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ABSTRACT In this paper, the problem of direction-of-arrival (DOA) estimation for a uniform linear
array with single-snapshot observations is addressed. Two non-parametric DOA estimators are developed,
which can be applied in any azimuth range with one snapshot. Their main idea is iteratively updating the
DOA estimates using the weighted least squares and covariance matrix. Two criteria for implementing the
covariance matrix are devised, which guarantee high resolution of the proposed methods. The simulation
results are included to demonstrate the superiority of our algorithms over several conventional DOAmethods
in terms of both estimation performance and computational complexity.

INDEX TERMS Direction-of-arrival, single snapshot, iterative adaptive approach, selective azimuth range,
weighted least squares.

I. INTRODUCTION
Direction-of-arrival (DOA) estimation is an important
research topic in sensor array processing and can be applied in
many areas such as radar, sonar and communications [1]–[3].
It refers to accurately determining the locations of sources
using a finite set of noisy measurements by means of either
parametric or non-parametric methodologies [4]. In the para-
metric approach, the signal is assumed to be described as
a known function, which allows the derivation of the opti-
mal estimators. Nevertheless, the performance of parametric
methods deteriorates if the assumed signal model and actual
one are mismatched. While for the non-parametric method,
there is no assumption on the signal, and therefore, it can
be utilized in many applications even when there is no prior
knowledge of the signal.

Among numerous non-parametric estimators developed in
the literature, one representative methodology is the classical
delay-and-sum (DAS) method [5], where the observed data
are weighted and time-shifted for different scanning azimuth
ranges in the space [0◦, 180◦). However, this method has high
sidelobe, leading to poor resolution in the case of two closely-
spaced source waveforms. To improve the performance, sev-
eral algorithms such as principal-singular-vector utilization
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for modal analysis (PUMA) [6], Capon [7]–[9], multiple
signal classification (MUSIC) [10]–[12] have been proposed,
which can provide high-resolution in the scenario of high
signal-to-noise ratio (SNR) and large number of snapshots.
In [13]–[15], amplitude and phase estimator (APES) was
suggested to accurately estimate the power of the source
signal, which can resolve sources as well. Although these
methods can obtain high accurate DOA estimation in the
case of high SNR or numerous snapshots, their performance
degrades when only a few snapshots are available. This is
because that accurate implementation of covariance matrix
in these methods requires a large number of snapshots.

Furthermore, in real-world applications, single snapshot
is commonly encountered, when the environment around
the sensors does not change in a short duration. More-
over, in wireless communications, single-input single-output
(SISO) [16], [17] and/or multiple-input single-output (MISO)
radar/sonar range-Doppler imaging [18], the mathematical
model of observations aligns with that of uniform linear
array (ULA) using single snapshot. Since the developed esti-
mators such as Capon, MUSIC and APES estimators, cannot
provide a satisfactory performance, the problem of DOA
estimation for single snapshot has attracted considerable
attention.

In [19]–[21], a super-resolution method, namely, the itera-
tive adaptive approach (IAA), is developed, which iteratively
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obtaining DOA estimates using the weighted least
squares (WLS) approach. According to the Markov esti-
mate [22], [23], the weighing matrix in IAA is in fact the
covariance matrix of observations. To ensure the high res-
olution, IAA updates the covariance matrix using the DOA
estimate iteratively, and hence, accurate implementation of
the IAA covariance matrix requires the estimates in full
azimuth ranges of [0◦, 180◦). That is to say, IAA can only
work well in the fixed azimuth range. However, in the case
that the coarse arrival ranges of sources are known a priori,
full azimuth estimation of IAA is redundant and suffers from
high computational cost. Although fast implementation of
IAA [24]–[26] has been proposed, it is still not a good choice
for selective range DOA estimation.

In this paper, we address the DOA estimation problem in
a selective azimuth range, where ULA is taken as an illustra-
tion. Two high-resolution estimators, referred to as selective
IAA I (SIAA I) and selective IAA II (SIAA II), are devised,
which are realized according to the IAA cost function. To be
employed in any selective azimuth range, two implementa-
tion criteria of the covariance matrix are suggested, where
only the DOA estimates in the interested azimuth range is
required. For SIAA I, we divide the full azimuth range into
interested one and non-interested one. Then the covariance
matrix is modified utilizing the DOA estimates in the inter-
ested range as well as the variance estimates outside the
selective range that can be obtained by the selective DOA
estimates. While in SIAA II, we redefine the mathematical
model of observations as the noise-free and noisy component,
where the former is described by the selective azimuth range.
The covariance matrix of SIAA II is then defined by the DOA
estimates and the variance of noise term.

The rest of this paper is organized as follows. In Section II,
the ULA signal model and a brief review of IAA algorithm
are given. In Section III, we present the main idea of SIAA I,
where the derivation of noise variance is suggested. The
SIAA II is also developed, and the computational costs of
both SIAA I and SIAA II are provided. Computer simulations
in Section IV demonstrate that the proposedmethods perform
better than the Capon, APES and MUSIC estimators. Finally,
conclusions are drawn in Section V.

FIGURE 1. Illustration of uniform linear array.

II. REVIEW OF IAA
As shown in Figure 1, we consider a ULA [27] withM well-
calibrated and identically-polarized sensors. Suppose in the
far-field, there are P uncorrelated narrowband source targets,

say, s1, s2, · · · sP. It is worth pointing out that we take
sp as an illustration in Figure 1. Without loss of generality,
the observed signal of the mth sensor at time t , denoted
by ym(t), is modeled as:

ym(t) =
P∑
p=1

sp(t)e−j2πmd cos($p)/λ + qm(t),

m = 1, 2, · · · , M (1)

where sp(t) is the waveform impinging on the ULA plane
at time t , $p ∈ [0◦, 180◦) denotes the azimuth angle cor-
responding to the pth source and λ is the wavelength. The
qm denotes the noise term which is independent and iden-
tically distributed (IID) complex random variable following
the zero-mean white Gaussian distribution with unknown
variance σ 2. The task of DOA estimation is finding {$p}

P
p=1

from observations {ym(t)}Mm=1. Note that d in Figure 1 denotes
the distance between two adjacent sensors, which is chosen
as λ/2 [28].

In the following, we consider the single-snapshot DOA
estimation problem. It is noted that our study can also be
extended to the multiple snapshots. We first review the one-
dimensional IAA [19], which can provide the high-resolution
full range DOA estimation for the single snapshot data.

The observations in (1) is rewritten in vector form:

yM = AM×LxL , (2)

where yM = [y1 y1 · · · yM ]T is observation vector with T

denoting the transpose operator, and xL = [x1 x2 · · · xL]T

with L ≥ M , AM×L = [aM (θ1) aM (θ2) · · · aM (θL)] with

aM (θl) = [e−jπ cos(θ1) e−j2π cos(θl ) · · · e−jMπ cos(θl )]T . (3)

Here, the azimuth range [0◦, 180◦) is divided into L uniform
grid points {θl}Ll=1, while xl and aM (θl) (l = 1, 2, · · · ,L)
are the amplitude and frequency-vector associated with θl ,
respectively. Assuming that L is chosen sufficiently large and
in the absence of noise, we have:

xl =

{
sp, θl = $p, p = 1, 2, · · · ,P
0, otherwise.

(4)

The conceptual estimate of xl , denoted by x̂l , can be obtained
by the WLS approach with the cost function

J (xl) = (yM − aM (θl)xl)H W−1l (yM − aM (θl)xl) , (5)

where −1 and H denote matrix inverse and conjugate trans-
pose, respectively. Employing the criterion in the Markov
estimates [23], the weighting matrix Wl for each xl is:

Wl = E{(yM − aM (θl)xl) (yM − aM (θl)xl)H }

= QM − E{|xl |2}aM (θl)aHM (θl), (6)

where E{·} denotes the expectation operator,

QM = E{yMyHM }

= AM×Ldiag
(
E{|x1|2} E{|x2|2} · · · E{|xL |2}

)
AH
M×L ,

(7)
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is the covariance matrix with diag (·) denoting the diago-
nal matrix. Since the expectation in QM is hard to obtain,
we assume E{|xl |2} ≈ |xl |2. In this case,QM can be regarded
as a complicated function of xl , therefore, (5) is usually solved
in an iterative manner.

Employing the Woodbury matrix identity [29], Wl can
be replaced by QM and the (` + 1)th estimate, referred to
as x̂(`+1)l , is

x̂(`+1)l = argmin
x̃l

J (x̃l)

=
aHM (θl)(Q

(`)
M )−1yM

aHM (θl)(Q
(`)
M )−1aM (θl)

, l = 1, 2, · · · ,L, (8)

where

Q(`)
M = AM×Ldiag

(
|x̂(`)1 |

2
|x̂(`)2 |

2
· · · |x̂(`)L |

2
)
AH
M×L . (9)

III. PROPOSED METHOD
As it is discussed in (8) in Section II, the inverse operation
of the covariance matrix QM is required in each iteration.
According to (9), the QM is defined by using the spectrum
of full azimuth range. In the applications that only a selective
azimuth range, e.g., (ϑ1, ϑ2) with 0◦ < ϑ1 < ϑ2 < 180◦,
is interested in, IAA still needs to calculate the full range
spectrum due to the requirement of implementing QM . Since
IAA is a type of grid search method, it suffers from the high
computational cost for full spectrum estimation. Therefore,
IAA cannot be directly applied to the DOA estimation in a
selective range.

As the covariance matrix QM is a key of IAA, in this
section, we develop two implementation methods and
propose two generalized IAA versions accordingly.

A. SIAA I
Suppose all signals are located in our interested ranges
[ϑ1, ϑ2]. Then the mathematical model in (2) can be rewritten
as:

yM = AM×L(u+ v), (10)

where u corresponds to the spectrum in (ϑ1, ϑ2], while v
is the spectrum of [0◦, ϑ1] and (ϑ2, 180◦). According to
our assumption, all source directions are located in (ϑ1, ϑ2].
Therefore, v can be regarded as the noise term in frequency
domain.

It is assumed that (ϑ1, ϑ2] is uniformly divided intoK bins.
Then the requirement of 180/L = (ϑ2 − ϑ1)/K should be
satisfied. Under this assumption, (10) can be expressed as

yM = BM×KuK + CM×SvS , (11)

where S = L − K and

BM×K =


e−jπ cos(ω1) e−jπ cos(ω2) · · · e−jπ cos(ωK )

e−j2π cos(ω1) e−j2π cos(ω2) · · · e−j2π cos(ωK )

...
...

. . .
...

e−jMπ cos(ω1) e−jMπ cos(ω2) · · · e−jMπ cos(ωK )


(12)

CM×S =


e−jπ cos(ϕ1) e−jπ cos(ϕ2) · · · e−jπ cos(ϕS )

e−j2π cos(ϕ1) e−j2π cos(ϕ2) · · · e−j2π cos(ϕS )

...
...

. . .
...

e−jMπ cos(ϕ1) e−jMπ cos(ϕ2) · · · e−jMπ cos(ϕS )


(13)

with ωk = ϑ1 + k(ϑ2 − ϑ1)/K , k = 1, 2, · · · , K and

ϕs =

{
ϑ1s/T1, s < ϑ1K

ϑ2−ϑ1

ϑ2 +
(180−ϑ2)(s−ϑ1)

S−T1
, ϑ1K

ϑ2−ϑ1
≤ s < S.

(14)

In this case, our task becomes finding uK from yM .
Denote bM (ωk ) = [e−jπ cos(ωk ) e−j2π cos(ωk ) · · ·

e−jMπ cos(ωk )]T as the kth column of BM×K . Employing the
WLS approach, the estimate of uk , denoted by ûk , is obtained
as

ûk = argmin
ũk

(yM − bM (ωk )ũk )HP−1M (yM − bM (ωk )ũk ),

(15)

where the weighting matrix PM is defined the same as (9).
Based on (11), PM is now expressed as

PM =E
{
(BM×KuK+CM×SzS) (BM×KuK+CM×SvS)H

}
,

=BM×KE{uKuHK }B
H
M×K+CM×SE{vKvHK }C

H
M×S . (16)

From the Appendix, E{vSvHS } is equal to σ 2
z IS with σ 2

z
denoting the variance of noise term vK and IS being the S×S
identity matrix. Therefore, (16) is now

PM = BM×Kdiag
(
E{|u1|2} E{|u2|2} · · · E{|uK |2}

)
BHM×K

+ σ 2
z CM×SCH

M×S . (17)

Here PM is still a complicated expression of unknown uK ,
therefore, uk can be estimated iteratively with the (` + 1)th
estimate being

û(`+1)k =

bHM (ωk )
(
P(`)
M

)−1
yM

bHM (ωk )
(
P(`)
M

)−1
bM (ωk )

, k = 1, 2, · · · ,K ,

(18)

where

P(`)
M = BM×KG

(`)
K BHM×K +

(
σ̂ 2
z

)(`)
CM×SCH

M×S , (19)

with G(`)
K = diag

(
|û(`)1 |

2
|û(`)2 |

2
· · · |û(`)K |

2
)
. According to

the proof in the Appendix, σ 2
z and noise variance σ 2 are

related by σ 2
z =

σ 2

L , while σ 2 can be computed as [30]:(
σ̂ 2
)(`)
=

1
M

(yM−µ̂(`)BM×K û
(`)
K )H (yM−µ̂(`)BM×K û

(`)
K ),

(20)

where µ̂(`) is the scaling parameter because the value of uK
may not exactly equal {sp}Pp=1. Using the least squares (LS)
approach, µ̂(`) is obtained by minimizing

J (µ) =
(
yM − µ(`)BM×K û

(`)
K

)H (
yM − µ(`)BM×K û

(`)
K

)
.

(21)
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Solving (21) yields:

µ̂(`)
=

(
û(`)K

)H
BHM×KyM(

û(`)K
)H (

BHM×KBM×K
)
û(`)K

. (22)

The steps of SIAA I are summarized in Table 1.

TABLE 1. Summary of SIAA I.

B. SIAA II
Although SIAA I can provide a high-resolution spectrum in a
selected frequency range (ϑ1, ϑ2], the condition that 180/L =
(ϑ2−ϑ1)/K should be satisfied. That is to say, SIAA I is not
flexible for arbitrary selective range. In this case, we propose
a more general DOA estimator, which is named SIAA II.

Here we still assume that all noise-free signals are located
in the interested interval (ϑ1, ϑ2]. According to (2) and
with assumption that all signals are in the interested range,
the ULA signal model is now expressed as

yM = BM×KwK + qM , (23)

where BM×K is defined in (12), wK = [w1 w2 · · · wK ]T is
the spectrum of noise-free signal in (ϑ1, ϑ2]. Here the task of
DOA is estimating wK from yM .
The estimate of wk , referred to as ŵk , can be computed

using the WLS approach:

ŵk=argmin
w̃k

(yM−bM (ωk )w̃k )HF−1M (yM−bM (ωk )w̃k ), (24)

where the weighting matrix FM is still the covariance of
observed data yM . According to the definition in (9), we have

FM = E{(BM×K sK + qM ) (BM×K sK + qM )H },

= BM×Kdiag
(
|w1|

2
|w2|

2
· · · |wK |2

)
BHM×K + σ

2IM ,

(25)

where IM is the M ×M identity matrix.
Similarly, (24) is solved in an iterative manner. The

(`+ 1)th estimate, namely, ŵ(`+1)
k , is computed as

ŵ(`+1)
k =

bHM (ωk )(F
(`)
M )−1yM

bHM (ωk )(F
(`)
M )−1bM (ωk )

, k = 1, 2, · · · ,K ,

(26)

where

F(`)
M = BM×KO

(`)
K BHM×K +

(
σ̂ 2
M

)(`)
IM , (27)

with
(
σ̂ 2
M

)(`)
being

(σ̂ 2
M )(`) =

1
M

(yM−µ̂(`)BM×K ŵ
(`)
K )H (yM−µ̂(`)BM×K ŵ

(`)
K ),

(28)

O(`)
K = diag

(
|ŵ(`)

1 |
2
|ŵ(`)

2 |
2
· · · |ŵ(`)

K |
2
)
, (29)

and µ̂(`) is also updated using (22).
Finally, we summarize the steps of SIAA II in Table 2.

TABLE 2. Summary of SIAA II.

C. COMPUTATIONAL COMPLEXITY
The complexity of IAA, SIAA I and SIAA II is investigated in
this section. At each iteration, the numbers of multiplications
required are 2LM2

+ LM + M3, 2KM2
+ 2KM + M3

+

LM and 2KM2
+ 3KM + M3, respectively. In the proposed

schemes, the additional computational cost of 2KM is due
to the calculation of σ̂ (`) and µ̂(`). That is to say, when the
increment of scanning grid is identical among IAA, SIAA I
and SIAA II, the proposed ones are more computationally
efficient. It is worth pointing that in the case of large number
of sensors, fast implementation of SIAA I and SIAA II can
be realized according to [24]–[26].

IV. SIMULATION RESULTS
To evaluate the performance of the proposed methods, com-
puter simulations have been conducted. We employ the
empirical mean square error (MSE) and absolute bias of $̂ ,
defined as E{($ − $̂ )2} and |$ − E{$̂ }|, as the perfor-
mance metrics. The Cramér-Rao lower bound (CRLB) [31]
is included as the benchmark while comparisons with the
Capon, APES and MUSIC methods are also provided. The
received signal is generated according to (1). For the IAA,
Capon, APES and MUSIC estimators, the scanning grid
is uniformly with the increment between adjacent points
being 1◦, while the selective range in the proposed methods
is chosen as ϑ1 = 30◦ and ϑ2 = 60◦ with same increment.
Therefore, K and L are 30 and 180, respectively. All results
are simulated using Matlab running on Intel(R) Core(TM)
i7-4790 CPU@3.60GHz and Windows 7 for 1000 Monte
Carlo trials with M = 80 sensors in ULA.
First, we investigate the estimation performance ver-

sus SNR. Here we consider one source located at 41.1◦

and the three-point parabolic interpolation [32] is utilized to
remove the estimation bias. Figures 2 and 3 show the MSE
and bias of $̂ versus SNR. It is seen that the performance
of SIAA I and SIAA II is superior to IAA and Capon esti-
mators, since they can provide reliable performance when
SNR < −1 dB. It is noted that the APES fails to estimate $̂
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FIGURE 2. MSE versus SNR.

FIGURE 3. Bias versus SNR.

FIGURE 4. Computational cost versus M at SNR = 12 dB.

correctly because of the few snapshots. Figure 4 shows the
complexity of all estimators versus the number of sensorsM .
The stopwatch timer is employed as the measure of empirical

computational cost. It is indicated that our proposed schemes
are significantly faster than IAA and changes slowly as M
varies.

FIGURE 5. Frequency estimates at SNR = 12 dB.

Second, we study the case that all source waveforms are in
selective range with SNR = 12 dB and 100 Monte carlo runs
are performed. Three closely-spaced uncorrelated sources at
42◦, 44◦ and 46◦ are considered. It is seen in Figure 5 that
all estimates of the IAA and SIAA I and SIAA II locate
in (42◦, 46◦), and they can resolve three clusters around
42◦, 44◦ and 46◦ clearly. While for the other three conven-
tional estimators, they fail to provide a reliable and high-
resolution estimation. This demonstrates that our proposed
methods have higher resolvability.

Thirdly, the scenario that not all sources are in the selec-
tive range is considered. Here five uncorrelated sources at
16◦, 42◦, 44◦, 68◦ and 70◦ are investigated, where only
sources at 42◦ and 44◦ are our interested signals. The SNR is
set to 12 dB and the experiment is based on 1000 independent
trials. Figure 6 shows the DOA spectrum of all estimators.
It is seen that only IAA can resolve five peaks in the full
range while Capon, APES and MUSIC estimators fails to
recognize all peaks. Since signals at 42◦ and 44◦ are the
interested ones, our proposed methods can provide a reli-
able estimation of them. This result shows that although our
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FIGURE 6. DOA spectrum at SNR = 12 dB.

method is developed under the assumption that all sources in
the selective range, they can still work on the interested range.

To conclude, the proposed methods, SIAA I and SIAA II,
have the same resolution with IAA, while they are more
flexible since it can work in any interested azimuth range
with one snapshot. On the other hand, they are superior to
the APES, Capon andMUSIC, indicating that the SIAA I and
SIAA II have higher applicability.

V. CONCLUSION
In this paper, two non-parametric DOA estimators are
devised, which have high-resolution with one snapshot obser-
vations. With the use of the DOA estimates in any selective
azimuth range, two implementation approaches of the covari-
ance matrix are developed, which guarantee the flexibility
of the proposed schemes. Simulation results demonstrate the
superiority of our estimators over the IAA, APES, Capon
and MUSIC methods, in terms of higher resolution and lower
computational cost.

APPENDIX
DERIVATION OF E{vSvH

S }

Consider only IID noise term q = [q1 q2 · · · qM ]T exist in
the observations. According to (2), the noise can be expressed

as

q = AM×Lz, (30)

where z = [z1 z2 · · · zL]T can be regarded as the spectrum of
the noise and also contains IID random variables following
the Gaussian distribution [33]. With the use of definition for
variance σ 2 as well as (30), we have

σ 2
=

1
M
E{qHq}

=
1
M
E{zH

(
AHA

)
z}. (31)

Employing the trace [34] property, (31) can be rewritten as

σ 2
=

1
M

trace
{
E{zH

(
AHA

)
z}
}

=
1
M

trace
{(

AHA
)
E{zHz}

}
, (32)

where trace{X} denotes the trace of X. Since z are IID
Gaussian random variables, according to the definition of
trace, (32) is

σ 2
=

1
M

trace
{(

AHA
)
σ 2
z

}
,

=
1
M
MLσ 2

z = Lσ 2
z , (33)

where σ 2
z is the variance of z.

Similarly, since vS are also IID random variables outside
the interested selective range, we have

E{vSvHS } = σ
2
z IS . (34)
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