding information already known by the algo-
rithm, and reduces the overhead of deciding how to proceed
with a particular vertex subset. The learned incompatibilities
can therefore allow the algorithm to avoid unnecessary test-
ing, thus increasing its efficiency.

Following this line of reasoning, the learning strategy
is implemented as a procedure UpdateIncompatibilities()
which creates and updates a knowledge table containing the
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FIGURE 1. Pseudocode for the UpdateIncompatibilities() procedure.

discovered incompatibilities. This learned knowledge is com-
bined with the background knowledge about the four classes
in which the search space is always partitioned. The host
algorithm callsUpdateIncompatibilities() each time it selects
a vertex subset to test.

The interaction between the host algorithm and the learn-
ing strategy proceeds as follows:
• Depending on the taxonomical branch of the host algo-
rithm, it uses its own predefined search order for select-
ing a vertex subset to test.

• If the tested subset is not a minimal hitting set, then the
host algorithm calls UpdateIncompatibilities() with the
selected subset as argument (See Figure 1.)

• At any moment, the host algorithm can query the accu-
mulated knowledge expressed as an incompatibility cat-
alog in order to decide about future vertex subset selec-
tions for testing.

The reason why the learning strategy is labeled as sym-
bolic is the optimized representation of the incompatibil-
ities learned. Both, single and multiple incompatibilities
learned, are represented by a unique domination operator. The
semantics of a domination, combined with the background
knowledge in definitions 6 and 7, provide all the foundation
needed to define the logic for updating the incompatibilities
table.

Pseudocode for procedure UpdateIncompatibilities() is
shown in Figure 1. It makes use of three auxiliary functions
whose semantics are described as follows:
AddDominator(x,y) and RemoveDominator(x,y) allow the
edition of the incompatibilities table, and Dominators(x)
returns a set containing all vertex or vertex subsets that dom-
inate vertex x.

VI. EXPERIMENTAL RESULTS
As it was stated before, the goal of the proposed learning
strategy is to enhance the performance of searching algo-
rithms that look for minimal hitting sets. In order to assess
the change in efficiency resulting from adding the learning

strategy to a transversal-computation algorithm, we selected
two host algorithms, one from each group described in
Section 3.

The performance of a general search algorithm can be
assessed in several different ways. For the particular case
study, two criteria are most relevant: the number of vertex
subsets the algorithm tests, and of course, the global execu-
tion time for solving any problem instance. In an hypothetical
ideal case, a perfect algorithm, would only test those elements
in the search space that are correct solutions to its search. That
is, an ideal traversal-computation algorithm would not search
but only pick all the correct answers from its search space.
Since clearly no ideal algorithm exists, the ratio between
the total number of answers in the search space, and the
number of elements that the algorithm actually tests (which
we have labeled as tests) is proposed as an adequate measure
for the performance enhancement. Consequently, we choose
tomeasure the efficiency of a transversal generation algorithm
A(H) as the ratio between the total number of minimal
hitting sets in H, and the number of tests performed by the
algorithm.

From the incremental test-and-generate strategy group
we selected the YYC-algorithm [10], a slight variant of the
Berge-multiplication that includes the identification of sets
that do not need to be combined (as in the DL-algorithm),
a reordering of the analysis of edges (similar as in the
BMR-algorithm), and the concept of appropriate set to select
the needed combinations (as in the KS-algorithm). From
the space-delimited search-with-jumps strategy group we
selected the BM-algorithm [17] as described in Section 3.
Both algorithms originated within the testor theory field,
and they were selected for their representativity in terms of
techniques used, as well as for their recent appearance in
indexed journal articles [20], [21].

A. FOUNDATION AND DESCRIPTION OF PERFORMED
EXPERIMENTS
Acknowledging the presence of a no-free-lunch effect,
authors recognize the importance of avoiding the bad habit of
testing an algorithmwith a limited and biased set of problems.
When such bad habit is not avoided, the generality and credi-
bility of experimental results is generally questioned. In order
to test the change in performance derived from adding the
proposed learning strategy to any transversal-computation
algorithm it is critical to ensure that the set of test problems
is not biased and that it covers a wide range of possible
input models. In [22] a set of matrix operators is proposed
that allows—starting from very small incidence matrices
whose transversal is known—to construct large matrices
whose transversal can be computed using a single formula
(i.e. without the need for a transversal-computing algorithm).
When these operators are systematically used, they allow
the construction of a benchmark test set that includes the
three most relevant types of hypergraphs, those whose set of
vertices grows exponentially, those whose set of edges grow
exponentially, and those with both—the sets of vertices and
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the set of edges grow simultaneously. These three scenarios
have been shown to cover a great majority1 of computational
behaviors in transversal-computation algorithms [23]. There-
fore, during this experiments the methodological guide stated
in [23] is strictly followed, so ensuring the generality of the
obtained results for a wide range of transversal-computation
algorithms.

B. TERMINOLOGY AND LABELING
On each scenario the efficiency and run time of the original
algorithm are compared with those of the adapted version
(labeled as YYC* and BR*).
The YYC algorithm is generally considered to be more

efficient than the BR algorithm. However, because of its
incremental nature, YYC is better suited for working with
hypergraphs with a moderately small number of edges but a
high number of vertices. On the contrary, the BR algorithm,
because of its vertex-oriented search approach, performs bet-
ter with a small number of vertices. On scenario #1, we tested
all four algorithms (the original versions and the adapted
versions) with hypergraphs with a linearly increasing number
of vertices. As expected, the addition of the learning strategy
slightly increases the run time of all four algorithms, although
only for small hypergraphs.

On the graphics, as well as for all subsequent scenarios,
BR and BR* lines are gray color and have a solid fill circular
marker, while YYC and YYC* lines are black and display a
cross marker. See Figures 2 and 3. Results for YYC and BR
algorithms are shown in Tables 1 and 2, respectively.

FIGURE 2. Scenario #1 comparative results for number of tests.

On scenario #2, we again tested all four algorithms, but
now against hypergraphs with an exponentially increasing
number of edges. As was expected both algorithms per-
formed efficiently for small number of edges, but as the
number increases the difference starts to show, as well as
the gain resulting from using the learning strategy. In this
scenario, since the tests and run time scales are notori-
ously different, we provide separate graphics to facilitate the

1With the notable exception of a small family of stair-like incidence
matrices. However, there are no known transversal-computational algorithms
whose best or worse performance cases occur solving hypergraphs with this
type of incidence matrices.

FIGURE 3. Scenario #1 comparative results for run time.

FIGURE 4. Scenario #2 Number of tests for the BR and BR* algorithms.

FIGURE 5. Scenario #2 Run time of the BR and BR* algorithms.

FIGURE 6. Scenario #2 Number of tests for the YYC and YYC* algorithms.

results interpretation. See Figures 4, 5, 6, and 7. Results
for YYC and BR algorithms are shown in Tables 3 and 4,
respectively.
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TABLE 1. YYC tests, Scenario #1.

TABLE 2. BR tests, Scenario #1.

TABLE 3. YYC tests, Scenario #2.

FIGURE 7. Scenario #2 Run time of the YYC and YYC* algorithms.

Finally, in scenario #3 we test with proportionally bigger
hypergraphs, both in number of edges and vertices. This last
scenario reveals the best case for the YYC algorithm, showing

FIGURE 8. Scenario #3 comparative results for number of tests.

that these exact type of hypergraphs are the ones where the
original version of the YYC algorithm naturally learns all that
there is to learn. Thus, the addition of the learning strategy
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TABLE 4. BR tests, Scenario #2.

TABLE 5. YYC tests, Scenario #3.

TABLE 6. BR tests, Scenario #3.

FIGURE 9. Scenario #3 comparative results for run time.

FIGURE 10. Scenario #3 comparative results for number of tests.

causes no effect in the number of tests but a great efficiency
increase in run time. See Figures 8, 9, 10, and 11. Results
for YYC and BR algorithms are shown in Tables 5 and 6,
respectively.

FIGURE 11. Scenario #3 comparative results for run time.

VII. CONCLUSIONS AND FUTURE RESEARCH
We have presented a general symbolic learning strategy for
guiding the search process in transversal-computation algo-
rithms. The goal of the strategy is to supply the host algo-
rithm with extra knowledge about the problem search space,
as well as to enrich its local knowledge about the traversal
process, thus enhancing its general efficiency measured both
as the number of tests performed and the run-time achieved.
At the symbolic level the strategy relies on finding vertex
incompatibilities.

The contribution of this research can be neatly summarized
by two elements: First, the independent characterization of
hitting and minimal sets allowing the search space for any
transversal-computation algorithm to be partitioned into four
classes and the definition of the background rules implied
by that partition. Second, the concrete algorithm for learning
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single and multiple vertex dominations (called incompatibil-
ities) as an efficient way of implementing a multi-algorithm
learning strategy. The intended general contribution is to
show how symbolic learning algorithms can open a partially
unexplored new route for optimizing solutions for combina-
torial problems.

Although a no-free-lunch effect for this kind of algorithms
has always been known, on very rare occasion an algorithm or
family of related algorithms is studied in detail to characterize
its computational behavior against different models of input.
Our experimental results have shown that the proposed learn-
ing strategy is able to enhance the efficiency of algorithms in
any of the two identified groups, albeit the gain is only worth
for large hypergraphs. If the learning strategy is activated for
a problem with a small input hypergraph, it will enhance the
tests performance, but at a cost in running time. The real
benefit of the proposed learning strategy becomes evident
as the size of the input hypergraph increases. Moreover,
the proposed strategy revealed itself as particularly useful
when dealing with hypergraphs with a large number of ver-
tices or edges, but particularly when the host algorithm does
not follow a Berge-multiplication strategy. The reason for
this effect seems to be the larger amount of incompatibilities
learned by the strategy, in combination with poor detection
and filtering mechanisms of the host algorithm.

The characteristic behavior of the experimented algorithms
and the global relevance of the TransHyp problem, com-
bined with its known non-polynomial complexity, points out
that a feasible next step in research can be the design of a
performance-directed expert system able to recommend the
best algorithm to solve a specific input hypergraph, or at
least warn about algorithms believed to have the poorest
performance with that particular input. Meanwhile, a detailed
study about different models in which the learning strategy
can be parallelized would not only increase its performance
and soothe its integration with different host algorithms, but
also pave the way to the design of such expert system.
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