IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received December 7, 2018, accepted January 11, 2019, date of publication January 25, 2019, date of current version February 12, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2895261

Formal Analysis of Language-Based Android
Security Using Theorem Proving Approach

WILAYAT KHAN 1, MUHAMMAD KAMRANZ?, AAKASH AHMAD?3,
FARRUKH ASLAM KHAN 4, (Senior Member, IEEE),
AND ABDELOUAHID DERHAB*

! Department of Electrical and Computer Engineering, COMSATS University Islamabad at Wah Campus, Wah Cantonment 47040, Pakistan
2Department of Computer Science, COMSATS University Islamabad at Wah Campus, Wah Cantonment 47040, Pakistan

3College of Computer Science and Engineering, University of Hail, Ha’il 55476, Saudi Arabia

“4Center of Excellence in Information Assurance, King Saud University, Riyadh 11653, Saudi Arabia

Corresponding author: Wilayat Khan (wilayat@ciitwah.edu.pk)

This work was supported by the Deanship of Scientific Research at King Saud University, Saudi Arabia, through the Research Group under
Project RGP-214.

ABSTRACT Mobile devices are an indispensable part of modern-day lives to support portable computations
and context-aware communication. Android applications within a mobile device share data to support
application operations and better user experience, which also increases security risks to device’s data
integrity and confidentiality. To analyze the security provided by the Android permissions, modern security
techniques, based on the programming languages, have been used to enforce best practices for developing
the secure Android applications. Android security assessment, based on the language-based techniques in
an informal setting without formal tool support, is tedious and error-prone. Furthermore, the lack of proof of
the soundness of the language-based techniques raises questions about the validity of the analysis. To enable
computer-aided formal verification in Android security domain, we have developed a mathematical model of
language-based Android security using computer-based proof assistant Coq. One of the main challenges for
mechanizing the language-based security in theorem prover relates to the complexity of variable bindings in
language-based security techniques. As the main contributions of the paper: 1) the language-based security,
including variable binding, is formalized in theorem prover Coq; 2) a formal type checker is built to type
check (capture safe data flows within) Android applications using computer; and 3) the soundness of the
language-based security technique (type system) is mechanically verified. The formal model of the Android
type system and their proof of soundness are machine-readable, and their correctness can be checked in the
computer using Coq proof and type checkers.

INDEX TERMS Android security, formal verification, language-based security, locally nameless
representation, machine-readable proofs, theorem proving.

I. INTRODUCTION

Originally designed and built for remote conversation, mod-
ern mobile devices are now mini computers with support
for third party applications’ execution. This feature makes
mobile devices smart and opens up the gate for applications
supporting various tasks. These tasks include, but are not
limited to, mobile commerce, health monitoring, entertain-
ment, and location querying [1]. According to Statista [5],
there are over two billions of mobile users around the globe

The associate editor coordinating the review of this manuscript and
approving it for publication was Feng Lin.

and millions of mobile applications available on stores such
as Google Play [2] and Apple Apps Store [3] for the most
popular operating systems Android and i0S, respectively.
Android is an operating system and open source appli-
cations development platform developed by Google. Based
on Linux kernel, Android is the most popular operating sys-
tem running on mobile devices such as tablets and smart
phones [4], [5]. According to Statista [5], Android market
share in sales to end users in second quarter of 2017 was
around 90%. Android framework is available with a soft-
ware development kit (SDK) and many other developer
tools. Its application programming interface (API) is used

2169-3536 © 2019 IEEE. Translations and content mining are permitted for academic research only.

16550 Personal use is also permitted, but republication/redistribution requires IEEE permission.

VOLUME 7, 2019

See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0003-0993-5964
https://orcid.org/0000-0002-7023-7172

W. Khan et al.: Formal Analysis of Language-Based Android Security Using Theorem Proving Approach

IEEE Access

for building innovative modular mobile applications. The
Android API allows applications to access software and hard-
ware resources, such as such as camera and contacts, of the
mobile device. Furthermore, a mobile application can share
data with other applications or components within the same
application using the APL

The data sharing facility available on Android frame-
work provides enhanced user experience but it may also be
exploited by the attackers. An unauthorised use of resources
may lead to numerous security issues: a malicious applica-
tion, for example, can illegally access contacts and share
them with others by sending messages using Internet. The
modular Android application framework enables mutually
non-trusting Android applications, from different owners,
to share their functionalities and resources. Security inside
Android powered mobile devices is provided by the enforce-
ment mechanism based on permissions [6], [7]. Android
permissions control the flow of data (such as contacts and
photos) and access to resources (such as camera and Internet)
within mobile devices. Each application declares a set of
permissions, that it would require to best serve the user,
in a manifest file and are set by a package installer dur-
ing application installation. The user grants (or denies)
access to resources by giving (or refusing) the permission
that the application requests based on the trust it has on
application developer and the security requirements of the
resource.

Even though a sophisticated security mechanism based on
permissions is in place, it does not provide information flow
guarantees [8]. The applications normally request permis-
sions that can be misused to find the location of mobile (user)
and put the mobile device and carrier network at risk [9], [10].
Moreover, the permission system can be circumvented by
(1) spreading the permissions over different applications that
communicate with each other [10], or (2) when the applica-
tions over overprivileged [6]. Even if the user denies a permis-
sion that is requested by an application, another application
that holds that permission may perform the privileged task
for the former application [11]. To study the effectiveness of
Android’s access control mechanism based on permissions,
language-based technique has been applied to it [12], [13].
However, no proof of soundness of the language-based secu-
rity technique is provided in a formal setting, which raises
questions about the validity of the technique and tools [12]
built on top of it.

In this paper, we build a formal model of Android per-
missions system and language-based security in mechan-
ical theorem prover Coq, and carry out the correctness
proof of the system in the theorem prover. The mecha-
nized formal model is interesting from two perspectives:
1) it can be seen as an implementation of the security
system (type checker) to mechanically verify (type check)
safe data flows within simple Android applications, and
2) the mechanization of Android type system in Coq pro-
vides a foundation to reason about soundness properties. The
later, and the most challenging due to variable binding, is

VOLUME 7, 2019

demonstrated by proving two soundness properties of the type
system. !

A. RESEARCH CONTEXT AND CHALLENGES

Android permissions system allows applications to interact
and share data with each other; however, such data flows
may result in unintended security consequences. Assume the
data is labeled with security labels T (top), READ, WRITE
and L (bottom). When confidentiality of data is assessed,
the security label T tags secret data that can be read by
other components with label T only. The data with label L,
on the other hand, is public with least security concerns: it
can be read by anyone. When integrity is considered, the data
with label T is the most trusted one and can be added to
(or influence) data with any label. Similarly, the data with
label L is untrusted (tainted) and it must not be written to
data with higher security concerns (such as WRITE and T)

——ABad Practice —>

‘—

11 g 1T
Component A Android Component B
System

T = B Bl

——Best Practice —>

FIGURE 1. Data flow scenario: data flows from component 2 to 5.

Consider a scenario, described in Fig. 1, where a com-
ponent B reads data from the content provider (compo-
nent) A. The security label pairs T L and LT (regardless of
color) represent secret/trusted and public/tainted data, respec-
tively, when data flow properties confidentiality/integrity are
assessed. From component A’s perspective, component A
writes to/updates the data in content provider (component) B.
The upper dashed arrows in the figure describes a security
violation: the component B with security context defined at
LT (right label pair in red), reads secret and write tainted
data with label T L, respectively, from the content provider
A (left label pair in red). The security system should enforce
the security policy [12]: the component that reads from/writes
to a content provider (component) A must have permission
(label) at least as high as component A. The data flow just
described is a violation of the security policy (bad practice).
The secret data is read by a component with security context
L, which effectively can be read by any other component with
label (permission) L (secrecy violation). Similarly, the data
in the content provider (component) B has integrity label
T (trusted data), which is tainted by data that might have
been written to (modified) by any component with label L

TAll the formal definitions and proof scripts are available at Github
repository at https://github.com/wilstef/secdroid.

16551

IEEE Access

W. Khan et al.: Formal Analysis of Language-Based Android Security Using Theorem Proving Approach

(integrity violation). The bottom dashed arrows in Fig. 1
show an example of the best practice: public and trusted
data can be read by a component with secret and untrusted
security context (data flow from higher security context to
lower is permitted). A number of other data flow scenarios
in Android applications, which can be captured by the type
system mechanized in this paper, have been described in [12].

To prevent such security violations, existing security
enforcement systems [12], [13] can be used to type-check
(capture valid data flows) and reason about Android appli-
cations. However, giving guarantees of data flow security
properties of well-typed applications in an informal setting
is tedious and error prone. Furthermore, these security tech-
niques themselves need to be reasoned about to verify their
correctness. As these security techniques cannot be read by a
formal computer tool, they are not fit for mechanical reason-
ing about Android applications’ security and the (program-
ming) language-based technique itself. Among the major
advantages of formal analysis using computer-aided formal
verification tools is that a computer can be used to machine
check correctness (well-typedness) of Android applications,
analyze them mathematically and generate machine-readable
proof script. Formally reasoning about programming lan-
guage properties using mechanical theorem provers is chal-
lenging due to the issues with representation and manip-
ulation of terms using variable binding [14]. To resolve
such issues, locally nameless representation [15] has been
applied to formalizing programming languages in theorem
prover. Locally nameless representation has been applied to
different domains in the past [16]-[18]. Howeyver, to the best
of our knowledge, no one has used this approach in mobile
applications’ security domain.

B. SOLUTION OVERVIEW

In this paper, we build a formal model of language-based
technique [13] in the human-assisted computer-based proof
tool Coq using locally nameless representation. Furthermore,
we demonstrate effectiveness of locally nameless representa-
tion in carrying out formal machine-readable proof of sound-
ness of the language-based technique. The major contribu-
tions of this paper are the following:

« We enable formal reasoning about Android’s permission
system using computer-based theorem prover tool; a
formal model of the Android’s permissions is built using
the logic behind theorem prover.

o We augment the language-based security technique with
computer-aided verification tool, and locally nameless
representation is formalized.

o« We mechanically (using a computer) check correct-
ness of terms (programs), and build a formal model of
Android type checker.

o We demonstrate that locally nameless approach facili-
tates the proof process and guarantees well-typed (cor-
rect) Android code, and mechanically carry out formal
proof of soundness of the Android type checker.

16552

The rest of the paper is organized as the following: In the
next section, a brief overview of the Android application
security, permissions, Coq theorem prover and locally name-
less representation is given. In Section III, the formal model
of the type system is presented. The proofs of the type sys-
tem properties, weakening and strengthening, are given in
Section IV. A summary of the related work is presented in
Section V, and the paper is concluded in Section VI.

Il. BACKGROUND

In this section, Android application framework with the secu-
rity model, the formal language describing Android applica-
tions, proof assistant Coq and locally nameless representation
are briefly introduced. The formalization of Android permis-
sions and language-based security technique are described
in Section III

A. ANDROID SECURITY MODEL

The Android application framework [7] supports program-
ming languages Kotlin, C++ and Java for application
development. The source code of an Android application is
compiled into an Android package (APK) using Android
SDK tools. The package, containing all the contents of
Android app, is used by the Android-powered device to install
the app. Following Linux kernel security rules, Android oper-
ating system considers each app as a different user and assigns
itaunique user ID. It executes each individual app in isolation
by a separate process using its own virtual machine. The
default rule for Android security is the principle of least
privilege. By this rule, each app is given only the minimum
permissions to access components required for its work.
Different applications can also share data with each other
(e.g., by sharing common Linux user ID) and access system
resources by requesting permissions.

An Android application comprises of many components
of four types: activity, receiver, service and provider. Each
individual component provides a different entry point for
the system to enter the application. The activity component
represents the presentation layer of application. For example,
the user interface on screen, which the user sees, is controlled
by an activity. A single application may include more than
one activity and a user can switch between activities. Ser-
vices execute in the background and perform long-running
operations without a user interface. However, they can notify
the user through notifications. Broadcast receivers receive
messages from system and receive implicit (without target
name) intents. The intents are messages used by Android
applications to request different functionalities from other
services or activities. An application can address/access a
component through intents explicitly by using the target
component name or implicitly by naming an action to be
performed by a relevant component. Content provider com-
ponents serve as data storage units for the applications. Other
application components can read/write the data from/to con-
tent provider upon permission.

VOLUME 7, 2019

W. Khan et al.: Formal Analysis of Language-Based Android Security Using Theorem Proving Approach

IEEE Access

N [
Binder Phone
—> Application
uid 1000

Interaction between
apps with same user 1D

[¥

' ™
uid 1001 [uid 1001 J
~ -~ No interaction

—@§ across user IDs

——
Message

| Application
\ uid 1002

.

Interaction through
binder interface

FIGURE 2. Android permission system [19].

Android enforces security through permissions by restrict-
ing applications to interact with each other and access dif-
ferent resources. For two applications to access each others’
resources, they both must share the same user ID or they must
have the desired permission to do so. Two applications, both
with IDs 1001 in Fig. 2 (inside sandbox), has the same user
ID (they are created by the same developer who has requested
common ID) and can access each other’s resources directly
using the file system. All other applications, with different
user ID, can interact with each other through the Android
binder interface, which invokes permissions. To send an SMS,
for example, the Message application (Fig. 2) requests the
Phone application through the binder to send an SMS. The
binder forwards the request only if the Message application
has the permission SEND_SMS.

v = n|x|void values

i == (nv) intent

t = code
call (i) call activitiy
return(v) return from activity

register(SEND, Ax.t)
send(RECEIVE, i)

register new receiver
send to receiver

n read from provider
n:=uv write to provider
letx=tint evaluate

Tt fork

t+t choice

v result

FIGURE 3. Program syntax.

B. LANGUAGE-BASED ANDROID SECURITY

Chudhuri [13] defined a core programming language to
describe Android applications. Assuming a security lattice 2
of permissions, the language syntax (Fig. 3) includes intents
as a pair of component name (action) to be accessed and
a value to be passed to the component as a parameter. All
names n, variables x and a constant void make the values v.

VOLUME 7, 2019

Terms ¢ in the language are defined for call and return from
an activity, bind to service, register new service, send to a
receiver, reading from/writing to content provider and so on.
A program runs in an environment, derived from the set of
applications installed on the mobile device, and maps names
to components. Avik Chudhuri defined a security type system
to capture safe data flows among Android applications. For
further details about the language syntax and type system,
readers are recommended to refer to [13].

C. COQ PROOF ASSISTANT

To formally reason about systems, a formal model of the
system and the property of interest is built in the logic of a
theorem prover (such as Coq [20] and Isabelle/HOL [21]).
The proof facility of the theorem prover is used to build a
proof that the (model of the) system holds the property and
the proof checker of the tool is used to mechanically check
if the proof is valid. To describe formal developments and
proofs using theorem prover, a simple system of numbers is
defined and reasoned about using the tool Coq. To begin with,
numbers are inductively defined as data type nat using the
keyword Inductive with two constructors for generating
elements of the type nat (lines 1-3, Fig. 4). The definition
nat states that O (forQ)isnat andif nisnat then S nisalso
nat.Theterm S (S (S 0)), for example, is a number (3)
in nat.

Inductive nat : Type :=
10 : nat
I'S : nat — nat.

1
2
3
4
5 | Fixpoint add (n m: nat) : nat :=
6 | match n with

7 [O=m

s | ISn’= S (addn’ m)

9 | end.

11 | Lemma add_n_o: Vn,addn O =n.

12 | Proof.

13 induction n.

14 (*CASE 1: nis Ox)

15 reflexivity.

16 (*CASE 2: nis (S n)x)

17 simpl. rewrite IHn. auto.
18 | Qed.

FIGURE 4. Interactive formal proof in Coq.

Next, we define a recursive function add (lines 5-9) on
the numbers just defined. The function returns the second
argument m if the first argument is O and it returns S (add
n’ m) if the first argument is of the form S n’. A lemma
add_n_o, that add n O = n holds for any value of n,
is stated and proved in Fig. 4 (lines 11-18). The lemma
is proved using induction on the construction of the first
argument n. During the proof process, the theorem prover
is guided interactively by providing commands called factics
(lines 13—17). The correctness of the proof script just created
(lines 12—18 in Fig. 4) can be mechanically checked using the
Coq proof checker program. The symbol — in the Coq script

16553

IEEE Access

W. Khan et al.: Formal Analysis of Language-Based Android Security Using Theorem Proving Approach

is used to represent a function type (line 3) while the symbol
= is used to return a value from a function (lines 7-8).

D. LOCALLY NAMELESS REPRESENTATION

For increased confidence on complex and large system
designs in programming languages, it is often desired to
check the proofs of properties of programming languages
using human-assisted computer-based theorem provers, such
as Coq and Isabelle/HOL. However, this comes with the
key challenge of representation and manipulation of terms
with variable bindings, in particular, in large formal devel-
opments. Aydemir et al. [14] introduced a novel approach to
formalizing metatheory based on a combination of locally
nameless [15] representation of terms involving binders
and cofinite quantification of free variable names in rules
involving binders in inductive definitions of relations on
terms. In locally nameless representation, bound variables
are represented with de Bruijn indices and free variables
are represented with names. Locally nameless representation
obviates the issues related to alpha-conversion as now each
alpha-equivalence class of terms has a unique representation.
Cofinite quantification, on the other hand, makes the struc-
tural induction principles of relations strong enough for
metatheoretic reasoning [14], [15].

To show comprehensiveness of their approach,
Aydemir et al. [14] created several large formal developments
using Coq proof assistant. The mechanization of the formal
language in this paper is built on top of the libraries developed
by Aydemir et al. In the next section, formal definitions are
introduced. For further details about the functions used, read-
ers are advised to refer to proof assistant Coq libraries in [14].

Ill. FORMALIZING LANGUAGE-BASED

ANDROID SECURITY

To protect against application-level attacks on modern
computer systems, language-based security techniques
are applied at programming language (application) level
[22], [23]. The formal language for representing Android
applications and the type system (language-based Android
security) [13], enforcing best practices, cannot be read
by computer-aided verification tool and hence are not fit
for mechanical reasoning and computer-based checking.
To enable computer-based checking and reasoning, the lan-
guage and type checker both must be defined in the logic
of a theorem prover. In this section, the formal language
and the type system enforcing the best practices for Android
applications development, as described in [13], are extended
with locally nameless representation and formalized in the
logic of theorem prover. The reason formal language and
type system in [13] are chosen for mechanization is that
they are simple and abstract while at the same time they
are expressive enough to establish formal reasoning against
Android permissions.

16554

Inductive Pm : Type :=
| CALL : Pm
| BIND : Pm
|READ : Pm
| WRITE : Pm
| SEND : Pm
| RECEIVE: Pm
| TOP : Pm
| BOTTOM : Pm.

R N I ST R S

FIGURE 5. Definition of Android permissions.

A. LANGUAGE SYNTAX

To begin with, Android permissions are defined as an induc-
tive type Pm (Fig. 5) using Coq Inductive keyword of
sort Type. These permissions (each make a constructor of
type Pm) are the following: an application requires to have
CALL permission in order to create an activity, BIND is
needed for an application to bind to a service, READ/WRITE
are required to read/write from/to a content provider, respec-
tively. Similarly, an application can send data to a receiver
only if it has SEND permission and the receiver likewise
can receive it only if it has the permission RECEIVE. The
two permissions TOP and BOTTOM bound other types above
(highest authority) and below (lowest authority), respectively.

Inductive ty: Type :=
| ty_stuck : ty
I ty_dnc : ty
| ty_any : Pm — Pm — ty
Ity_pro : Pm — Pm — ty
Ity_act: Pm —ty =ty =ty — ty
I ty_rvr : Pm — ty — Ty — ty with

O ok N U B W N =

Ty : Type =
| Ty_bvar : nat — Ty
10 | Ty_fvar : atom — Ty
1 | Ty_sub : ty — Ty
12 | Ty_stack : ty — ty — Ty .

FIGURE 6. Security type system.

To track data flow within applications, a system of security
types ty for the language is inductively defined (Fig. 6) to
label data. The type ty_stuck is given to programs that
are blocked due to access control and the type ty_dnc
represents data whose security is of no concern.> The types
ty_pro, ty_act and ty_rvr are, respectively, for com-
ponents provider, activity and receiver and are given to
names bound in the environment. Following [13], services
are encoded with receivers; therefore, there is no separate
type for services. The third and fourth arguments of type ty
in ty_act represent stack type, which is given to the code
run by an activity (window). Values returned to the current
window have type ty (second argument).

Inside type ty is a mutually dependent type Ty with
a subtype constructor Ty_sub, which would be used to

2This is, instead, represented by *_” in [13].

VOLUME 7, 2019

W. Khan et al.: Formal Analysis of Language-Based Android Security Using Theorem Proving Approach

IEEE Access

convert type ty to Ty (see below). The type system is
extended with two constructors Ty_bvar and Ty_ fvar for
bound and free variables, respectively. The argument of type
atom in Ty_fvar will be used to represent free names.
The argument of type nat in Ty_bvar is used to model
bound variables using de Bruijn indexes. In addition, it should
be noted that the constructors in type ty in [13] are more
specific while they are defined parametric in Fig. 6 to make
them more general. Such a general representation enables to
universally quantify over permission, type, number and name
in the proofs, extending the scope of formal developments and
proofs.

1 | Inductive term : Set :=

2 | bvar : nat — term

3 | fvar : atom — term

4 |lam : term — term

5 | call : atom — atom — term

6 | ret : atom — term

7 | bind : atom — atom — term — term
8 | reg : Pm — term — term

9 | send : Pm — atom — atom — term

10 | read : atom — term

1 | write: atom — atom — term
12 | lett : term — term — term

13 | fork : term — term

14 | choice : term — term — term
15 | result : atom — term

16 | void : term.

FIGURE 7. Definition of terms.

To write Android applications (programs), terms are induc-
tively defined as shown in Fig. 7. To formally implement the
locally nameless approach in Coq, bound and free variables
in terms need to be distinguished. As mentioned before, de
Bruijn indices and names are used to represent bound and
free variables, respectively. The term bvar takes a natural
number as the index to represent bound variables and fvar
takes a name (of type atom) to represent free variables. The
natural number index is the number of abstractions needed
to be traversed to reach abstraction binding that variable.
Lambda abstraction is formalized with constructor 1am with
the only argument defines the body of the abstraction. Calling
an activity is modeled using call, which gets an activity
name and a value that is passed to the activity. Unlike in [13]
where name and value pair is separately defined as an intent,
these parameters of type at om make the two arguments of
constructor call. The type atom abstractly model both
implicit and explicit intents where the identifier of type at om
represents component name (to be accessed) or action (to be
performed), respectively. Our formal setting captures data
flow through intents either if the component is accessed by
name or action. In other words, our type system captures
flows through both implicit and explicit intents.

The program ret returns control by popping the current
window off the stack and returns control to the previous activ-
ity. To bind to a service, the program bind is used, where the
first two arguments make the intent and the third argument is
the code to be executed. The program reg registers a new

VOLUME 7, 2019

Fixpoint fv (t : term) {struct t} : atoms :=
match t with

1

2

3 |bvari = {}

4 | fvar x = singleton x

5 [lamt = fvt’

6 I call x1 x2 = singleton x1 ‘union‘ singleton x2

7 | ret X = singleton x

8 I bind x1 x2 t’ = singleton x1 ‘union‘ singleton x2 ‘union‘ (fv t’)
9 Iregptl = fvtl

10 I'send p x1 x2 = singleton x1 ‘union‘ singleton x2
1 | read x = singleton x

12 | write x1 X2 => singleton x1 ‘union‘ singleton x2
13 [lett t1 2 = (fv t1) ‘union‘ (fv t2)

14 [forkt’ = fv t’

15 | choice t1 t2 = (fv t1) ‘union‘ (fv t2)

16 | result x = singleton x

17 | void = {}

18 end.

FIGURE 8. Definition of function for collecting free variables.

receiver with a body (second argument) and sets it with a
permission (first argument). To send intent to a receiver,
the program send is used where the first argument of type
Pm is the permission required and last two arguments of type
atom make the intent to be sent. The next five constructors
are for reading/writing from/to a provider, evaluate, fork,
choice, result and void, respectively.

B. OPENING AND SUBSTITUTION OPERATIONS

The major advantage of locally nameless representation is
that all alpha-equivalent terms now have unique represen-
tation and thus issues with alpha-equivalence and variable
capture are avoided. To formally implement locally name-
less representation, some basic operations are required. The
function fv (free variables) is recursively defined in Fig. 8
which collects a set of names that are free in terms. There is
no free variable in term bvar and void and singleton sets
of names are returned for the term fvar, ret, read, and
result where the name in the argument of each term is the
only member of the set returned. For all other terms, the set
of free names is the union of names in all sub-terms.

1 | Fixpoint open_rec (k : nat) (u : term) (t : term) {struct t} : term :=
2 match t with

3 | bvar v = if k === v then u else (bvar v)

4 | fvar v = fvar v

5 |lam t" = lam (open_rec k u t’)

6 | call x1 x2 = call x1 x2

7 I ret X = ret x

8 I bind x1 x2 t" = bind x1 x2 (open_rec k u t’)

9 I reg p tl = reg p (open_rec k u tl)

10 I send p x1 x2 = send p x1 x2

11 | read x = read x

12 | write x1 x2 = write x1 x2

13 I lett t1 t2 = lett (open_rec k u t1) (open_rec k u t2)

14 | fork t” = fork (open_rec k u t’)

15 | choice t1 t2 = choice (open_rec k u t1) (open_rec k u t2)
16 | result x = result x

17 | void = void

18 end.

FIGURE 9. Definition of function for opening terms.

An important operation is opening a term (abstractions
such as lambda terms and let expressions) where a bound
variable in a term is instantiated (replaced) with a term.

16555

IEEE Access

W. Khan et al.: Formal Analysis of Language-Based Android Security Using Theorem Proving Approach

1 \ Definition open t u := open_rec O u t.

FIGURE 10. Definition of function for opening terms with one binder.

This operation is used to pass through a binder and turn a
bound variable into a free variable. The function open_rec
(Fig. 9) takes an index representing a bound variable and
two terms and replaces the index (bound variable) in one
term (third argument) with another term (second argument).
The function has no effect on terms without bound variables
(such as fvar, call, ret, read, write, result and
void). The function is defined general that opens up terms
deep into multiple binders. However, this complicates the
proof and is, therefore, limited to zero index by another
definition in Fig. 10.

1 Fixpoint subst (z : atom) (u : term) (t : term) {struct t} : term :=
2 match t with

3 | bvar v = bvar v

4 | fvar v = if v == z then u else (fvar v)

5 |lam t’ = lam (subst z u t’)

6 | call x1 x2 = call x1 x2

7 I ret X = ret x

8 I bind x1 x2 t" = bind x1 x2 (subst zu t’)

9 lregpt = regp(substzut’)

10 I'send p x1 x2 = send p x1 x2

11 | read x = read x

12 | write x1 x2 = write x1 x2

13 | lett t1 t2 = lett (subst z u t1) (subst z u t2)

14 | fork t” = fork (substzu t’)

15 | choice t1 t2 = choice (subst z u t1) (subst z u t2)
16 | result x = result x

17 | void = void

18 end.

FIGURE 11. Definition of function for variable substitution.

To ease proofs, the free variable substitution (Fig. 11)
operation is required, which replaces a free variable (first
argument) in a term (third argument) with another term
(second argument). An environment env is defined as a list
of name and type pairs each binding a variable with a type.
An environment is well-formed (ok) if there is no duplicated
name (each atom is bounded at most once).

C. FORMALIZING TYPE CHECKER
To capture secure data flows within mobile device and
enforce best practices in applications development, a type
checker is defined in the theorem prover. The type checker
can be defined either as an inductive type or as a recur-
sive function. Inductive definitions in theorem prover are
favorable when formal proofs are carried out while recur-
sive definitions are good for executing programs. As binders
in programming languages complicates formal reasoning in
theorem provers, the focus should be to facilitate the more
challenging part: the formal proofs in theorem prover. This
motivates towards inductive definition of Android type
checker in Coq.

The type system for well-typed code in [13] is inductively
defined as a relation t yping (Fig. 12). The relation checks

16556

1 | Inductive typing : env — term — Ty — Prop :=

2 | typing_var : forall E (v : atom) T,

3 ok E —

4 bindsvTE —

5 typing E (fvar v) T

6 | typing_read : forall E x,

7 (typing E (result x) (Ty_sub (ty_pro READ WRITE))) —
8 (typing E (read x) (Ty_sub (ty_any READ WRITE)))

9 | typing_write : forall En v,

10 (typing E (result n) (Ty_sub (ty_pro READ WRITE))) —
1 (typing E (result v) (Ty_sub (ty_any READ WRITE))) —
12 (typing E (write n v) (Ty_sub (ty_any BOTTOM TOP)))
13 | typing_reg : forall L E t tau T T,

14 (forall x:atom, x ‘notin‘ L —

15 (typing ((x, (Ty_sub tau)) :: E) (opent x) T)) —

16 (T’ = (ty_rvr SEND tau T)) —

17 (typing E (reg SEND t) (Ty_sub T’))

18 | typing_send : forall En tau T v,

19 (typing E (result n) (Ty_sub (ty_rvr SEND tau T))) —
20 (typing E (result v) (Ty_sub tau)) —

21 (typing E (send RECEIVE n v) T)

2 | typing_lett : forall L T1 T2 t1 t2 E,

23 typing Etl T1 —

24 (forall x:atom, x ‘notin‘ L —

25 typing ((x, T1) :: E) (open t2 x) T2) —

26 typing E (lett t1 t2) T2

27 | typing_fork : forall E t tau,

28 (typing E t (Ty_sub tau)) —

29 (typing E (fork t) (Ty_sub (ty_any BOTTOM TOP)))
30 | typing_choice : forall Et T t’,

31 (typing EtT) —

32 (typingEt' T) —

33 (typing E (choice t t’) T)

34 | typing_val_hyp : forall E (x : atom) T,

35 ok E —

36 binds x TE —

37 typing E (result x) T

38 | typing_val_void : forall E,

39 (typing E void (Ty_sub (ty_any BOTTOM TOP)))

40 | typing_call : forall E n tau tau’ v,

41 (typing E (result n) (Ty_sub (ty_act CALL tau ty_dnc tau’))) —
) (typing E (result v) (Ty_sub tau)) —

43 (typing E (call n v) (Ty_sub tau’))

44 | typing_return : forall E v tau,

45 (typing E (result v) (Ty_sub tau)) —

46 (typing E (ret v) (Ty_stack ty_dnc tau)).

FIGURE 12. Definition of type system.

that a term is well-typed (follows certain rules) in the envi-
ronment. There are twelve typing rules (each begin with a
vertical line |) for twelve terms. These terms are selected in
the rules based on their relevance for enforcing best prac-
tices. In addition to a rule for free variables (typing_var,
lines 2-5, Fig. 12), there is a constructor for each rule of
the type system in [13]. The predicate ok ensures the envi-
ronment does not have duplicate bindings and the relation
binds binds the variable x with type T in the environment E.

To read data from a content provider (lines 68, Fig. 12)
with permissions READ/WRITE in its context, the reader
component must have the same READ/WRITE permissions
(data can flow from contexts with at most permission WRITE
to contexts with at least permission READ [13]). Similarly,
a trusted component (with highest integrity level T) can
write data (lines 9—-12) with the WRITE label to a provider
with specified permission WRITE. The rule typing_reg
(lines 13—17) registers a new receiver and sets it with permis-
sion SEND that will be required in the context to send data to

VOLUME 7, 2019

W. Khan et al.: Formal Analysis of Language-Based Android Security Using Theorem Proving Approach

IEEE Access

it. This rule deals with binders and cofinite quantification [15]
is introduced here. The body of term t is opened up with a
free variable named x where the set L is some finite set of
names chosen. A broadcast receiver can receive intents only
if it has the permission RECEIVE in its context. The rest
of the rules are either straight forward or explained in [13].
Note that, the rule typing_lett and typing_reg
deals with binders and hence are formalized using cofinite
quantification.

The type checker, as defined earlier, can be applied to
any term (program) and their correctness can be checked in
presence of other conditions. Just as an example, consider an
activity component of the phone application requests (read)
a contact x from the content provider of the contacts appli-
cation. This is modeled as program read x with security
labels READ/WRITE for the data x and content provider con-
text. The best practice enforces the security policy described
in Section I: the data from a content provider with a label
can only be read by a component with a label at least as
high as the content provider. The correctness of the term in
accordance to the best practice is stated as a lemma in Fig. 13
and proved in proof assistant Coq.> Conformance of other
terms with the security policy can similarly be stated and
proved mechanically. Readers are advised to refer to [12] for
other encoded examples in the type system defined in Fig. 3
and formalized in 12.

1 Lemma checking_read: forall E x,
2 (typing E (result x) (Ty_sub (ty_pro READ WRITE))) —>
3 (typing E (read x) (Ty_sub (ty_any READ WRITE))).

FIGURE 13. Type checking term read x.

IV. PROOF OF SOUNDNESS PROPERTIES

The formal definition of syntax of language to describe
Android applications, basic operation, and Android type sys-
tem in theorem prover altogether build language-based secu-
rity on Android systems. To demonstrate that the formal
development can effectively be used to formally reason about
the type system and Android terms (applications), formal
proof of properties of the type system are carried out in the
Coq tool.

The type system in Fig. 12 establishes rules for well-
formed (safe) code. To ensure that well-typed expressions
indeed are correct (allows only safe data flows) and will never
go wrong, type soundness properties of the type system itself
needs to be satisfied. Proofs of two properties, weakening
and strengthening, of the type system defined in Fig. 12 are
carried out in theorem prover.

A. PROOF OF WEAKENING PROPERTY
The weakening property states that adding type bindings to
the environment does not affect derivability. In other words,

3 All the Coq definitions and proofs are available from the Github reposi-
tory at https://github.com/wilstef/secdroid

VOLUME 7, 2019

it states that if an expression is well-typed in an environment
I", then it is well-typed after the environment is extended with
a name bound to some type U. Formally,

(R-WEAKENING)
'ke: T

n:Ubke:T

The same property is formalized as a lemma in Fig. 14,
where E and F are non-empty environments, the operator
++ concatenates the two environments, and the predicate ok
ensures the concatenation of two environments do not have
double bindings.

1 | Lemma typing_weakening : forall EF e T,
2 typingEe T —

3 ok (F++E) —

4 typing (F++E)e T.

FIGURE 14. Weakening property lemma.

To prove this lemma, a more stronger property needs
to be proved first. The property is strong in the sense
that the property holds for extension of the environment
at the middle. This lemma is proved using induction
on the relation typing. This stronger property, lemma
typing_weakening_strengthened in Fig. 15,
is then used (simple application) in the proof of lemma
typing_weakening in Fig. 14.

1 Lemma typing_weakening_strengthened : foral EF G t T,
2 typing (G++E)tT —

3 ok (G++F++E) —

4 typing (G++F++E) t T.

FIGURE 15. Strong weakening property lemma.

B. PROOF OF STRENGTHENING PROPERTY

Similarly, a more complex property strengthening states that
removing type bindings preserves derivability as long as they
are not present into the expression, which is type-checked.
In other words, this property states that if a command is well-
typed (correct) in an environment where a name n is bound to
type U, then the command will still be correct if the name n
is removed from the environment, provided that the name n
is not part of the command. Formally, it is shown by the
following inference rule:

(R-STRENGTHENING)
Ion:Uke: T n¢{freenamesofe}

Fke: T

The above rule is formalized in Coq as lemma in Fig. 16.
The function f£v returns the set of free names in term e. This
lemma is proved using induction on the relation t yping.

C. DISCUSSION
The first soundness property, weakening, of our type system
asserts that if an Android application component is proved

16557

IEEE Access

W. Khan et al.: Formal Analysis of Language-Based Android Security Using Theorem Proving Approach

1 Lemma Strengthening : forall e (n:atom) GUET,
2 n ‘notin‘ (fv e) —

3 (typing (G ++ [(n, U)] ++E)e T) —

4 (typing (G++E) e T).

FIGURE 16. Strengthening property lemma.

to be data-flow safe, it remains safe even if a new applica-
tion component or resource is added to the mobile device.
Similarly, the strengthening property states that if an appli-
cation component is independent from another application
component, un-installation of the latter component does not
invalidate the former provided it was valid prior to the un-
installation.

The language-based security defined in previous sections
captures, at an abstract level, how Android application com-
ponents can securely communicate with each other using
Android permissions. We carried out mathematical proof in
Coq theorem prover, which confirms the correctness of the
type system in itself. The security system was defined in the
Coq theorem prover with a type checker program available
that checks the syntax correctness of the security (type) sys-
tem as well as provides foundation for other mathematical
reasoning. The major advantage of formal analysis of systems
using interactive proof assistant, such as Coq, is that they are
powerful, expressive and the correctness of the proofs can be
checked automatically using a computer.

V. RELATED WORK

Interactive proof assistants have been applied in the past
to investigate Android systems security. In a recent work
by one of the co-authors [24], they formally analyzed the
security of Andriod inter-component communication based
on intent messages. A formal model, dubbed as Crash-
Safe, was defined in Coq and used in formal verification of
crash safety property of Android applications. CrashSafe is
lightweight formal model of Android inter-component com-
munication, however, it does not include Android permis-
sions system. Even though, there are means to circumvent
Android permissions [10], but it is still the main defence
mechanism of Android system, if used carefully by applica-
tions developer. Shin et al. [25], [26] proposed formal model
of Android permission mechanism and investigated it by
specifying Android system elements, characterized security
properties and proved that the system preserves the secu-
rity properties. They specified the permission mechanism
for Android system as a state machine and proved in Coq,
the system is secure over the specified states and transitions.
Their work focuses on the behavioral aspect of the framework
rather than evaluating applications based on the Android
permissions in order to exclude malicious ones. In a similar
work, Betarte et al. [27], [28] developed a comprehensive
formal specification of the permissions in Coq and veri-
fied several security properties. These formal models either
do not address security issues related to Android permis-
sions [24] or capture only specific security vulnerabilities in
Android permissions systems [25]-[28]. The type checker

16558

developed in this paper, on the other hand, enforces best
practices, which capture classes of security vulnerabilities.
Furthermore, the enforcement mechanism in this paper is
based on language-based security technique, which offers
numerous advantages over other techniques [13], [23].

ScanDroid [12] extracts application specific security spec-
ifications from applications’ manifests and applies data flow
analysis to check data flow consistency with respect to the
specifications. Felt et al. [6] found that about one-third of
applications request permissions they normally do not need.
They developed a tool Stowaway to detect overprivilege in
Android applications by finding the maximum set of permis-
sions required for an application and compared it with the
set of permissions requested. Stowaway can determine if an
application is overprivileged, however, it does not formally
study the security implications of overprivilege. There are
a number of other tools developed to reveal potential risks
in Android system or improve their overall security. Taint-
Droid [29] demonstrates potential threats to phone users’ data
from third-party applications. Chin et al. developed Com-
Droid to improve Android applications security by detecting
inter-application communication. A number of tools, such as
DroidSafe [30], Horndroid [31] and Flowdroid [32] to name
a few, have been proposed to analyze the data flow security
of Android applications.

Locally nameless representation has been used in a
number of other formal results using theorem prover
Coq or Isabelle/HOL. A non-exhaustive list of research
papers employing locally nameless representation is given
in [15]. Using Coq theorem prover, Jia et al. [16] proved
decidability and soundness of the type system of program-
ming language AURA. Benton and Koutavas [17] introduced
bisimulation for v-calculus and formalized its metatheory in
Coq. Garrigue [18] formalized a certified interpreter for the
core ML using theorem prover Coq.

VI. CONCLUSIONS AND FUTURE WORK

The permission system in Android applications enables appli-
cations from different developers to share data and resources
with each other. This mutual interaction between applications
based on permissions may cause security consequences, such
as threats to secrecy and integrity of data. To capture safe data
flows between Android applications, programming language-
based security on Android has been formalized in mechanical
theorem prover Coq. The formal system defined in Coq can
effectively be used to study correctness (data-flow safety) of
Android applications, modeled as simple terms. Furthermore,
the language-based technique formalized in theorem prover
enables mechanical support for creating and checking proof
of correctness of applications as well as the language-based
technique itself.

The formal model demonstrates theorem prover Coq,
locally nameless representation and language-based security
technique all together can be used to analyze the security
provided by the model of the permission system and cor-
rectness of the technique itself. To make it more practical,

VOLUME 7, 2019

W. Khan et al.: Formal Analysis of Language-Based Android Security Using Theorem Proving Approach

IEEE Access

a software tool translating real Android applications to the
logical formulas of the model would be more interesting.
Moreover, the proof of soundness properties may be extended
to other properties such as type safety and subject reduction.

REFERENCES

[1]

[2]
[3]
[4]

[5

[6]

[71
[8]
[9]

[10]

[11]

[12]

[13]

[14]

[15]
[16]
[17]
[18]
[19]
[20]

[21]

[22]

[23]

[24]

[25]

H. T. Dinh, C. Lee, D. Niyato, and P. Wang, “A survey of mobile cloud
computing: Architecture, applications, and approaches,” Wireless Com-
mun. Mobile Comput., vol. 13, no. 18, pp. 1587-1611, Dec. 2013.
Android Apps on Google Play. Accessed: Jul. 15, 2018. [Online]. Avail-
able: https://play.google.com/store/apps ?hl=en
Apple Apps Store. Accessed: Jul. 15, 2018.
https://itunes.apple.com/us/genre/ios/id36?mt=8
Android. Accessed: Jul. 23, 2018. [Online].
www.android.com/

The Statistics Portal. Global Mobile OS Market Share 2009-2017,
by Quarter. Accessed: Jul. 23, 2018. [Online]. Available:
https://www.statista.com/statistics/266136/global-market-share-held-by-
smartphone-operating-systems/

A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner, “Android permis-
sions demystified,” in Proc. 18th ACM Conf. Comput. Commun. Secur.,
2011, pp. 627-638.

Application Fundamentals. Accessed: Jul. 23, 2018. [Online]. Available:
https://developer.android.com/guide/components/fundamentals.html

W. Enck, M. Ongtang, and P. McDaniel, “Understanding android
security,” IEEE Security Privacy, vol. 7, no. 1, pp. 50-57, Jan. 2009.

T. Vennon and D. Stroop, “Android market: Threat analysis
of the Android market,” SMobile Syst., Columbus, OH, USA,
Tech. Rep., 2010. Accessed: Dec. 20, 2018. [Online]. Available:
https://www.slideshare.net/yannriviere/android-market-threat-analysis-
2210v1

C. Orthacker et al., “Android security permissions—can we trust them?”
in Proc. Int. Conf. Secur. Privacy Mobile Inf. Commun. Syst., 2011,
pp. 40-51.

A. P. Felt, H. J. Wang, A. Moshchuk, S. Hanna, and E. Chin, ‘“Permission
re-delegation: Attacks and defenses,” in Proc. USENIX Secur. Symp.,
vol. 6, 2011, pp. 12-16.

A. Chaudhuri, A. Fuchs, and J. Foster, “SCanDroid: Automated security
certification of Android applications,” Univ. Maryland, College Park, MD,
USA, Tech. Rep. CS-TR-4991, 2009.

A. Chaudhuri, “Language-based security on Android,” in Proc. ACM
SIGPLAN 4th Workshop Program. Lang. Anal. Secur., 2009, pp. 1-7.

B. Aydemir, A. Charguéraud, B. C. Pierce, R. Pollack, and S. Weirich,
“Engineering formal metatheory,” ACM SIGPLAN Notices, vol. 43, no. 1,
pp. 3-15, 2008.

A. Charguéraud, “The locally nameless representation,” J. Automated
Reasoning, vol. 49, no. 3, pp. 363-408, 2012.

L.Jiaet al., “Aura: A programming language for authorization and audit,”
ACM SIGPLAN Notices, vol. 43, no. 9, pp. 27-38, 2008.

N. Benton and V. Koutavas, “A mechanized bisimulation for the
nu-calculus,” Tech. Rep. MSR-TR-2008-129, 2008.

J. Garrigue, “A certified implementation of ML with structural polymor-
phism,” in Proc. Asian Symp. Program. Lang. Syst., 2010, pp. 360-375.
W. M. van Cuijk, “Enforcing a fine-grained network policy in Android,”
M.S. thesis, Eindhoven Univ. Technol., Eindhoven, The Netherlands, 2011.
INRIA. The Coq Proof Assistant. Accessed: Jul. 24, 2017. [Online]. Avail-
able: https://coq.inria.fr/

T. Nipkow, L. C. Paulson, and M. Wenzel, Isabelle/HOL: A Proof Assistant
for Higher-Order Logic, vol. 2283. Berlin, Germany: Springer-Verlag,
2002.

A. Sabelfeld, “Language-based information security,” in Proc. Found.
Comput. Secur., 2003, p. 99.

F. B. Schneider, G. Morrisett, and R. Harper, A language-based approach
to security,” in Informatics. New York, NY, USA: Springer, 2001,
pp. 86-101.

W. Khan et al., “CrashSafe: A formal model for proving crash-safety of
Android applications,” Hum.-Centric Comput. Inf. Sci., vol. 8, no. 1, p. 27,
2018.

W. Shin, S. Kiyomoto, K. Fukushima, and T. Tanaka, ‘“Towards formal
analysis of the permission-based security model for Android,” in Proc. 5th
Int. Conf. Wireless Mobile Commun. (ICWMC), Aug. 2009, pp. 87-92.

[Online]. Available:

Available: https:/

VOLUME 7, 2019

(26]

[27]

(28]

(29]

(30]

(31]

(32]

W. Shin, S. Kiyomoto, K. Fukushima, and T. Tanaka, “A formal model
to analyze the permission authorization and enforcement in the Android
framework,” in Proc. IEEE 2nd Int. Conf. Social Comput. (SocialCom),
Aug. 2010, pp. 944-951.

G. Betarte, J. D. Campo, C. Luna, and A. Romano, ““Verifying Android’s
permission model,” in Proc. Int. Collog. Theor. Aspects Comput., 2015,
pp. 485-504.

G. Betarte, J. Campo, M. Cristid, F. Gorostiaga, C. Luna, and C. Sanz,
“Towards formal model-based analysis and testing of Android’s security
mechanisms,” in Proc. 43rd Latin Amer. Comput. Conf. (CLEI), Sep. 2017,
pp. 1-10.

W. Enck et al., “TaintDroid: An information-flow tracking system for
realtime privacy monitoring on smartphones,” ACM Trans. Comput. Syst.,
vol. 32, no. 2, p. 5, 2010.

M. I. Gordon, D. Kim, J. H. Perkins, L. Gilham, N. Nguyen, and
M. C. Rinard, “Information flow analysis of Android applications in droid-
safe,” in Proc. NDSS, 2015, pp. 1-16.

S. Calzavara, 1. Grishchenko, and M. Maffei, ‘“Horndroid: Practical and
sound static analysis of android applications by smt solving,” in Proc.
1EEE Eur. Symp. Secur. Privacy (EuroS&P), Mar. 2016, pp. 47-62.

S. Arzt et al., “‘Flowdroid: Precise context, flow, field, object-sensitive and
lifecycle-aware taint analysis for Android apps,” ACM SIGPLAN Notices,
vol. 49, no. 6, pp. 259-269, 2014.

WILAYAT KHAN received the B.Sc. degree in
engineering from the University of Engineering
and Technology, Peshawar, Pakistan, in 2007, and
the M.S. degree in IT from Kungliga Tekniska
Hogskolan, Sweden, in 2009. He is currently pur-
suing the Ph.D. degree with the University of
Venice, Italy. He was a Lecturer with the COM-
SATS Institute of IT, Pakistan, until 2011. During
his Ph.D. degree, he was an Exchange Researcher
with KU Leuven University, Belgium, for five

months. In 2014, he attended the prestigious Oregon Programming Language
Summer School, University of Oregon, USA. He was a Research Fellow with
Nanyang Technological University, Singapore. He is currently an Assistant
Professor with COMSATS University Islamabad at Wah Campus, Pakistan.
He has published a number of research papers in reputed journals and
conference proceedings. He is the author of hardware description language
VeriFormal, Chrome extension CookiExt, and formal Boolean equivalence
tool BECheck. He is working on using formal methods to investigate com-
puter systems. In particular, he is interested in using theorem provers to build
formal models of computer hardware and software systems and prove their
security and reliability properties.

MUHAMMAD KAMRAN received the M.S.
and Ph.D. degrees in computer science from the
National University of Computer and Emerging
Sciences, Islamabad, Pakistan, in 2008 and 2012,
respectively. He is currently an Assistant Profes-
sor with the Department of Computer Science,
COMSATS University Islamabad at Wah Campus,
‘Wah Cantonment, Pakistan. His research interests
include machine learning, evolutionary computa-
tion techniques, information security, health infor-

matics, big data analytics, and decision support systems.

AAKASH AHMAD received the Ph.D. degree in
software engineering from Dublin City University,
Dublin, Ireland, in 2015. He was a Postdoctoral
Researcher with the IT University of Copenhagen
and a Software Engineer with Elixir Technolo-
gies. He is serving as an Assistant Professor
with the College of Computer Science and Engi-
neering, University of Hail, Ha’il, Saudi Arabia.
His research interests include software architec-
ture and software patterns for mobile and cloud
computing systems.

16559

IEEE Access

W. Khan et al.: Formal Analysis of Language-Based Android Security Using Theorem Proving Approach

FARRUKH ASLAM KHAN received the M.S.
degree in computer system engineering from the
GIK Institute of Engineering Sciences and Tech-
nology, Pakistan, in 2003, and the Ph.D. degree in
computer engineering from Jeju National Univer-
sity, South Korea, in 2007. He also received profes-
sional trainings from the Massachusetts Institute
of Technology, New York University, IBM, and
other professional institutions. He has successfully

o supervised four Ph.D. students and 16 M.S. thesis
students. Several M.S. and Ph.D. students are currently working under his
supervision. He is currently an Associate Professor with the Center of
Excellence in Information Assurance, King Saud University, Riyadh, Saudi
Arabia. He is also the Founding Director of the Wireless Networking and
Security Research Group, National University of Computer and Emerging
Sciences, Islamabad, Pakistan. He has over 80 publications in refereed
international journals and conferences. His research interests include cyber
security, body sensor networks and eHealth, bio-inspired and evolutionary
computation, and the Internet of Things. He is a Senior Member of the IEEE.
He currently serves as an Associate Editor for prestigious international jour-
nals, including the IEEE Access, PLOS ONE, Neurocomputing (Elsevier),
Ad Hoc and Sensor Wireless Networks, KSII Transactions on Internet and
Information Systems, Human-Centric Computing and Information Sciences
(Springer), and Complex & Intelligent Systems (Springer). He is on the
panel of reviewers of over 30 reputed international journals and numerous
international conferences. He has also co-organized several international
conferences and workshops.

16560

ABDELOUAHID DERHAB received the B.Sc.,
M.S., and Ph.D. degrees in computer science
from the University of Sciences and Technology
Houari Boumediene, Algiers, in 2001, 2003, and
2007, respectively. He was a full-time Researcher
with the CERIST Research Center, Algeria, from
2002 to 2012. He is currently an Associate Profes-
sor with the Center of Excellence in Information
Assurance, King Saud University, Riyadh, Saudi

- Arabia. His research interests include network
security, intrusion detection systems, malware analysis, mobile security, and
mobile networks.

VOLUME 7, 2019

	INTRODUCTION
	RESEARCH CONTEXT AND CHALLENGES
	SOLUTION OVERVIEW

	BACKGROUND
	ANDROID SECURITY MODEL
	LANGUAGE-BASED ANDROID SECURITY
	COQ PROOF ASSISTANT
	LOCALLY NAMELESS REPRESENTATION

	FORMALIZING LANGUAGE-BASED ANDROID SECURITY
	LANGUAGE SYNTAX
	OPENING AND SUBSTITUTION OPERATIONS
	FORMALIZING TYPE CHECKER

	PROOF OF SOUNDNESS PROPERTIES
	PROOF OF WEAKENING PROPERTY
	PROOF OF STRENGTHENING PROPERTY
	DISCUSSION

	RELATED WORK
	CONCLUSIONS AND FUTURE WORK
	REFERENCES
	Biographies
	WILAYAT KHAN
	MUHAMMAD KAMRAN
	AAKASH AHMAD
	FARRUKH ASLAM KHAN
	ABDELOUAHID DERHAB

