SPECIAL SECTION ON CYBER-PHYSICAL SYSTEMS

IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received December 13, 2018, accepted January 11, 2019, date of publication January 25, 2019, date of current version February 12, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2895206

A Technology Mapping of FSMs Based
on a Graph of Excitations and Outputs

MARCIN KUBICA", DARIUSZ KANIA, AND JOZEF KULISZ

Institute of Electronics, Silesian University of Technology, 44-100 Gliwice, Poland

Corresponding author: Marcin Kubica (marcin.kubica@polsl.pl)

This work was supported in part by the Polish Ministry of Science and Higher Education.

ABSTRACT A logic synthesis for finite-state machines (FSMs) aimed at programmable array logic
(PAL)-based complex programmable logic devices is proposed here. This approach consists of the simulta-
neous synthesis of a transition function and an output function. The main contribution is the novel multilevel
optimization of an FSM. In this process, a new form of graph is used, i.e., a graph of excitations and outputs.
This is a generalization of the graph of outputs that has previously been used in the process of technology
mapping of multi-output functions in PAL-based programmable structures. The main idea, the theoretical
background, and a precise algorithm are illustrated by means of simple examples. The proposed algorithm
was compared with other approaches by synthesizing the FSM benchmarks and mapping the solutions to
k-term PAL-based logic blocks. The obtained results are compared on the basis of the area (number of logic
blocks) and speed (number of logic levels). The proposed approach is especially effective for larger FSMs.

INDEX TERMS CPLD, FSM, multi-level optimization, technology mapping.

I. INTRODUCTION
The structure of the cyber-physical systems presented in [1]
is layered. The lowest layer, the ‘physical system’, may use
a hardware implementation and a hardware description lan-
guage. Similarly, advanced sensors and complex communi-
cation tasks may be involved in the area of the Internet of
Things (IoT) [2]. One of the possibilities for carrying out
these implementations in cyber-physical systems is the use of
complex programmable logic device (CPLD) circuits. Thus,
it may be said that a crucial aspect of the effective synthesis
of cyber-physical systems is an efficient logic synthesis dedi-
cated to CPLD circuits, and this is the main topic of this paper.

The minimization of logic resources, which is needed to
implement projects in CPLD, is especially vital in the process
of logic synthesis. It can lead to a reduction in the costs for an
implemented project in a ‘physical system’, and can reduce
the costs of cyber-physical systems and limit power consump-
tion, which is especially important in IoT applications. Since
most implementations include complex sequential circuits,
it is necessary to develop finite state machine (FSM) synthesis
methods to minimize the usage of logic blocks in CPLD, and
this is the essence of this paper.

A programmable array logic (PAL)-based logic block,
as presented in Fig. 1, constitutes the kernel of a classi-
cal CPLD. It is generally possible to configure the block for

PAL }y \ PAL |1
k t
i

i
k-AND | !
i

FIGURE 1. Structure of a k-term PAL-based logic block, and symbols
representing the block configured for combinatorial or registered
operation.

a combinatorial or registered operation (i.e. to a form with or
without a D flip-flop), and this is also illustrated in Fig. 1.
Logic synthesis for an FSM starts with a state assignment,
and a two-level minimization is then executed. Following
this, minimization of each single-output function is carried
out separately [3] in most approaches, and technology map-
ping is then started. Mapping of the minimized functions in
PAL-based blocks containing a predefined number of product
terms with and without the D F-Fs is applied.

Internal state assignment is a vital stage of FSM synthesis,
and is usually directly associated with the result that we
expect to obtain. The goal of optimization may be the chip
area required for the FSM [4], [5], the speed of operation
of the automaton [5], [6], or minimization of the power
consumption [7]-[9]. Issues concerning the minimization of
power consumption have recently become particularly impor-
tant. Initially, methods were proposed that were based on

2169-3536 © 2019 IEEE. Translations and content mining are permitted for academic research only.

VOLUME 7, 2019

Personal use is also permitted, but republication/redistribution requires IEEE permission. 16123

See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-8256-7726

IEEE Access

M. Kubica et al.: Technology Mapping of FSMs Based on a Graph of Excitations and Outputs

the minimization of transitions of the state variables; this
was achieved by grouping the states between which frequent
transitions occur, by assigning to them codes with a minimum
code distance (the minimum weighted Hamming distance
method) [10]-[12]. The problem of state assignment can
be considered in terms of integer linear programming [10],
but heuristic methods are generally used [13], [14]. Genetic
algorithms are sometimes applied in the process of cod-
ing [15], [16]. The search for more efficient implementations
of automatons is sometimes carried out also in the form of
a globally asynchronous locally synchronous (GALS) [17]
structure, or solutions exploiting clock gating [18], [19].

In the case of CPLDs, the most important aspect, apart
from the process of state assignment, is the ability to effi-
ciently use the product terms contained in the PAL-based
logic blocks. Minimization of the number of implicants con-
stitutes an integral part of coding algorithms, as it can influ-
ence the minimization of the area, the number of logic levels
and even the minimization of power consumption.

Previous papers presented by the current authors propose a
number of optimization methods dedicated to combinational
circuits, such as those using graphs of outputs [20], [21],
methods of technology mapping exploiting tri-state output
buffers [22], and various decomposition strategies [23], [24].
Binary decision diagrams are sometimes used in the synthesis
process [24]-[27], and these methods are directly associated
with the way the state assignment is carried out [3], [22], [28].
However, in each case, the algorithms are based on a sep-
arate synthesis of the transition function and the output
function. A two-level minimization of the transition and the
output functions is typically performed. In most well-known
approaches, each single-output function is minimized sep-
arately [3]. If the number of implicants p, representing a
function after minimization, is greater than the number of
product terms k in a logic block (Fig. 1), a greater num-
ber of logic blocks needs to be used. Multilevel synthe-
sis dedicated to CPLD has sometimes been reported [5],
but the majority of multi-level logic synthesis techniques
are dedicated to programmable logic array (PLA)-based
devices or look-up table (LUT)-based field programmable
gate arrays (FPGAs) [29]-[32].

FIGURE 2. Block diagrams representing the internal structure of an FSM.

Multilevel optimization has become very important, espe-
cially when a function is implemented in CPLD structures.
A block diagram of an FSM is presented in Fig. 2a. Its form
suggests that it is necessary to implement two separate multi-
output functions, describing the transition block § and the

16124

output block A, within a programmable structure. A sim-
ple modification of the structure, from the form presented
in Fig. 2b to that illustrated in Fig. 2c, shows that it is
possible to describe the two combinational blocks using a
single multi-output function. The question is now whether
it efficient to simultaneously optimize the whole combina-
tional block, i.e. the transition block § and an output block
A together. A simultaneous synthesis of the transition block
and the output block gives better optimization conditions than
the separate synthesis of each. Fortunately, D-type flip-flops
make the synthesis process easier, as these are based on the
optimization of a multi-output function in which some signals
form the input vector, and others the transition vector that
describes the signals connected to the inputs of the flip-flops.

The aim of this paper is to present a method of FSM syn-
thesis dedicated to PAL-based CPLD, the essence of which
consists of a novel multilevel optimization of FSM involving
the simultaneous technology mapping of the transition and
the output blocks. In this process of technology mapping,
a new form of a circuit description is used, referred to here
as the graph of excitations and outputs.

Il. THEORETICAL BACKGROUND

A sequential automaton is described by determining five
elements {X, Y, S, §, A}, where X is the set of input ele-
ments, Y is the set of output elements, S is the set of the
internal states of the automaton, § is the transition function
and X is the output function [34]. Inputs are characterized
as N-bit input vectors, where N > [lg,(card(X))], and
card(X) means the cardinality of set X. Similarly, outputs are
defined as M -bit output vectors, where M > [lg,(card(Y)].
In the process of state assignment, a K -bit state vector, where
K > [lgy(card(S))], is assigned to each symbolic state of the
automaton [34].

In accordance with the notation presented above, a tran-
sition function characterized as the mapping §: X x S —
S+ should be associated with the function §: BNtK — BX
where the output is B = {0,1}. The form of the output
function depends on the type of the automaton. In the case of
Moore’s automaton, the form of the function is characterized
as the relation between outputs and the set of internal states,
ie. A S — Y. In the case of Mealy’s automaton, the input
signals A: X x S — Y also determine the states of the
outputs. As in the case of the transition function, the output
function may be associated with the mapping A: B — BM
for Moore’s automaton, and A: BV K — BM for Mealy’s
automaton.

A simple and convenient form for representing an FSM is
a textual description in the KISS format [33]. This consists of
symbolic implicants that include the input part, a symbolic
description of the present state, a symbolic description of
the next state, and the output states. In general, the form of
the KISS description follows Mealy’s scheme for an automa-
ton (Fig. 2a).

Example 1: Let us consider an exemplary sequential
automaton described in the KISS format. The input signals

VOLUME 7, 2019

M. Kubica et al.: Technology Mapping of FSMs Based on a Graph of Excitations and Outputs

IEEE Access

a) b) <) d)

.ilb a b ql g0
.ob D1 DO

.p 7
1001 10
-11- 10
0-11 10

10 00]
11 00 00 00
00 01 01 1

01 01 01 10
10 01 10 11
11 01 00 00
00 10 01 10
01 10 11 11
1- 10 10 11
00 s3 s3 10 00 11 11 10
01 s3 s3 11 01 11 11 11
10 s3 s0 00 10 11 00 00
11 s3 s2 11 1111 10 11

A BAH B2
X={a,b} S={Q1,Q2} Y={yl,y0}

FIGURE 3. The logic synthesis of an FSM without multilevel optimization.

bqlg0
aq0

bl

q140

i
bqlq0
byl

aglq0

FIGURE 4. The technology mapping of an FSM implemented in a
PAL-based device.

are denoted by the letters a and b, and the output signals by
the symbols y/ and y0 respectively. The automaton contains
four states, and its operation is described using 12 symbolic
multi-output implicants (Fig. 3a). In the process of state
assignment, the symbolically described states SO, S1, S2, S3
are associated with two-bit binary vectors forming coding
states 00, 01, 10, and 11. This leads to the description of the
automaton after the state assignment, as illustrated in Fig. 3b.
In the next stage, the synthesis of the transition and the output
blocks is carried out. Descriptions of the transition function
8: B* — B?, and the output function A: B* — B? in .pla
format [34] are presented in Fig. 3c. Descriptions of separate
functions may be obtained by appropriate partitioning of the
output part of the implicants determining the transitions in the
analyzed FSM.

Let us assume that an implementation of the FSM using
PAL-based logic blocks containing three product terms is
sought. The technology mapping of the transition and output
blocks onto PAL-based structures is usually based on the
minimization of transition functions §; : B* — B (i = 1, 2)
and output functions A;: B¥ — B (i = 1,2). All single-
output functions are minimized separately. The results of this
minimization are presented in Fig. 3d.

The implementation of FSM by means of a network of
three-term PAL-based logic blocks is presented in Fig. 4.

VOLUME 7, 2019

CPLD circuits available on the market contain hardware
mechanisms that facilitate mapping onto device resource
functions that require more product terms than the k terms
available in a PAL-based block. In particular, these include
parallel expanders and logic allocators. These structures offer
the possibility of virtually increasing the number of terms
available in a PAL-based block by “‘borrowing” them from
neighboring blocks. In this way, it is possible to increase
the number of terms in a cell at the expense of limiting
the number of terms available in neighboring blocks. Often,
using a greater number of terms means that it is impossi-
ble to use neighboring blocks at all. An additional cost of
using these expanders is a slight increase in the propagation
delay.

In the proposed method, the presence of the expanders
could be modeled by using PAL-based blocks that have dif-
ferent numbers of terms. However, for reasons of simplicity
this option will be neglected in this paper.

The implementation of combinational blocks in PAL-based
CPLD structures, as illustrated in the example, is directly
associated with the process of minimization of separate tran-
sition and output functions, which is usually carried out using
the Espresso-Dso algorithm. In this minimization process,
a search for the minimal covering of K transition functions
Si: BNtK - B (i = 1,...,K), and M output functions
it BVtK 5 B (i = 1,..., M) is carried out. After min-
imization, technology mapping of the minimized forms of
separate functions on the structure consisting of PAL-based
logic blocks is performed. Let us assume that the PAL-based
logic blocks contain k terms. In this situation, the numbers
of blocks required to implement the transition and output
functions can be calculated using Equations (1) and (2)
respectively:

£ [o
SR [@

where As;, A;; denote the numbers of implicants describing
individual single-output transition and output functions, and
os, 0, represent the numbers of k-term PAL-based blocks
required to implement the transition and the output blocks,

respectively. The H symbol denotes the unit step function,
and is defined as follows:

0 forx <O

H(x) =
1 forx =0

The aim of this paper is to present a technology-
dependent optimization of FSMs. The main contribution is
a novel multilevel optimization of FSM oriented towards
PAL-based CPLDs.

The essence of the proposed method consists of searching
for shared implicants of the transition and output functions.

16125

IEEE Access

M. Kubica et al.: Technology Mapping of FSMs Based on a Graph of Excitations and Outputs

IIl. FSM DESCRIPTION BY MEANS OF THE

GRAPH OF EXCITATIONS AND OUTPUTS

After the state assignment is carried out, an FSM can be con-
sidered as a circuit described by two multi-output functions
§ : BNtK _BK and A : BNtK BM B = (0,1},
where N is the number of FSM inputs, K is the length of
the state vector, and M is the number of FSM outputs. The
first function describes the transition block, and the sec-
ond the output block (Fig. 2a, 2b). The combinational part
of an FSM can be described using a single multi-output
function that simultaneously describes the two blocks. Let
8§+ A : BNYK . BE+M e the function describing the
combinational block of the structure shown in Fig. 2c.

a)
2 42
.0 2 .0 2
.p 15 .p 15
.s 4 .s 4
00 s0 s0 01 00 00 00 01 dth.pla
01 50 s1 00 g9 - QO 01 00 01 00
10 s0 sO 00 1- 01 10 00 00 00 id
11 s0 s0 00 S 11 00 00 00 .0 4
00 s1 s1 11 s2 - 10 00 01 01 11 -ilb a b ql q0
01 sl sl 10 S3 _ 11 01 01 01 10 .obSDl DO yl1 yO
10 sl s2 11 10 01 10 11 P
11 51 50 00 *esseeccsss 00T) o weep Egg} igﬁ
00 s2 sl 10 00 10 01 10 1-10 1011
01 s2 s3 11 01 10 11 11 0--1 0110
1- s2 s2 11 1- 10 10 11 0-1- 0110
00 s3 s3 10 00 11 11 10 0-11 1000
01 s3 s3 11 01 11 11 11 01-- 0100
10 s3 s0 00 10 11 00 00 000~ 0001
11 s3 s2 11 11 11 10 11 €
b)
nAy)=4

P e
D D D T @D

| Ajgeo=1 I Aproo=1 @ @
Dy Do »i Yo

FIGURE 5. Representation of the minimized form of the function
f: B4 - B* by means of the primary graph of excitations and outputs.

n(A)=2

n(Ay)=1

This function § + A : BY+tK - BK+M cap be represented
by a set of multi-output implicants [34]. Let y be the output
part of a multi-output implicant consisting of zero or one, and
let discriminant Ay be the number of the same y output vec-
tors. The range of discriminant Ay, denoted as ((Ay) is the
number of ones contained in y. Let G<Y,U> be the primary
graph of excitations and outputs (Fig. 5). Graph nodes are
associated with the corresponding discriminants Ay, while
the edges connect the nodes Ayg, Ay, for which the code dis-
tance between the ys, y; is one, and p(Ays)+1 = (Ay;). The
graph of excitations and outputs contains two types of nodes,
which are referred to here as combinational nodes (denoted
by ellipses on the graph) and sequential nodes (rectangles).
Sequential nodes lie on paths that are associated with the
excitation functions of particular flip-flops.

16126

Example 2: Let us consider the automaton from Exam-
ple 1 again. After coding the internal states, and after mini-
mization of the multi-output function § + A: BV K — BK+M
where N = 2, K = 2, and M = 2, we obtain the minimized
form of the multi-output function § + A: B* — B*, which
contains eight implicants. In the set of all implicants, there
are two larger groups of implicants: the first contains three
implicants with an output part equal to 1011 (1001 1011;
-11- 1011; 1-10 1011), and the second contains two impli-
cants with an output part equal to 0110 (0-10110; 0-1- 0110).
These functions can be represented by the graph of excitations
and outputs presented in Fig. 5b.

The graph shown in Fig. 5 contains a number of nodes for
which the value of the discriminant Ay = 0. Such nodes can
be deleted from the primary graph. In this way, a reduced
graph of excitations and outputs is created (Fig. 6).

H(Ay)=3
HA)=2

u(ay)-=1

D, i Yo

FIGURE 6. The reduced graph of excitations and outputs, representing
the minimized form of the example function.

nAy=3

H@Ay-=1 _lvA"umn:l | | A=t | %\ E
a ER
3 v

A 4 3 5 4

FIGURE 7. The method of determining the values of the discriminants
AfMG =1, 4Kk=2,m=2)

By using the values of the discriminants at the nodes of the
graph of excitations and outputs, it is possible to determine
the number of k-term PAL-based blocks required to imple-
ment the FSM. A discriminant A{H‘M i=12,...,K+M)
can be assigned to each of the §; BVNtK . B(i =
1,...,K) and A;: BN*K — B(i = 1,,M) functions that
create the multi-output function § + A : BNTK — pK+M,
The value of the discriminant AIK ™ s equal to the sum
of the values of the discriminants Ay for which a value of
one is present at the same position i in the output part y
of the implicants. The method of determining the values of
discriminants AIK +Mis based on an analysis of the appropriate
paths in the graph of excitations and outputs. The values of
the discriminants AlK M and the corresponding paths in the
graph from Fig. 6 are presented in Fig. 7.

VOLUME 7, 2019

M. Kubica et al.: Technology Mapping of FSMs Based on a Graph of Excitations and Outputs

IEEE Access

The number of logic blocks for implementation of the
function § + A : BVtK — BK+M js equal to o545 (3).

M+K AM+K _ AM+K _
o= ([)[4)
;(k—1 k—1
3)

It should be noted that Equation (3) describes the worst
case, i.e. the number of blocks required to implement the
FSM assuming that each function is built separately, and
that co-sharing of blocks does not occur. During further
optimization, blocks that can be shared between functions
are identified. The essence of the proposed method consists
of searching for the solution in which the number of blocks
required to implement the FSM is less than the value of the
sum o540, , where osand o), are described by Eqgs. (1) and (2).
This will be described in the next section.

PAL| y-1o11 Yo
k=3

b)

I D,
o : 9
v
PAL Yo
e PAL| y-loul =3 |y=0001
DI DOyl 0 PAL D,
=3 |y=1000

clk

FIGURE 8. An example of the proposed technology mapping:

a) an example of a graph of excitations and outputs; b) implementation
of implicants associated with the third range node; c) the reduced graph
of excitations and outputs; d) the implementation of implicants
corresponding to first range nodes and feedbacks.

IV. A TECHNOLOGY MAPPING ALGORITHM BASED

ON THE GRAPH OF EXCITATIONS AND OUTPUTS

By analyzing the structure of the graph of excitations and
outputs, multi-level optimization is possible.

Example 3: Let us consider the fragment of the graph of
excitations and outputs shown in Fig. 8a. Assuming that we
use PAL-based logic blocks containing three product terms,
the implicants associated with the third range node can be
configured in one block (Fig. 8b). Analysis of the graph is an
iterative process. If a node of the graph is chosen in step i,
the graph needs to be modified. The node A1 is eliminated
from the graph, and new, additional nodes App (feedback)
are added in the branches, through which the node Ajgp; is
connected to the nodes in the lower ranges (Fig. 8c). These
nodes, which represent the feedback Argp, appear for all the
functions that have not yet been synthesized.

In the next stage, implementation of the nodes of the first
range Ajgpoand Aggo; is carried out, leading to the mapping
illustrated in Fig. 8d.

VOLUME 7, 2019

To summarize Example 3, in general, the modification of
the graph of excitations and outputs that results from the
implementation in step i of the implicants associated with
node iAy includes the following steps:

« deleting the node ' Ay from the graph;

o deleting all the edges connecting the node ‘Ay with

nodes in lower ranges; and

« creating nodes representing feedbacks, denoted by the

symbol Afpp, and replacing the edges connecting the
node iAy with nodes of lower ranges (which were
deleted in the previous step) by edges connecting the
App nodes with the nodes of lower ranges. If for a
given function an edge connected to a feedback node
is to be deleted, a new feedback node is not added
to the graph, and instead, the modification consists of
incrementing the value of the feedback discriminant,
i.e. Apg:= Apg + 1.

As a consequence of the reduction of the graph, the values
of the discriminants AIKJFM (i =20,...,K + M) are also
reduced. Figure 9 presents an example modification of the
graph that results from deletion of the node Ajg; and its
influence on the values of the discriminants AlK ™

H(A)=3
u(ay=2
Ha)2
im (a1

nay=t Atgar=1 Boto=

D Dy » T

A 4 3 5 4 A* 2 3 3 2

FIGURE 9. The influence of reduction of a graph on the values of the
discriminants.

Let! Ay be the discriminant chosen in the i-th step of map-
ping. Implementation of the implicants associated with 'Ay,
leads to optimization if condition (4) is fulfilled.

; ; Ay —k Ay —k
i i+1 y y
- H 1
“

{5545 denotes the number of PAL-based blocks containing
k product terms that are required to implement the FSM
before the i-th step of the mapping algorithm. The expression
H([(Ay—k)/(k—1)1) [(Ay—k)/(k —1)] + 1 enables us to
determine the number of k-implicant blocks needed to hold
the implicants associated with the discriminant Ay.

Let be ¢ = u('Ay). The reduction of the graph of exci-
tations and outputs resulting from implementation of the
implicants associated with the discriminant ’Ay influences
the values of ¢ discriminants Af M Let the value rj" be the
number for which ’Af -1 = rjc(mod (k—1)), where
j=1,2,...,c

The essence of the proposed technology mapping strategy
is based on a theory that is proven in [35]. A technology
mapping of FSMs based on a graph of excitations and outputs
is based on a continued mapping of the graph’s nodes in a

16127

IEEE Access

M. Kubica et al.: Technology Mapping of FSMs Based on a Graph of Excitations and Outputs

PAL-based logic block. As a result, a network of PAL-based
logic blocks with and without D flip-flops is created.

The first stage involves the implementation of the nodes
for which the range /,L(iAy) > 2, and iAy > k, where k
is a number of product terms. If the nodes that fulfill these
conditions appear on the graph, we start implementing corre-
sponding implicants on blocks that have a given number of
products. In the next stage, we search for the nodes for which
the range M(iAy) > 2. and within the set of the remainders
R = {rjc; Jj €< 1,c¢ >} where there exist at least two such
remainders such that 0 < ¢ < ‘A, < k and at the same time
0<ry <'Ay<k.

As in the previous case, if the conditions are fulfilled,
the set of PAL-based blocks will be extended to include more
blocks. In the next stages, implicants are carried out that are
connected with nodes in the graph of excitations and outputs
for which the range ,u,(iAy) =2and iAy =kor iAy > 2k—1.
When such nodes do not exist, the algorithm checks whether
other nodes in the range su(’ Ay) = 2 fulfill the condition
<' Ay < 2k — 1 and whether there exists at least one
remainder within the set of remainders R = {rjc; je<l,c>}
such that 0 < r{ < iAy — (k — 1). Finding nodes that fulfill
the conditions mentioned above results in the development of
a set of PAL-based logic blocks for a larger number of blocks.
In the other case, the nodes are separated or the implicants are
carried out using a known method [35].

Example 4: Let us consider an FSM that after state assign-
ment and minimization (with Espresso), is described by the
8 4 A.pla file (Fig. 10a). The graph of excitations and outputs
is shown in Fig. 10b. Implementation of FSM by means of
k-term PAL-based logic blocks requires

4 0 A4 0A4
AY —k AT —k
i=1
=2+1+2+2=7

blocks. In the first step, the implicants associated with the
Aqp11 are implemented. Only one three-term PAL-based
logic block is used (Ajo11 = 3). After implementation,
the graph of excitations and outputs is reduced (Fig. 10c).
After removing the node Ajp;; = 3, three nodes represent-
ing cascaded feedback connections are added (Arg). Now,
implementation of FSM by means of k-term PAL-based logic
blocks requires only

(R)

=14+14+14+1=4

1
O+

blocks. A profit from the minimization in (3) of

0 1
0§+ — O8+a

A —k A —
_3.H 1011 1011 — K fi=1
k—1 k—1

is obtained.

16128

a) b)
Ao =3
ia H(Ay)=3
o4
.ilb a b ql q0
.ob D1 DO y1 y0
p 8
1001 1011
-11- 1011 u(Ay)=2
1-10 1011 :
0--1 0110
0-1- 0110
0-11 1000
01-- 0100
000- 0001 u(Ay)=1 | Aror=1 I | Agr00=1 I @
e
Dy Dy N Yo
Ai4 4 3 5 4
it 1 0 0 1
c)
H(Ay)=2

wAy)=1

A 2 3 3 2

r' 0 0 0 0
d)

o Am:l
e S .
D, Dy »i

Al 2 3 3 2
it 1 0 0 1

q
“Ea 0 \
by PAL —
aqay | a PAL Q
aqgy |F3 agigo |
k=3
iq()i Q‘!
aq PAL
ab =3 -
1 a m
etk aq PAL n
k=3
aaa Y
aqig |
5/2 —
(blocks /levels = T —

FIGURE 10. An example of the technology mapping of an FSM, utilizing
the graph of excitations and outputs.

In the next step, the node for which the range j1(‘ Ay) =2is
considered. Unfortunately, the implementation of the impli-
cants associated with this node Ag119 = 2 is not profitable.
The Api10 = 2 node is therefore split into Agjpo = 2 and
Apo1o = 2 nodes (Fig. 10d). In the last step, the rest of the
implicants are implemented. The final network of PAL-based
blocks with and without D F-Fs is shown in Fig. 10e.

VOLUME 7, 2019

M. Kubica et al.: Technology Mapping of FSMs Based on a Graph of Excitations and Outputs

IEEE Access

TABLE 1. A comparison of the effectiveness of FSM_PALDec technology mapping using the approach without multilevel

optimization (AwMO), (k=3,4,...,8).

AwWMO FSM_PALDec
k=3 k=4 k=5 k=6 [k=7 [k=8 | k=3 [k=4 [k=5 [k=6 k=7 [k=38

benchmark | i | o | P s B[L BIL BIL | B[L| BIL| BIL| BIL BIL | BI[L | B|L | B|L | BIL
bbara 4 2] 60 [10 1713 12 [o2 [102 | 72 [72 [17]3 12 [102 [103 [72| 72
bbsse 7171 56 [16 | 343 24 [202 [172 [16[2 [152 | 29]5 | 23[4 | 20l4 | 172 | 16[2 | 15/4
bbtas 212 24 [6 103 712 62 [62 | 62| sh 9[3 713 62 62 | 62 [sh
beecount 3[4l 28 [7 16]2 10[2 oo oo [71 [7 | 144 102 92 ol 7 [71
Cse 7 171 91 [16 | 403 2912 | 24l2 [21[2 [18[2 | 152 | 395 | 29]5 | 242 | 212 | 18]2 | 152
dk14 3151 56 [7 28[2 212 | 152 [142 [132 [o2 [2802 [212 [152 [142 [132 | 92
dk15 3151 32 | 4 14]2 10[2 s2 | 701 [70 [701 | 14]2 10]2 8[2 711 [70 [7k
dk17 23 32 [8 24[3 1812 | 162 | 142 | 132 [12]2 | 203 1813 | 162 | 142 [132 | 122
dk27 12 14 [7 62 51 1 I S T I T A 6]2 5[1 51 5[1 [sh [s
dk512 1 3] 30 |15 15]2 112 | 102 | 102 | 82 | 8l2] 152 112 [102 [102 [82 | 82
exl 9 [19] 138 | 20 | 1344 95[4 | 763 | 6313 | 56[3 | 513 | 56]5 | 46[5 | 39(4 | 393 | 383 | 3713
exd 6 19 21 | 14 | 22]2 1812 | 162 | 16[2 | 152 | 15]2 | 22[2 182 | 182 | 162 | 16]2 | 152
ex6 58] 34 | 8 35[3 2712 | 21l2 [17[2 | 16l2 | 14]2 | 26[3 183 [18[3 [1702 | 153 | 142
ex7 2121 36 [10 12[2 9l2 2T 7 61 | el [1203 9[2 712 72 T 61l | el1
keyb 7121170 19 | 514 36[3 | 2703 [2212 [19[2 | 182 | 36l6 | 26l4 | 224 | 19]5 | 184 | 15/4
Lion 211 11 [4 502 31 3lt [30 [31 | 30 42 31 31 3 30 [30
Lion9 2111 25 [9 112 82 72 1 62 | 511 501 [1o]3 82 62 612 | 5[1 | sh
Mc 3051 10 [4 701 701 A O I O e O A 71 711 701 2 T I T e
modulol2 | 1 | I | 24 | 12 92 52 sl2 [4 | 41 | 4Q 92 52 52 41 | 41 [_4Q
sl 8 | 61 107 | 20 | o84 6703 | 5003 [433 [36[2 | 322 | 65]6 | 49[4 | 394 | 35[4 | 32[4 | 3004
sla 8 |61 107 | 20 | 6304 46]3 | 36|13 | 30[2 | 272 [25[2 | 50[5 | 36l4 | 34l4 | 264 | 25l4 | 23[3
sand 119 | 184 | 32 | 1374 95[3 | 713 | 603 | 51]2 | 452 | 96]7 | 71l6 | 615 | 54|5 | 47(4 | 44l4
shifireg 111 16 [8 41 41 all | 4t [4l [4@ 401 41 401 ali [4 [ah
Sse 7 17 56 | 16 | 333 2512 | 2002 | 18]2 | 152 | 152 | 2814 | 21]3 | 19[3 | 183 | 152 | 152
Styr 9 [10] 166 | 30 | 117]4 80[3 | 643 | 52[3 | 43]2 | 40[2 [1095 803 | 64]3 | 523 | 432 [40]2
tav 414l 49 [4 61 61 611 | 611 | 61 6l 61 61 61 61 | 6[1 [61
trainl | 211 25 11 16]2 112 o2 [s [7 [shi | 14[3 113 9[3 s 72 | sh
traind 211 [14 [4 5)2 42 31 3l [3l [3h 42 42 32 32 | 3l | 3)1
27 4111 34 [&6 82 5|2 s | sl | sl | sl2 | 72 52 52 s2 | sl2 | 52
5208 112 153 | 18 12[3 9]2 ol2 [82 [82 [82| 12]2 9]2 813 sl2 | s> | 8]
5420 19] 2 | 137 | 18 12[3 102 ol2 | 82 [82 82| 12]2 92 82 sl2 | sl2 | 82
$386 7171 64 | 13 61[3 412 | 332 [272 [25[2 [23[> | 49{a | 37[4a | 33]4 | 2702 [254 | 23]2
$832 18 [19| 245 | 25 78[4 60[3 | 48[3 | 41]2 [38[2 | 352 | 655 | s0[4 | 42{a | 393 | 37[4 | 353
$510 1917 77 | 47 62[3 443 | 352 [302 | 25[2 | 222 | 62[3 | 44[3 | 35]2 | 30[2 | 25[2 | 222
s1488 8 [19] 251 | 48 | 1864 1273 | 993 [83[3 | 7113 | 652 | 116{7 | 955 | 78l6 | 695 | 63]5 | 616
s1494 8 1191 250 | 48 | 158/4 111]3 | 863 | 74[3 | 63[2 | 58[2 | 118[5 | 925 | 82[5 | 70[4 | 632 | 58[2
$820 18 [19] 232 | 25 | 1235 88[4 | 70[3 | 60[3 | 53[3 | 48[3 | 65[5 | sol4 | 424 | 39[3 | 37[4 | 35|3
5298 31611096 218] 160l4 11013 | 863 | 69[3 | 5913 | 52[2 | 91[4 | 683 | 59[3 | 452 | 41]2 | 37[2
T 1829107 1297 85 1037 81 887 76 778 69 712 65 1346 131 1026 109 879 103 777 90 706 85 658 79

V. EXPERIMENTAL RESULTS

The proposed FSM technology mapping algorithm was
implemented using a prototype software tool called
FSM_PALDec, and a number of experiments were carried
out using benchmarks [33]. Table 1 presents the results.

This table consists of three parts. In the first part, the names
of the benchmarks and their parameters are listed, such
as the numbers of inputs (i), outputs (0), symbolic multi-
output implicants (p), and FSM states (s). In the second part,
the results of logic synthesis of FSMs are shown. The center
of the table shows the results of synthesis performed on the
FSM benchmarks without multilevel optimization (AwMO,
approach without multilevel optimization). The columns
marked “B”’ list the numbers of k-product PAL-based blocks
used, and the columns marked “L”” give the numbers of logic
levels. The right-hand side of the table with the heading
“FSM_PALDec” contains the results obtained using the pro-
posed method.

The results presented in Table 1 confirm the general
rule that the reduction in PAL-based logic blocks in the
FSM_PALDec approach is connected with an increase in the
logic levels.

VOLUME 7, 2019

For all of the benchmarks implemented using PAL-based
logic blocks containing three terms, the proposed
FSM_PALDec method found 24 solutions (63%) that
required a smaller number of logic blocks. Unfortunately,
the change in the number of logic levels did not follow the
reduction in the number of logic blocks. For the benchmarks
implemented using three-term PAL-based logic blocks,
17 solutions (45%) required a greater number of logic levels
with respect to the approach without multilevel optimization.
In other cases (50%), the numbers of logic levels obtained for
both methods were identical. In many cases, the reduction
in the number of logic blocks is significantly higher than
the increase in the logic levels. For example, the number
of three-term PAL-based blocks used for ex/ was reduced
from 134 to 56, but the number of levels only increased from
four to five. In some cases, we also observe that a significant
reduction in the logic blocks does not lead to an increase in
logic levels (see s298, s820).

In the set of all FSMs compared here, the proposed
FSM_PALDec algorithm found 83 solutions (36%) that
required a lower number of logic blocks. Of these, 20 imple-
mentations (24%) did not require a greater number of

16129

IEEE Access

M. Kubica et al.: Technology Mapping of FSMs Based on a Graph of Excitations and Outputs

®AWMO 8 FSM_PALDed

k=3 k=4 k=5 k=6 k=7 k=8

FIGURE 11. Comparison of synthesis strategies with respect to area (logic
blocks) and speed (logic levels).

a)

blocks levels

8
| AWMO L 70 BAwMO -

O FSM PALDec OFSM PALDec [~

3888883

b) k=3 k=4 k=5 k=6 k=7 k=8

a
2
c

= AwMO
B FSM _PALDec

| AWMO
O FSM_PALDec

8883383

o 3

levels
20

W AwMO
0 4 ®AWMO
B FSM_PALDec o

60
40
20

0

k=3 k=4 k=5 k=6 k=7 k=8

k=3 k=4 k=5 k=6 k=7 k=8

FIGURE 12. Comparison of synthesis results with respect to area (logic
block) and speed (logic levels) for three groups of benchmarks:
a) p > 100; b) 25 < p < 100; and ¢) p < 25.

logic levels. For certain benchmarks, the reduction in the
logic block count was significant, e.g. for k = 3 bbasse
(15%), dk17 (17%), ex] (58%), ex6 (26%), keyb (29%),
lion (20%), s1 (34%); sla (21%); Sse (15%), sand (30%),
traind (20%), s386 (20%), 832 (17%), s1488 (38%), s1494
(25%), $820 (47%), s298 (43%). Significant differences
could be observed for larger values of k. The reduction
in four-term PAL-based logic blocks was also significant,
e.g. exl (52%), ex6 (33%), keyb (28%), lion (20%), s1 (27%);
sla (22%); sand (25%), Sse (16%), train4 (20%), s386
(20%), s832 (17%), s1488 (25%), s1494 (17%), s820 (43%),
5298 (38%).

The results of the experiments are presented in a synthetic
way in Figs. 11 and 12. Figs. 11 a,b show the total number of
logic blocks and the total number of logic levels for the whole
set of benchmarks.

In the FSM_PALDec strategy, the reduction in the logic
blocks obtained for the three-term PAL-based blocks is 26%,
while the increase in the total logic levels is 22%.

16130

These comparisons were also carried out separately for
three groups of benchmarks. The set of benchmarks was
divided into subsets containing the largest FSMs (with a num-
ber of transitions p > 100), medium FSMs (25 < p < 100),
and the smallest FSMs (p < 25). The results are presented
in Fig. 12.

The most significant differences are observed in the set of
the largest FSMs for all sizes of the logic blocks. In this set,
the FSM_PALDec system found numerous solutions requir-
ing a smaller number of logic blocks than the approach with-
out multilevel optimization. The most significant difference
was observed for the smallest logic block size (k = 3). Within
these solutions, the reduction in the number of logic blocks
is 33%, while the increase in the total number of logic levels
is only 22%.

Overall, based on the results obtained in these experiments,
it can be stated that:

o If reducing the number of logic blocks is an important
factor in the synthesis, the FSM_PALDec approach is a
very efficient method;

o The observed reduction in numbers of logic blocks is
bound up with an increase in the number of logic levels;

o The proposed method is most useful in the case where
programmable devices with the smallest logic blocks
are used, and optimization of the chip area is the main
concern.

VI. CONCLUSIONS

The method presented in this paper enables the effective
implementation of an FSM. The essence of the proposed
method is based on the mapping of a multi-output function
to a network of PAL-based logic blocks. In the process of
synthesis, shared implicants and multi-output function are
searched, simultaneously describing both a transition block
and an output block. This description of an FSM offers the
possibility of searching for the biggest groups of common
implicants, leading to minimization of the area occupied by
the FSM in CPLD. An implementation process based on
a new kind of graph was introduced, called the graph of
excitations and outputs. This graph is the development of the
concept of a multi-output function in the form of a graph of
outputs, as presented in [11]. The proposed approach allows
for a significant improvement in synthesis effectiveness and
this was demonstrated through experiment.

The proposed technology mapping of the FSM leads to
reduction in the number of logic blocks, at the cost of a slight
increase in the number of logic levels.

One of the main advantages of the proposed method is
simplicity. The algorithm is based on graph analysis meth-
ods that make it an interesting alternative to other methods.
The proposed approach is most useful in the case where
programmable devices with PAL-based logic blocks of small
size are used, and minimization of the chip area is of main
concern.

VOLUME 7, 2019

M. Kubica et al.: Technology Mapping of FSMs Based on a Graph of Excitations and Outputs

IEEE Access

REFERENCES

[1]
[2]

[3]
[4]

[5]

[6]

[71

[8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

Y. Liu, Y. Peng, B. Wang, S. Yao, and Z. Liu, “Review on cyber-physical
systems,” IEEE/CAA J. Autom. Sinica, vol. 4, no. 1, pp. 27-40, Jan. 2017.
K. Ding and P. Jiang, “RFID-based production data analysis in an
IoT-enabled smart job-shop,” IEEE/CAA J. Autom. Sinica, vol. 5, no. 1,
pp. 128-138, Jan. 2018.

R. Czerwinski and D. Kania, Finite State Machine Logic Synthesis for
Complex Programmable Logic Devices, vol. 231. Springer, 2013.

A. Barkalov, L. Titarenko, and S. Chmielewski, “Reduction in the number
of PAL macrocells for Moore FSM implemented with CPLD,” in Proc.
East-West Design Test Symp. (EWDTS), Sep. 2010, pp. 390-394.

S.-L. Chen, T. T. Hwang, and C. L. Liu, “A technology mapping algorithm
for CPLD architectures,” in Proc. IEEE Int. Conf. Field-Program. Tech-
nol., Hong Kong, Dec. 2002, pp. 204-210.

D. Chen, J. Cong, M. Ercegovac, and Z. Huang, ‘Performance-driven
mapping for CPLD architectures,” IEEE Trans. Comput.-Aided Design
Integr. Circuits Syst., vol. 22, no. 10, pp. 1424-1431, Oct. 2003.

P. Bacchetta, L. Daldoss, D. Sciuto, and C. Silvano, “Lower-power state
assignment techniques for finite state machines,” in Proc. IEEE Int. Symp.
Circuits Syst., May 2000, pp. 641-644.

L. Mengibar, L. Entrena, M. G. Lorenz, and E. S. Millan, ‘“Partitioned
state encoding for low power in FPGAs,” Electron. Lett., vol. 41, no. 17,
pp. 948-949, Aug. 2005.

L. Yuan, G. Qu, T. Villa, and A. Sangiovanni-Vincentelli, “FSM
re-engineering and its application in low power state encoding,” in Proc.
Asia South Pacific Design Automat. Conf. (ASP-DAC), vol. 1, Jan. 2005,
pp. 254-259.

L. Benini and G. De Micheli, “State assignment for low power dissipa-
tion,” IEEE J. Solid State Circuits, vol. 30, no. 3, pp. 258-268, Mar. 1995.
K. Kajstura and D. Kania, “Binary tree-based low power state assignment
algorithm,” in Proc. 12th Int. Conf. Comput. Methods Sci. Eng. (ICCMSE),
Athens, Greece, vol. 1790, Dec. 2016, p. 300007.

V. Salauyou and T. Grzes, “FSM state assignment methods for low-power
design,” in Proc. 6th Int. Conf. Comput. Inf. Syst. Ind. Manage. Appl.
(CISIM), Jun. 2007, pp. 345-350.

M. Pedram, “Power minimization in IC design: Principles and applica-
tions,” ACM Trans. Des. Automat. Electron. Syst., vol. 1, no. 1, pp. 3-56,
Jan. 1996.

P. Surti, L. F. Chao, and A. Tyagi, “Low power FSM design using
Huffman-style encoding,” in Proc. Eur. Des. Test Conf., Mar. 1997,
pp. 521-525.

A. H. El-Maleh, “Majority-based evolution state assignment algorithm for
area and power optimisation of sequential circuits,” IET Comput. Digit.
Techn., vol. 10, no. 1, pp. 30-36, Jan. 2016.

G. Venkataraman, S. M. Reddy, and I. Pomeranz, “GALLOP: Genetic
algorithm based low power FSM synthesis by simultaneous partitioning
and state assignment,” in Proc. 16th Int. Conf. VLSI Design, Jan. 2003,
pp. 533-538.

D. L. Oliveira, D. Bompean, T. Curtinhas, and L. A. Faria, “Design
of locally-clocked asynchronous finite state machines using synchronous
CAD tools,” in Proc. IEEE 4th Latin Amer. Symp. Circuits Syst. (LASCAS),
Feb./Mar. 2013, pp. 1-4.

J. Kulisz, R. Nawrot, and D. Kania, ““Synthesis of energy-efficient counters
implemented in PLD circuits,” in Proc. 12th Int. Conf. Comput. Methods
Sci. Eng. (ICCMSE), Athens, Greece, vol. 1790, Dec. 2016, p. 300006.

S. N. Pradhan, M. T. Kumar, and S. Chattopadhyay, “Integrated power-
gating and state assignment for low power FSM synthesis,” in Proc. IEEE
Comput. Soc. Annu. Symp. VLSI, Apr. 2008, pp. 269-274.

D. Kania, “Logic synthesis of multi-output functions for PAL-based
CPLDs,” in Proc. IEEE Int. Conf. Field-Program. Technol. (FPT),
Dec. 2002, pp. 429-432.

D. Kania, “A new approach to logic synthesis of multi-output Boolean
functions on PAL-based CPLDs,” in Proc. 17th ACM Great Lakes Symp.
VLSI, Stresa-Lago Maggiore, Italy, Mar. 2007, pp. 152-155.

R. Czerwinski and D. Kania, *“State assignment and optimization of ultra-
high-speed FSMs utilizing tristate buffers,” ACM Trans. Des. Automat.
Electron. Syst., vol. 22, no. 1, pp. 1-25, Dec. 2016.

D. Kania and J. Kulisz, “Logic synthesis for PAL-based CPLD-s based on
two-stage decomposition,” J. Syst. Softw., vol. 80, no. 7, pp. 1129-1141,
Jul. 2007.

A. Opara and D. Kania, “Decomposition-based logic synthesis for
PAL-based CPLDs,” Int. J. Appl. Math. Comput. Sci., vol. 20, no. 2,
pp. 367-384, Jul. 2010.

VOLUME 7, 2019

(25]

[26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

M. Kubica and D. Kania, “Area-oriented technology mapping for
LUT-based logic blocks,” Int. J. Appl. Math. Comput. Sci., vol. 27, no. 1,
pp. 207-222, Mar. 2017.

M. D. Kubica and D. Kania, ‘“Decomposition of multi-output functions
oriented to configurability of logic blocks,” Bull. Polish Acad. Sci., Tech.
Sci., vol. 65, no. 3, pp. 317-331, Jun. 2017.

M. Kubica, A. Opara, and D. Kania, “Logic synthesis for FPGAs based
on cutting of BDD,”” Microprocessors Microsyst., vol. 52, pp. 173-187,
Jul. 2017.

R. Czerwinski and D. Kania, “Area and speed oriented synthesis of
FSMs for PAL-based CPLDs,” Microprocessor Microsyst., vol. 36, no. 1,
pp. 45-61, Feb. 2012.

M. J. Ciesielski and S. Yang, “PLADE: A two-stage PLA decomposition,”
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 11, no. 8,
pp. 943-954, Aug. 1992.

L. Wang and A. E. A. Almaini, “Optimisation of Reed-Miiller PLA
implementations circuits,” IEEE Proc. Devices Syst., vol. 149, no. 2,
pp. 119-128, Apr. 2002.

K. Yan, “Practical logic synthesis for CPLDs and FPGAs with
PLA-style logic blocks,” in Proc. Asia South Pacific Design Automat.
Conf., Jan. 2001, pp. 231-234.

C. Yang and M. Ciesielski, “BDS: A BBD-based logic optimization sys-
tem,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 21,
no. 7, pp. 866-876, Jul. 2002.

E. Sentovich et al,, “SIS: A system for sequential circuit synthesis,”
Univ. California, Berkeley, Berkeley, CA, USA, Tech. Rep. UCB/ERL
M92/41, 1992.

G. de Micheli, Synthesis and Optimization of Digital Circuits. New York,
NY, USA: McGraw-Hill, 1994.

D. Kania, “Efficient technology mapping method for PAL-based devices,”
in Design of Digital Systems and Devices, vol. 79. Springer, 2011,
pp. 145-164.

MARCIN KUBICA received the M.Sc. and Ph.D.
degrees from the Silesian University of Tech-
nology, Gliwice, Poland, in 2010 and 2014,
respectively, where he has been an Assistant
Professor with the Institute of Electronics. His
main research interests include programmable
devices and systems and logic synthesis.

DARIUSZ KANIA received the M.Sc. and Ph.D.
degrees from the Silesian University of Technol-
ogy, Gliwice, Poland, in 1989 and 1995, respec-
tively, where he was an Assistant, from 1989
to 1995, and an Assistant Professor, from 1995
to 2004, with the Institute of Electronics, and
has been a Professor, since 2007. His main inter-
ests and research areas include programmable
devices and systems, logic synthesis, technology
mapping and optimization dedicated to the wide

range of programmable logic devices (CPLD and FPGA), and implementa-
tion of digital circuits.

JOZEF KULISZ received the M.Sc. and Ph.D.
degrees from the Faculty of Automatics, Electron-
ics and Computer Science, Silesian University of
Technology, Gliwice, Poland, in 1992 and 2003,
respectively, where he is currently an Assistant
Professor with the Institute of Electronics. His
research interest includes the design and applica-
tion of digital circuits, particularly programmable
logic devices, hardware description languages, and
programmable logic controllers.

16131

	INTRODUCTION
	THEORETICAL BACKGROUND
	FSM DESCRIPTION BY MEANS OF THE GRAPH OF EXCITATIONS AND OUTPUTS
	A TECHNOLOGY MAPPING ALGORITHM BASED ON THE GRAPH OF EXCITATIONS AND OUTPUTS
	EXPERIMENTAL RESULTS
	CONCLUSIONS
	REFERENCES
	Biographies
	MARCIN KUBICA
	DARIUSZ KANIA
	JÓZEF KULISZ

