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ABSTRACT Smartphone magnetometer readings exhibit high linear correlation when two phones coexist
within a short distance. Thus, the detected coexistence can serve as a proxy for close human contact
events, and one can conceive using it as a possible automatic tool to modernize the contact tracing in
infectious disease epidemics. This paper investigates how good a diagnostic test it would be, by evaluating
the discriminative and predictive power of the smartphone magnetometer-based contact detection in multiple
measures. Based on the sensitivity, specificity, likelihood ratios, and diagnostic odds ratios, we find that
the decision made by the smartphone magnetometer-based test can be accurate in telling contacts from no
contacts. Furthermore, through the evaluation process, we determine the appropriate range of compared trace
segment sizes and the correlation cutoff values that we should use in such diagnostic tests.

INDEX TERMS Mobile sensing, human contact tracing, smartphone magnetometer, infectious disease
epidemic, diagnostic test.

I. INTRODUCTION
Witnessing an alarmingly large number of novel pandemics
in this century such as SARS, Swine Flue, MERS, Ebola,
and Zika, there has been growing concerns on the ‘‘next
big one’’ [1]. Many worry that we deal with them using
strategies established over a century ago and technology that
has been around for decades, with little innovation gener-
ated [2]. Consequently, there are calls for technology-based
preparedness [3], especially in the areas of infection preven-
tion, case finding, case investigation, and contact tracing [4].
Among others, the information technology (IT) sector should
respond to the calls, and continuously expand and finesse
the arsenal of technologies in each of these areas. In this
paper, we tackle one of the areas that need the technological
revamping: contact tracing.

On the brink of an infectious disease epidemic, the most
urgent task is to trace those who possibly made contacts
with the infected person(s), in order to cut the chain of
infection and prevent it from growing into a wider epidemic.
But the traditional contact tracing technique has been pre-
dominantly analog. Namely, contact graphs are constructed
through interviews with confirmed cases, by asking who they

met and where they visited. This is a hugely costly and time
consuming task. Worse yet, there is the issue of recall [5].
Meanwhile, recent outbreaks have been fundamentally dif-
ferent from those of the past – highly mobile populations [6]
and the spread into densely populated cities [2] – which
exacerbate the problem with the traditional contact tracing
approach.
When there are many potential contacts that an infected

person cannot identify or recollect as in our typical urban
life, a potent tool we can marshal is the mobile devices
such as smartphones. The mobile-based epidemic monitoring
is nothing but a logical next step because only the mobile
devices that move with people can keep up with the contacts
they make. Indeed, there have been increasing number of pro-
posals for smartphone-based contact tracing. The employed
technologies range from similar Global Positioning System
(GPS) positions [7], similar Wi-Fi fingerprints [8], Bluetooth
peer discovery [9], and identical cells in mobile commu-
nication [10]. Unfortunately, they either provide position
information too coarse to be used for infectious contact
detection [11] (GPS, cellular/Wi-Fi fingerprinting), require
the infrastructure nearby (cellular/Wi-Fi), cannot be used
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indoors (GPS), consumes too much power for extended
monitoring use (GPS) [12], or could compromise privacy by
exposing the identity of the device and eventually its owner
(Bluetooth beacons).

However, some recent works including our earlier pilot
study [11], [13] present a new possibility by demonstrating
that a magnetometer traces-based approach can detect close
contacts. They exploit the fact that the magnetic field strength
is rich in spatial features (e.g. 1 m−1 to 0.01 m−1) [14]
due to various distortions by ferromagnetic materials used
in buildings such as reinforced concrete and metal doors.
The magnetometer-based approach overcomes most of the
aforementioned issues. First, thanks to the omnipresent
geomagnetic field, the similarity comparison of the two
magnetometer traces works both indoors and outdoors, and
does not need any infrastructure support. Second, it offers
better privacy protection by not revealing any identity of
the device or the location of the trace generation. Third,
it detects the coexistence only in close proximity. The low-
power smartphone magnetometers can only be affected by
ferromagnetic structures within a few meters [15], [16]. Only
the co-existing smartphones within this distance can bear suf-
ficient similarity in their magnetometer readings [11], [17].
This last characteristics is especially important asmany infec-
tious disease transmissions occur in close distances. Public
health policies for tracing close contacts or infection control
guidance often use a distance of up to 2 meters or 6 feet [18].

When the disease control authority performs an epidemi-
ological investigation, they can use the smartphone magne-
tometer traces of the person confirmed infected and of the
one suspected of a contact with the infected, in a system
depicted in Fig. 1. When people make contacts, they are
recorded in their individual phones in the form of similar
magnetometer readings. When they want to check if they
could have met an infected person, they can ask the system
to compare their traces with that of the infected person.
Since it is a pairwise comparison, it works for the case many
people gather at a location. Each individual pair from the
gathering can be checked using the pairwise comparison
method depicted in Fig. 1. In this paper, we assume that it is

FIGURE 1. A possible diagnostic test by exploiting the magnetometer
traces. It can pre-screen if the susceptible person ‘‘B’’ had a (possibly
unknown) contact with person ‘‘A’’ who has already been confirmed
infected. The disease control authority can release the trace of the
infected without revealing his or her identity for the checking use.

an emergency situation, and people are cooperating with the
disease control authority by downloading an application that
records the magnetometer readings and submits it through
the phone’s cellular connection if necessary. Indeed, there
are recent efforts that seek such public participation to pre-
pare for the next pandemic outbreak [19]. In this effort by
British Broadcasting Corporation (BBC), people are encour-
aged to download an app and activate it for helping model
the spreading dynamics in future pandemics. The app then
meticulously record the trajectory of the smartphone holder,
before it reports the trajectory information to a central server.
Considering this precedent, our own system model in Fig. 1
is not excessively unrealistic. The rationale behind such
cooperation from the public could be the fear from the lack
of information [20]. Under the depicted scenario, not only
the disease control authority but also each individual user
can check herself whether or not there has been close contact
with an infected person. Indeed, World Health Organization
(WHO) strongly recommends that disease control authorities
ensure at-risk populations have the information they need,
thereby minimizing social and economic disruption [21].

Although the existing magnetometer-based works have
confirmed the feasibility of the idea, they are a far cry
from a serious alternative to the traditional contact tracing
method. First, many of the operating parameters are still to
be determined. In particular, the exiting works [11], [13], [17]
consider only two extreme and impractical cases: either con-
tinuous contact or no contact during the whole duration of
comparison. However, when two people, possibly strangers,
make a contact, its duration can be very small compared to the
entire span of comparison (which can match the most active
transmission period of the disease). In Fig. 2, if the infected
person A was confirmed infected at time t and the disease
transmissible duration is ltx , the similarity measure between
the traces RA and RB can be computed low if the duration
of contact l2 � ltx . But this will be generally the condition
that we will face in reality. Therefore, we need to define the
window of comparison TW that we slide over the entire trace
pair to find any contact (i.e., the similarity measure over a
threshold) to make it a valid test method.

FIGURE 2. The actual contact time l2 where the two smartphones are
collocated within the disease transmissible critical distance d can be
relatively very small compared to ltx , the entire time span of checked
length in the magnetometer traces.
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Second, when new diagnostic tests are introduced, it is
necessary to evaluate the comparative diagnostic accuracy
and feasibility of this new test in comparison to the existing
tests or the gold standard [22]. This ability and diagnostic
accuracy can be quantified by calculating various measures
such as sensitivity and specificity, positive and negative
likelihood ratios, diagnostic odds ratio,etc. In this paper,
we address these issues by defining the desirable length
of TW , the decision threshold θc, and by evaluating the quality
of the contact diagnosis under these parameter values.

As to the nature of the technology we propose in this paper,
one can argue that it is only supplementary. In that we believe
that the final confirmation about the infection event should be
always made by human experts, it is true to a certain degree.
It can be used to quickly identify possible contacts with
relatively high accuracy, so that the human experts can focus
on the most likely ones that have been identified by technol-
ogy. However, at the same time, the technology covers areas
that the traditional method could not. Without the technical
support, it may be not only costly and time-consuming but
impossible in many contact events. First, The authority may
not be able to catch up with the speed of spreading when the
epidemic is full-blown. Second, in many urbanized societies
of today, we do not even know or remember thosewho happen
to sit next to us in the bus or train or in a restaurant. In large-
scale epidemics, the technology can quickly pan out even
such contacts that cannot be recovered from the memory of
the infected person. In these second sense, the technologywill
be indispensible.

The rest of this paper is organized as follows. In Section II,
we briefly summarize the related work that exploits the geo-
magnetic field strength to detect location and coexistence.
In Section III, we first discuss how we measure the simi-
larity of two traces that signals a possible contact. Then we
identify the parameters that determine the performance of the
magnetometer-based contact test, and discuss how we will
measure it. In Section IV, we evaluate the performance of the
test using a set of real-life smartphone magnetometer traces.
Finally, we conclude the paper in Section V.
Before delving into the discussion, we list the acronyms

used throughout the paper in Table 1.

II. RELATED WORK
There is rich literature on co-presence detection or its use on
epidemiology and social studies. In terms of the employed
technology, existing works range from sensors to communi-
cations to social media.We summarize them below, with brief
remarks on their relevance to our problem or the relation to
our approach.

A. GPS
Although the disease transmissibility check in contact tracing
needs not necessarily absolute but relative coordinates (i.e.,
relative to the infected person), one may well consider using
GPS trajectories to determine the distance of contact. For
instance, Qi et al. use GPS to track and visualize space-time

TABLE 1. Acronyms used in this paper.

activities for a flu transmission study [23]. Unfortunately,
GPS is a power-inefficient sensor. As we need to amplify
the signal and achieve a high processing gain due to the
small received power, a significant reduction in battery time
is inevitable. For instance, it can drain a smartphone battery
in much less than a typical charge interval even with mini-
mal activity [24], [25]. In attempts to mitigate the problem,
we could activate GPS only when user movement exceeds
the accuracy bound, or turn it off indoors by detecting the
condition through other means such as the received signal
strength (RSS) fingerprints of cell towers. Even if the power
issue is resolved, however, problems remain. First, the dis-
tance estimate between two GPS sensors may include a large
error because each can have an average error over 10 meters,
when a few meters matter in disease transmissibility check.
Second, and more importantly, GPS is incapable of checking
for possible infection events indoors.

B. RFID AND SENSOR NETWORK
Many studies have used radio frequency identification
(RFID) or sensor network technologies to understand infec-
tion and to prevent it in hospitals [26] and in schools [27].
Isella et al. use active tags to track contacts that take place
in a pediatric ward for analyzing the structure of the contact
data, it identifies the central groups that need close attention
to prevent nosocomial infection prevention. Salathe et al.
use TelosB motes carried by students in a school to obtain
close proximity interactions data and develop amore effective
vaccination strategy. It finds the small world phenomenon,
and suggests a vaccination strategy based on the structure that
is more effective than random vaccination. It is also used in
social studies [28] and for security based on proximity [29].
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Shafagh and Hithnawi [29] use ambient radio signals to
detect other nodes in close proximity, for authentication
between IoT devices before they connect. Bolić et al. use an
enhanced RFID tags to mutually detect proximity to track.
When attached to people, it can be applied for tracking inter-
actions at social events [28]. But the biggest drawback of
these approaches is that today’s smartphones hardly support
RFID or personal area network (PAN) technologies other than
Bluetooth. Due to the lack of deployment base among general
public, they do not serve our purpose of massive mutual
contact monitoring between strangers.

C. SOCIAL MEDIA AND SEARCH RECORDS
Recently, there have been efforts to introduce social media
such as Twitter to epidemic monitoring, for early detection,
management, and control of epidemic outbreaks [30]–[33].
In particular, participatory surveillance using social networks
to collect symptom reports to detect infectious disease out-
breaks has been tried. However, most studies limit their
scope to common and seasonally recurring health events
such as Influenza due to the noisy nature of Twitter [34].
Moreover, this post-symptomatic reporting can take long
time because some diseases go through long incubation
period (e.g. 3 weeks in Middle East Respiratory Syndrome
(MERS) [35]). Moreover, subjective symptom reports do
not provide information specific enough for disease control
authorities to construct contact traces and obtain contact
contexts. Also, it gives us only collective statistics at coarse
granularities, while contact tracing requires information on
person-to-person interactions. In the same vein, search-based
global disease trend tracking services [36] are not directly
helpful to contact tracing in emergency response.

D. WI-FI
For its prevalence, Wi-Fi is extremely popular for indoor
localization. For example, there is a recent work that lever-
ages on participatory sensing [37]. Again, as in GPS,
we could consider using Wi-Fi assisted location information
to determine the distance of contact, although the disease
transmissibility check in contact tracing needs not necessar-
ily absolute but relative coordinates. However, there are not
many works in co-locating two devices using the technology.
Existing works based on Wi-Fi are mostly centered around
proximity detection and its applications. But mutual proxim-
ity detection is not in the design ofWi-Fi, so it requires signif-
icant manipulation such as exploiting portable hot spot (PHS)
mode [38]. Carreras et al. [38] useWi-Fi to mutually discover
smartphones in proximity and determine the distance using
received signal strength indication (RSSI). In line-of-sight
condition, they argue that 0.5 m resolution is achievable
using the RSSI of the discovered smartphone and machine
learning algorithms. As to the closeness estimation, most pre-
vious works rely on RSSI [39]–[41]. The applications include
authentication [39], [40] and epidemic prediction [8]. In par-
ticular, Nguyen et al. [8] show that the co-presence in dis-
ease transmissible distance can be determined through RSSI

signatures from public Wi-Fi access points. A drawback of
using Wi-Fi is that access points may be unavailable or prove
insufficient to fix positions with a consistent precision. Also,
the technology is not stellar in energy efficiency, especially
for long and continual monitoring.

E. BLUETOOTH
For proximity detection, Bluetooth is a popular technology
for its relatively high precision in short distances [9]. It has
been mostly used for studies on social behavior and interac-
tion such as duration and proximity [42], and those in mass
gathering situations [43]. Liu et al. [9] show that Bluetooth
can be used to detect face-to-face interaction within 1.5 m
by mapping Bluetooth RSSI to distance. In this work, smart-
phones attempt to detect other Bluetooth smartphones every
30 seconds. Compared with Wi-Fi and cellular location, they
show that Bluetooth can provide an order of magnitude more
precise proximity detection. Montanari [42] proposes to use
Bluetooth Low Energy (BLE) to measure the duration and
the proximity of social contact using BLE-enabled wearables.
It has been also used to measure, understand, and predict
how individuals change their social behavior in response to
infectious diseases [7]. Yoneki [7] uses Bluetooth to collect
proximity devices data to measure, understand, and predict
how individuals change their social behavior in response
to infectious disease. Jamil et al. [43] use BLE tags and
smartphones to track group dynamics in a massive religious
gathering. It investigates the best configurations for the BLE
tags and the scan durations for smartphones. Compared with
the infection study, the group dynamics study requires detec-
tion in farther distances at more than 10 m. Also, the tags
unilaterally advertise, and the smartphones unilaterally scan.
It also does 10% duty cycling, with 5 minutes of hibernation
between 30 seconds scans. Therefore, this does not fit with
the continuous monitoring need for infectious contacts that
could happen any time. A recent study also points out the
inefficiency of the Bluetooth (LE) protocol in connection-
based interactions when there are hundreds or even thou-
sands of BLE devices in the communication range of each
other [44]. Harris et al. [44] consider the dense BLE deploy-
ment scenario where hundreds or even thousands of tags
interact with a large number of scanning devices such as
smartphones. It raises the message collision and consequent
energy waste issues of the BLE active scanning mode, and
proposes an optimization scheme to solve them. Although
Bluetooth technology has many desirable properties, it relies
on the beacon exchange to detect each other. The beacons can
reveal the identity of the transmitting device, threatening the
privacy of the user.

F. CELLULAR NETWORK
Communication traces obtained by mobile phones are known
to be good proxies for the physical interaction network,
and they may provide a valuable tool for contact tracing.
For example, calls and messaging activities were used to
construct human contact networks [45]. Mobile network
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data or call detail records (CDRs) have also been used to
model population flows, major mobility hubs, and move-
ment typologies, and how they change as the Ebola outbreak
unfolds [46]. We could even use two phones attaching to
an identical cell as a signal for a possible physical contact.
However, the coverage of a single cell tower is at least a few
hundred meters in radius, so it would be too coarse to identify
infectious physical contact events within a few meters [18].

G. ACCELEROMETER
One important instance of the mix encounters with strangers
is public transport such as train or bus, which people can share
for long enough time to enable several modes of disease trans-
mission. For example, an infected person openly coughing in
the bus can infect fellow riders in case of aerosol or droplet
transmission diseases. When there are many potential con-
tacts that a confirmed case cannot identify or recollect as in
public transports, a potent tool we can exploit is the mobile
devices such as smartphones. These devices can be leveraged
to detect co-location, which can be a good proxy for the
physical contacts. For instance, two smartphones located in
adjacent cars in a train, both close to the doors dividing
the cars, will probably exhibit high similarity in all their
measures. But on amulti-car vehicle, amore relevant question
in the context of epidemic infection is whether two passen-
gers are on the same car or on different cars. So, in this
letter, we explore how we can differentiate locations in the
same train at car-level granularity. Our study reveals that
accelerometer readings during train stop and start events tend
to be characteristic of different car positions, so they can
be used to generate a strong co-location signature on the
car level. Thanks to the movements of the train, it does not
require a complex communication infrastructure on the train
for classification [41], but an accelerometer.

H. AMBIENT SOUND SENSOR
Common ambient sound detection using the microphone
sensor [47]–[49] can be a technology of choice. But using
the microphone sensor has its own issues. First, the number
of samples at its typically high sampling frequencies (e.g.
44.1 KHz) is too large for continuous and indefinitely long
monitoring required for detecting contacts that can happen at
any time. Second, privacy can be violated because any con-
versations are also recorded. Finally, there is the possibility of
false detection. For example, two people watching the same
TV channel or listening to other broadcast sounds in different
places can be classified as coexistent.

I. MAGNETOMETER
The smartphone magnetometer has been extensively used
for indoor localization and tracking (but not much for
coexistence detection). Researchers found that the indoor
magnetic field is rich in spatial features [16], and easy to
sense [14]. Moreover, the field is stable over long periods of
time [50]–[52]. The richness and the stability of the mag-
netic field enables mapping (a.k.a. fingerprinting) and

magnetic map-based applications. The first application is
indoor location. Chung et al. [15] showed that the geomag-
netic anomaly can provide signatures for indoor locations
that can be leveraged for sub-meter-level location accuracy.
Frassl et al. [14] used magnetic maps with centimeter-
level accuracy to localize a human or robot. Li et al. [52]
discussed possible issues that can affect the precision and
the feasibility of the fingerprinting approach for indoor
location. Angermann et al. [50] found that the use of all
three field components provides good resolution of ambi-
guities in a small indoor area. Carrillo et al. [53] used
the three components of the measured magnetic field by
smartphone magnetometers instead of just the intensity to
improve accuracy. The second application is navigation.
Brzozowski and Kazmierczak [54] discussed ways of record-
ing, visualizing, and mapping local magnetic field changes
in 3D that can be used as a support for indoor navigation sys-
tems for unmanned aerial vehicles (UAVs). Riehle et al. [55]
considered a leader-follower style navigation application for
visually impaired people where there is time gap between
traversals, without relying on expensive indoor magnetic
fingerprinting. A follower could compare its own magne-
tometer trace and the leader’s to determine if the follower
reached a waypoint and if the follower went off-route. The
third application also does not require fingerprinting, and
it is of our interest in this paper – coexistence detection.
Nguyen et al. [13] used only smartphone magnetometers to
detect co-location of passengers in public transport. They
exploited the fact that the passengers share the trajectory
between at least two consecutive stations, and the magne-
tometer traces exhibit high similarity, which wasmeasured by
the distance in Derivative Dynamic Time Warping (DDTW).
Kuk et al. [11] showed that even in outdoors the magne-
tometer traces can be compared to detect contacts within a
few meters where the current GPS can have an order-of-
magnitude larger errors. It showed that two closely located
smartphones generate highly correlatedmagnetometer traces,
which can be exploited to detect coexistence. Kuk et al.
showed that they could lower the frequency to 1 Hz without
significantly harming the detection performance, but increas-
ing the battery life significantly.

The smartphone magnetometer overcomes undesirable
properties of other technological alternatives. It can detect
contacts within very short distances that fit infectious dis-
ease transmissions monitoring, and it can work indoors.
It is supported by all smartphones, and works without any
infrastructure support. It consumes relatively small power
compared with other sensors, and has little privacy concerns.
In this paper, therefore, we focus on the contact detection
on smartphone magnetometers and explore their potential to
provide a diagnostic tool for potentially infectious contacts
made between smartphone holders.

As to the privacy concern of some of the technologies
above, it may not an issue in the event of an epidemic.
Authorities may legally have purpose-based access to the
phone data of the infected or so suspected person, or rather,
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users may voluntarily give consent to the authority to use their
trajectory data. Indeed, we assume such model in subsequent
discussions.

Finally, it is worthwhile to mention that any combination
of the magnetometer-based method proposed in this paper
with other technologies is possible. For instance, the cost of
comparing two traces for checking close contacts could be
avoided if their GPS coordinates or cellular attachments show
totally different values. Many valuable combinations could
be conceived, but in this paper, we focus on the smartphone
magnetometer-based method first so that it can be used in
such combination in a more intelligent way.

III. A MAGNETOMETER-BASED DIAGNOSTIC TEST
In this section, we discuss how we measure the similarity of
two magnetometer traces. Among many similarity measures
we can use, we pick the Pearson correlation coefficient.
It is a good measure of linear correlation, which fits the
linear correlation that two magnetometers in close proxim-
ity show in their ambient magnetic field strength readings.
Fig. 3 shows real traces generated by two phones held by the
people walking side-by-side through a corridor in a univer-
sity campus building. Here, we let the phones measure the
ambient magnetic field strength in µT at the rate of 10 Hz.
In (a), the horizontal axis is the sample number of measured
magnetometer values, and the vertical axis is the strength
of the magnetic field vector perpendicular to the ground.
We observe that these two time series do exhibit similar
fluctuations. The fluctuations are the results of the magnetic
distortions to the geomagnetic field by ferromagnetic mate-
rials such as steel doors, pillars, and rebars among others
in the building the smartphone users are passing by. The
synchronized fluctuations of the two magnetometer readings
have a linear correlation, as shown by (b). Therefore, when
each phone records such trace while the user moves around in
daily life, we can let the users or the disease control authority
later check for possible contacts with an infected person using
the strength of the linear correlation. For example, as in Fig. 1,
a susceptible user can check if her smartphone has a trace
segment that computes a high correlation with an infected
person’s trace that can be provided by the disease control
authority.

A. SIMILARITY MEASURE: PEARSON’S R
In order to compute the similarity of two smartphone magne-
tometer traces, we need to use a similarity measure. There
are numerous similarity measures, but some popular ones
in the literature are cosine similarity, Dynamic Time Warp-
ing (DTW) distance, Euclidean distance, Kullback-Liebler
distance, Jaccard similarity, Pearson correlation, among
others [56]. In the areas of epidemiology and psychology,
however, the measure of association is frequently analyzed
by correlation analysis and regression analysis [57]. In this
paper, we use the correlation analysis. As for the correlation
measures, there are Pearson, Kendall, and Spearman corre-
lation coefficients [58]. Among these, we pick the Pearson

FIGURE 3. The magnetic field strength traces from two phones carried in
proximity shows a linear correlation. (a) Two smartphone magnetometer
traces from a co-existing context. (b) Linear correlation.

correlation coefficient, as it is a good measure for a linear
correlation. To start with, Table 2 lists the notations we use in
the subsequent discussion on how we compute the Pearson’s
correlation coefficient of two magnetometer traces.

TABLE 2. Notations used in trace similarity comparison.

Fig. 4 shows the relations between some of the notations.
As two synchronized traces from the smartphones carried by
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FIGURE 4. Notations used in the discussion.

two strangers are compared, we do not knowwhether or when
the contact was made. As we discussed in Section I, we need
to inspect the traces in a window of time TW , as we slide the
inspection window (blue box in Fig. 4) over the entire span
of the traces that we are interested in (ltx). Given TW and
the magnetometer sampling rate fs, the Pearson correlation
coefficient for the samples in the window1 NW = TW · fs
starting from the k th sample is defined to be:

ρk (A,B) =
1

NW − 1

NW−1∑
i=0

(
Ak+i − µA

σA

)(
Bk+i − µB

σB

)
(1)

where Ak+i and Bk+i are (k + i)th individual magnetometer
readings from phones A and B, respectively. µ and σ are
the mean and the standard deviation of the measured values
in two phone’s compared traces in the inspection window.
Recollect that the existing works [11], [13] compute the
similarity over the entire span of samples L = ltx · fs,
essentially making NW = L. Unfortunately, at an arbitrary
length L, we cannot control the false detection possibilities
at all, whether positive or negative. Therefore, we will use a
window NW � L to slide over the compared traces to find
any interval for which ρk (A,B) > θc, 0 ≤ k < L − NW + 1,
where θc is the cutoff threshold for the contact decision.

When ltx significantly increases, there are two aspects we
need to consider: memory to store a trace (at smartphones)
and correlation computation (at contact tracing check server).
First, in terms of memory, the smartphones should keep
the samples collected during the long transmissible dura-
tion. In our implementation, each magnetometer measure-
ment sample is a vector, whose size is 50 bytes. At 10 Hz
sampling, we generate data at 500 bytes/second. For an hour
of continuous recording, it is approximately 1.8 MB. For
one week, it is approximately 300 MB. Modern smartphones
typically have a few tens of gigabytes ofmemory, so it will not
be an excessive burden, especially in the emergency situation
(i.e., infectious epidemic). In terms of computation, the trace

1Since we use a constant value of fs = 10Hz throughout the paper, we will
use the term ‘‘window’’ to mean NW (which is equivalent to 10 · TW ) in
subsequent discussions.

comparison is performed not on the smartphones but on a
server to which the traces are submitted by users who want to
check if theywere in a close distance with the infected person.
The correlation computation will take proportionally long to
the length of the compared traces. But the computation itself
is not extremely heavy.We tested the correlation computation
with the sliding inspection window of 10 seconds over two
continuous traces of 56,600 samples collected at 10 Hz (or
ltx = 5,660 seconds or 94 minutes). It takes approximately
6.7 seconds on a server that has an i7-7700K processor with
the clock speed of 4.2 GHz, using only a single core. For
week-long traces, it will be slightly over 10 minutes.

Note that the type of contact we aim to detect in this
paper is coexistence [23] that will enable the ‘same-place-
same-time’ (SPST) disease transmission. This contact type
is more common in infectious disease transmissions than
the ‘same-place-different-time’ (SPDT) type [59]. Since the
smartphone users are assumed to stay/move together in this
type of contact, we do not need to align the traces for the time
gap and the moving speed differences by using such schemes
as Dynamic Time Warping (DTW) [60]. Finally, we focus on
the contacts made in the indoor contexts, because urban life is
90% indoors [61], and indoors is where most infection events
take place.

B. PARAMETERS FOR CONTACT DECISION
As the length of the traces L over which the search is per-
formed should be defined by the given disease of concern,
e.g. by its incubation period [62] or the duration of active
transmission, we do not consider this parameter further in this
paper. As for the window size NW , it should be long enough
to find the contacts of the critical duration that can enable the
transmission. However, it is hard to definitely characterize
the duration as it will be disease-specific. So, in this paper,
we focus on the technical side. Namely, we investigate the
minimum window size that we can effectively use for the
comparison, which will be equivalent to defining the granu-
larity of inspection that smartphone magnetometers can offer.
Longer contacts than the window size will manifest as a
series of consecutive or densely grouped positive decisions,
as we slide the window over the entire trace. Finally, we will
show that the decision cutoff threshold θc is related with the
window size NW for a given target detection accuracy.
If the magnetic field strength had a stationary distribu-

tion, we could easily draw earlier works on the sample size
planning for clinical research [58]. Specifically, the required
sample sizeNW overwhich the correlation is computed can be
estimated as a function of the targeted cutoff θc. In particular,
NW decreases as θc or the confidence interval increases.
Unfortunately, the distribution of the magnetic field strength
measured by a moving smartphone is not stationary [13].
Without the stationarity of the magnetometer values in our
environment, we cannot analytically derive the window size
but turn to the measurement-based approach to estimate NW
to meet the given θc.
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C. PERFORMANCE MEASURES
In order to see whether we can use the similarity check of
the smartphone magnetometer traces as a diagnostic test,
we evaluate its discriminative and predictive power. In par-
ticular, we need to evaluate it under different choices of
NW and θc. In clinical studies, numerous metrics are used
to evaluate the quality of a diagnostic test. Some of them
are: sensitivity, specificity, accuracy, positive and negative
likelihood ratio, positive and negative predictive value, odds
ratio, relative risk, risk difference, number needed to treat,
etc. Among these, we will use the ones that are not affected
by the prevalence, which can only be artificial in our setting.

Given the ground truth (contact vs. no contact) and the
decision using the smartphone magnetometer traces, there
can be four cases among which true positive (TP) and true
negative (TN) are desirable, and false positive (FP) and false
negative (FN) should be minimized (Table 3). As in any other
accuracy assessment of diagnostic tests, we use the 2×2 table.
As to how the false detections (FP and FN) arise in our
setting, we can consider two possibilities. Suppose the length
of the contact duration represented in the traces is Tc, and the
number of samples generated during the duration Lc = Tc · fs.
Then, let us consider Fig. 5, where two people move indoors
with the smartphone magnetometers measuring the ambient
field strength at 10 Hz. The two people come from different
places (A1 vs. B1), meet in the middle, and move together in
the region labeled ‘‘A2 + B2’’ for Tc = 90 seconds, and then
part and return to their initial locations (A3 vs. B3). Fig. 6
shows the correlation coefficients obtained as we slide the
inspection window over the entire trace under two different
NW values. The x-axis is the sample number k in (1) at which
the coefficient is computed, and the y-axis is ρk . The shaded
region represents the duration of contact. It is approximately
from samples 1,600 through 2,400 in both graphs.

TABLE 3. Classification is a function of θc , under a given NW .

FIGURE 5. Two people meet and walk together for Tc = 90 seconds
before they part in an indoor space, making Lc = 900 at fs = 10 Hz.

FIGURE 6. Decision changes with different window sizes (negative values
not shown); shared regions represent the actual contact. (a) NW = 100.
(b) NW = 1,200.

1) COMPARISON WINDOW IS NARROWER THAN THE
CONTACT DURATION (NW < LC )
There are two subcases in this case. First, if NW is very small,
it can cause many spurious contact detections since coinci-
dental high correlations may not be sufficiently averaged out.
For example, with NW = 100 and 1,200, Fig. 6(a) and (b)
show their Pearson correlation coefficients, respectively. The
circles in Fig. 6(a) show that two spurious detection events
are possible for NW = 100 and θc = 0.8. Second, even if
NW is large there are still chances for false detections, but
only negative. It is because increasing NW decreases ρk (A,B)
as a consequence of the non-stationarity of the magnetic
field strength distribution [13], when the human smartphone
holder moves through space. Using our coexistent trace pairs,
we indeed confirm that the larger window sizes significantly
reduce the correlation coefficient (Fig. 7).

2) COMPARISON WINDOW IS WIDER THAN THE CONTACT
DURATION (NW > LC )
In this case, a possible consequence is that the adjacent
measurement samples outside the coexistence duration that
happen to be included in the window decreases the cross
correlation, possibly leading to a false negative decision
depending on θc. Observe that for high cutoff thresholds such
as θc > 0.8, Fig. 6(b) will falsely determine that there was no
contact, whereas the former will correctly detect the contact.

Either way, these problems can lead to false decisions
about the contact, so it is clear that we need to determine
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FIGURE 7. Pearson correlation coefficient ρk with 95% confidence
interval, for a large number coexistent trace pairs.

the appropriate window size NW as well as the cutoff
threshold θc.

IV. EVALUATION
For our measurement-based study, we use indoor magne-
tometer traces collected in the Korea University campus
in Seoul, Korea. Below, we first discuss how we collect
the traces. Then we evaluate the smartphone magnetometer-
based contact detection using the measures mentioned in
Section III-C.

A. MAGNETOMETER TRACE COLLECTION
To collect the magnetometer traces, we developed and
installed a magnetometer sensing app for Android smart-
phones, Samsung Galaxy S5, S6, S8 and LG G3 and G4.
We confirmed that our app works correctly on all these plat-
forms. Among the phones, we used twoGalaxy S5’s to collect
the traces used in this section. We synchronized their sensing
activity through the Network Time Protocol (NTP) [63] for
later comparison of their magnetometer traces. We collect
the magnetometer traces in five different buildings in the
campus. We picked three places in each building. At each
place, we repeated the trace collection six times along the
same walking path. So, in total, there are 90 traces, and each
trace is 300 seconds long. There are C(6, 2) = 15 pairs
of traces per place to be judged co-existent. Since there are
15 different places from which the traces were collected,
we have 15 · C(6, 2) = 225 co-existent trace pairs in total.
On the other hand, there are C(15, 2) · C(6, 1) · C(6, 1) =
15 · 7 · 6 · 6 = 3, 780 non-coexistent pairs.

We measured the magnetic field strengths at the default
sampling frequency of 10 Hz, a popular magnetometer sens-
ing rate in the literature [17]. The magnetometer readings are
obtained in three phone-specific axes: X, Y, and Z. In order
to simulate typical indoor walking dynamics, we let the
smartphone holders walk approximately at the ‘preferred’
walking speed [64]. It is known that people prefer to walk at
approximately 1.4 m/s (or 5.0 km/h) irrespective of cultures,
as they find slower or faster speed uncomfortable. Each trace
was produced in narrow corridors, and we saw to it that the
traces do not deviate from each other more than an ‘arm’s
length’ to simulate the typical personal gap [65].

As the smartphones can have arbitrary attitudes when
and while the contact is made, the measured magnetic
strengths in their X, Y, and Z axes will generally be mis-
aligned. For comparison, therefore, they should be translated
to a common coordinate system. For this, we use Android
getRotationMatrix() method to translate the phone-
specific coordinates to the absolute coordinate (i.e., North,
East, etc). A desirable property of the geomagnetism is that
it has absolute reference directions such as the East and the
North. Smartphoneswill change attitudes freely, but the trans-
lationmethod lets us readily compare the traces from different
phones regardless of their attitudes. As to the robustness of
the method against the accumulation of errors over a long
duration of continuous operation, it is a research issue of its
own [66]. In this paper, we assume that such calibration is
being done to maintain the precision of the magnetometers.

Fig. 8 illustrates the alignment operation in our measure-
ment system. Under the misalignment (a), it is not straight-
forward to choose the axis for the comparison (b). The traces
in (b) shows that the X-axis of Phone 1 is aligned with the
Y-axis of Phone 2, which is the ground truth as shown in (a).
But after the translation, the readings from the two coexistent
but misaligned phones are cleanly separated along the three
absolute axes (c). We notice that the Z-axis traces from (b)
are identical to UP-axis traces in (c), because the phones
were held parallel to the ground (a) in the generation of the
traces in (b). Finally, the EAST is simply the cross product
of the two vectors NORTH and UP, so it is redundant. Thus
in our implementation, we choose whichever axis between
NORTH and UP that shows the highest correlation in the
decision.

B. RESULTS
Here, we compute the evaluation measures for the combina-
tions of the window size and the decision threshold. In par-
ticular, we will compute them for the first NW samples from
each trace pair, i.e., k = 0 in (1). But first, there is a caveat.

1) ON PREVALENCE AND ITS DEPENDENT MEASURES
In total, there are 3, 780 and 225 non-coexistent and
co-existent trace pairs in our data set, totaling at 4, 005. The
Prevalence in our data set is thus 225/4, 005 = 5.62 %.
However, this is artificial – we could have made it
higher or lower by producing more of coexistent or non-
coexistent traces, respectively. Naturally, it is meaningless
to calculate the measures affected by the prevalence, where
the prevalence of disease is artificially controlled [22].
Sensitivity and specificity are not generally related to the
prevalence of the disease in the population considered, since
these are properties of the diagnostic tool. Unlike sensitivity
and specificity, measures such as predictive values, accuracy,
relative risk and risk difference are affected by the prevalence.
Therefore, we exclude them, and use the measures that are
not affected by the prevalence to evaluate the magnetometer-
based contact test.
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FIGURE 8. Two devices in arbitrarily misaligned attitudes translated by
getRotationMatrix method. (a) Freely aligned phone attitudes.
(b) Before translation. (c) After translation.

2) SENSITIVITY AND SPECIFICITY
Sensitivity is expressed as the proportion of correctly classi-
fied as true positives among the total contacts TP/(TP+FN ).
In other words, it is the ability of the magnetometer-based
test to correctly identify the trace pairs with a real contact.
A highly sensitive test is useful, when we do not want to
miss a contact (with an infected person) in screening the
population. The specificity is the ability to identify the no
contacts, expressed as TN/(TN + FP). A specific test will
rarely misclassify the trace pairs without a contact as having
made a contact. The sensitivity and specificity show the
discriminative powers of a diagnostic test.

Fig. 9 shows the sensitivity and the specificity of our smart-
phone magnetometer-based test, as functions of NW and θc.

FIGURE 9. Sensitivity and specificity of the magnetometer-based contact
test. (a) Sensitivity. (b) Specificity.

We first find that larger NW does not necessarily mean the
higher sensitivity. Although happening at different values of
NW (50|θc=0.9∼ 200|θc=0.1), the sensitivity begins to decrease
beyond a certain NW at each cutoff threshold. It implies that
the correlation decreases when computed for an excessively
long trace segment used as the inspection window. This is
due to the non-stationary property of the magnetometer mea-
surement value distribution [13]. The specificity, on the other
hand, steadily increases as we use larger NW . The lesson here
is that when we use the magnetometer-based diagnostic test,
we need to examine the similarity of the two traces using the
time window of NW = 50 ∼ 200 to achieve the highest
sensitivity. Then, the choice of the exact cutoff threshold will
depend on the target specificity.

Also, we find in Fig. 9 that the sensitivity is higher with
lower cutoff values, whereas the specificity is higher with
higher cutoff values. This tension is natural, and can be
summarized in the Receiver Operating Characteristic (ROC)
curve. Fig. 10 shows the ROC curves for different parameter
combinations. Although we cannot show the area under curve
(AUC) itself due to the absence of very low specificity data
points, it is clear that the AUC’s for variousNW are very high.
Namely, the magnetometer-based test is of high diagnostic
quality. Among the inspection sample window sizes, very
small NW (50, 70) and very large NW (1,500) lead to poorer
AUC than those in the middle (NW = 100 ∼ 900) as shown
in Fig. 10(b). NW = 300 achieves the best overall AUC.
In order to obtain the cutoff value θc that achieves the high-

est AUC for a givenNW , we can compute the shortest distance
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FIGURE 10. ROC curves obtained by varying θc for different values of NW .
(a) ROC. (b) ROC.

TABLE 4. θc that leads to the shortest distance from (0,1) to the ROC
curve for different NW .

from (0, 1) to the curves. Table 4 shows the result. This table
shows what NW to use in case a cutoff threshold is given.
It is worthwhile to notice that for higher cutoff thresholds,
the window size does not have to be large. In particular, NW
can be less than 100 for very high cutoff thresholds. The table
can serve as a guideline to choose appropriate values for the
parameter pair.

3) LIKELIHOOD RATIOS
Likelihood ratio (LR) is the mostly widely applied measure
of diagnostic accuracy. Also, it can serve as a predictive
measure. In our context, LR tells us how many times more
likely a decision is in the trace pairs with the contact than
in those without contact. When both probabilities are equal

(i.e., LR = 1), such test is of no value. The LR for positive
test results (LR+) is defined as TP

TP+FN /
FP

TN+FP . The higher
the LR+, the more indicative the test is of the contact. Good
diagnostic tests have LR+ > 10 and their positive result
has a significant contribution to the diagnosis [67]. On the
other hand, the LR for negative test result (LR−) is defined
as FN

TP+FN /
TN

TN+FP , and it represents the ratio of the proba-
bility that a negative result will occur in trace pairs with the
contact to the probability that the same result will occur in
trace pairs without the contact. Good diagnostic tests have
LR− < 0.1 [67]. The lower the LR−, the more significant
contribution of the test is in ruling-out. LR’s do not depend
on prevalence of disease of population, as only sensitivity and
specificity values are used to calculate them. As a result the
LR’s of one study could be used in another setting with the
condition that the definition of contact is not changed.

The likelihood ratios of the smartphone magnetometer-
based contact test are shown in Fig. 11. In (a), we observe
that it is highly useful for positive identification of contacts.
The criterion LR+ > 10 tells us that the positive likelihoods
can be a significant contribution to the diagnosis. We also
note that we do not need large NW to have LR+ > 10,
especially when we use higher cutoff thresholds of θc ≥ 0.6.
Less than 100 measurement samples at 10 Hz, or equivalently
10 seconds, is enough to qualify for a good test for positive
identification of contacts. On the other hand, Fig. 11(b) shows
that the higher cutoff thresholds cannot achieve LR− < 0.1
regardless of NW . It implies that using the higher cutoffs can

FIGURE 11. Likelihood ratios. (a) Positive likelihood ratio. (b) Negative
likelihood ratio.
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produce a high fraction of false negatives. However, this issue
may be mitigated if we require that a contact duration be
composed of a series of positive decisions as we slide the
inspection window. For example, in Fig. 6(a), hundreds of
adjacent positive decisions will occur as we slide up k in (1).
Interspersed false negatives will less affect the final decision
then.

4) DIAGNOSTIC ODDS RATIO
Diagnostic odds ratio (DOR) is a relative measure for diag-
nostic accuracy, used for the estimation of discriminative
power of diagnostic procedures [67]. DOR of a test is the ratio
of the odds of positivity in traces with the contact relative to
the odds in traces without contact. It is calculated according
to the formula: DOR = (TP/FN )/(FP/TN ). DOR depends
significantly on the sensitivity and specificity of a test. A test
with high specificity and sensitivity with low rate of false
positives and false negatives has high DOR. With the same
sensitivity of the test, DOR increases with the increase of the
test specificity. For example, a test with sensitivity > 90%
and specificity of 99% has a DOR greater than 500. The
diagnostic odds ratio ranges from zero to infinity, although
for useful tests it is greater than one, and higher diagnostic
odds ratios are indicative of better test performance.

Fig. 12 shows that the DOR of the smartphone
magnetometer-based contact test is much larger than one
for most NW values. So, this measure also confirms that the
magnetometer-based test is useful. If we use OR = 500 as
the example criterion, the figure tells us that higher cutoff
thresholds qualify with less measurement samplesNW to look
at (θc = 0.9 has FN = 0 at NW = 100, so it should qualify
although we cannot plot it). For these higher cutoffs, less than
300 samples (or equivalently 30 seconds) or less is enough to
achieve the high DOR.

FIGURE 12. Odds ratio for different θc with 10 Hz sampling.

C. SUMMARY OF RESULTS AND RECOMMENDATIONS
Above, we evaluated the quality of the smartphone mag-
netometer traces comparison as a clinical test for potential
(infectious) contact. All evaluation metrics that we used
for the evaluation, namely sensitivity, specificity, likelihood
ratio, and diagnostic odds ratio, point to the fact that the

number of magnetometer readings to be compared between
two traces (NW ) can be small. These metrics produce slightly
different optimal numbers for the required readings, but
if we need one good number to apply in real-life cases,
it is 100 samples (or equivalently 10 seconds at the 10 Hz
sampling frequency). It leads to the best or close-to-the-
best performance in all the evaluation measures. Our rec-
ommendation is that when two magnetometer traces from
two smartphones are compared, one needs to use a window
of 100 samples2 for the Pearson correlation computation to
achieve the most precise decision as to whether the contact
was really made between the smartphone holders. One further
recommendation is that the correlation coefficient value used
as the decision threshold can be high. Specifically, θc = 0.6
is a good match for the 100-sample inspection window. Note
that these two numbersNW and θc to produce themost precise
decision are closely related, and other combinations than
(100, 0.6) can be inferred from the results in the previous
section.

V. CONCLUSION
When a large-scale epidemic crisis unfolds in the highly
urbanized society today, the traditional contact tracing
method of medical personnel interviewing the infected per-
sons will become highly costly, slow, and ineffective. In this
paper, we discuss how smartphones carried by most people
can be harnessed to automatize the contact tracing in such
situation. We exploit the fact that smartphone magnetometers
show high linear correlation when two phones coexist within
a short, disease-contractible distances, such as less than two
meters. Then, we use a battery of metrics to evaluate the
value of such smartphone magnetometer traces comparison
as a clinical test that medical personnel can use in real-
life with a high trust level. Our evaluation reveals that the
magnetometer-based method qualifies for a valid clinical
test, if used with certain parameter values in the correlation
computation. Specifically, our finding and recommendations
are as follows. First, the size of the sliding window of trace
section to be compared is best to be what corresponds to
10 seconds of samples. Second, the decision threshold that
matches the comparison window size is 0.6, for the most
precise contact decision. These two parameters are inversely
related with respect to the precision of the contact detection,
and other combinations around the recommended values are
also possible. In future, we will further test the reliability
of the proposed method with the recommended and other
parameter settings in more extensive real-life environments,
for instance with different smartphone movement speeds,
with obstacles, people or objects between or around the
smartphone holders, and with interferences such as power
lines close to the smartphones. The artificial traces that we
generated in a controlled environment could have biased our
experiment results and our conclusion. Therefore, we will

2At 10 Hz. For other sampling frequencies, it should be adjusted to the
number of samples generated in 10 seconds.
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need to optimize the proposed method further against the
real-life traces in a building or in public places to make it
more reliable and actually usable in the real-life epidemic
situations.

REFERENCES
[1] D. MacKenzie, ‘‘Waiting for the big one: A new flu pandemic

is a matter of time,’’ New Sci., Jan. 2, 2018. [Online]. Avail-
able: https://www.newscientist.com/article/2156921-wait ing-for-the-big-
one-a-new-flu-pandemic-is-a-matter-of-time/

[2] R. S. Dhillon and D. Srikrishna. (Jul. 16, 2015). What We’ve Learned
About Fighting Ebola. Harvard Business Review. [Online]. Available:
https://hbr.org/2015/07/what-weve-learned-about-fighting-ebola

[3] S. Toppa. (Jan. 28, 2015). Bill Gates Says We Must Prepare for
Future Pandemics as for ‘War’. Time Magazine. [Online]. Available:
http://time.com/3685490/bill-gates-ebola-pandemics/

[4] D. W. Borders. (Jan. 26, 2015). Ebola: Decline Encouraging, But Criti-
cal Gaps Remain. [Online]. Available: https://www.msf.org/ebola-decline-
encouraging-critical-gaps-remain

[5] M. J. Keeling and K. T. D. Eames, ‘‘Networks and epidemic mod-
els,’’ J. Roy. Soc. Interface, vol. 2, no. 4, pp. 295–307, Sep. 2005,
doi: 10.1098/rsif.2005.0051.

[6] M. Halloran et al., ‘‘Ebola: Mobility data,’’ Science, vol. 346, no. 6208,
p. 433, Oct. 2014, doi: 10.1126/science.346.6208.433-a.

[7] E. Yoneki, ‘‘FluPhone study: Virtual disease spread using haggle,’’ in Proc.
6th ACM Workshop Challenged Netw., Las Vegas, NV, USA, Sep. 2011,
pp. 65–66.

[8] K. A. Nguyen, Z. Luo, and C. Watkins, ‘‘On the feasibility of using two
mobile phones and WLAN signal to detect co-location of two users for
epidemic prediction’’ in Progress in Location-Based Services, New York,
NY, USA: Springer, Nov. 2015, pp. 63–78.

[9] S. Liu, Y. Jiang, and A. Striegel, ‘‘Face-to-face proximity estimationusing
bluetooth on smartphones,’’ IEEE Trans. Mobile Comput., vol. 13, no. 4,
pp. 811–823, Apr. 2014, doi: 10.1109/TMC.2013.44.

[10] K. Farrahi, R. Emonet, and M. Cebrian, ‘‘Epidemic contact
tracing via communication traces,’’ PLoS ONE, vol. 9, no. 5,
p. e95133, May 2014, doi: 10.1371/journal.pone.0095133 and
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0095133

[11] S. Kuk, Y. Jeon, and H. Kim, ‘‘Detecting outdoor coexistence as a proxy of
infectious contact through magnetometer traces,’’ Electron. Lett., vol. 53,
no. 19, pp. 1293–1294, Sep. 2017, doi: 10.1049/el.2017.2454.

[12] K. Katevas, H. Haddadi, and L. Tokarchuk, ‘‘Sensingkit: Evaluating the
sensor power consumption in ios devices,’’ in Proc. 12th Int. Conf. Intell.
Environ., London, U.K., Sep. 2016, pp. 222–225.

[13] D. K. A. Nguyen, C. Watkins, and Z. Luo, ‘‘Co-location epidemic tracking
on London public transports using low power mobile magnetometer,’’
in Proc. Int. Conf. Indoor Positioning Indoor Navigat., Sapporo, Japan,
Sep. 2017, pp. 1–8.

[14] M. Frassl et al., ‘‘Magnetic maps of indoor environments for precise
localization of legged and non-legged locomotion,’’ in Proc. IEEE/RSJ Int.
Conf. Intell. Robots Syst., Tokyo, Japan, Nov. 2013, pp. 913–920.

[15] J. Chung, M. Donahoe, C. Schmandt, I.-J. Kim, P. Razavai, and
M. Wiseman, ‘‘Indoor location sensing using Geo-magnetism,’’ in Proc.
ACM MobiSys, Bethesda, Maryland, USA, Jun./Jul. 1, 2011, pp. 141–154.

[16] K. S. P. Subbu, ‘‘Indoor localization using magnetic fields,’’ Ph. D. Thesis,
Dept. Comput. Sci. Eng., Univ. North Texas, Denton, TX, USA, Dec. 2011.

[17] S. Kuk, J. Kim, Y. Park, and H. Kim, ‘‘Empirical determination of efficient
sensing frequencies for magnetometer-based continuous human contact
monitoring,’’ Sensors, vol. 18, no. 5, p. 1358, Apr. 2018.

[18] World Health Organization. (2010). Limiting the Spread of Pandemic,
Zoonotic, and Seasonal Epidemic Influenza. [Online]. Available:
http://www.who.int/influenza/resources/research/research_agenda_influen
za_stream_2_limiting_spread.pdf

[19] British Broadcasting Company. (Mar. 2018). Conta-
gion! The BBC Four Pandemic. [Online]. Available:
http://www.bbc.co.uk/programmes/articles/3pYGfsq0NKB1bNkrggYJl4h
/about-bbc-pandemic

[20] I. Z. Kiss, J. Cassell, M. Recker, and P. L. Simon, ‘‘The impact of informa-
tion transmission on epidemic outbreaks,’’ Math. Biosci., vol. 225, no. 1,
pp. 1–10, May 2010, doi: 10.1016/j.mbs.2009.11.009.

[21] World Health Organization. (Sep. 2004). Outbreak Communication: Best
Practices for Communicating With the Public During an Outbreak.
[Online]. Available: http://apps.who.int/iris/handle/10665/69138

[22] S. A. Shaikh, ‘‘Measures derived from a 2 × 2 table for an accuracy of
a diagnostic test,’’ J. Biometrics Biostatist., vol. 2, no. 5, pp. 203–211,
Jan. 2011, doi: 10.4172/2155-6180.1000128.

[23] F. Qi and P. Du, ‘‘Tracking and visualization of space-time activities for a
micro-scale flu transmission study,’’ Int. J. Health Geograph., vol. 12, p. 6,
Feb. 2013, doi: 10.1186/1476-072X-12-6.

[24] J. Paek, J. Kim, and R. Govindan, ‘‘Energy-efficient rate-adaptive GPS-
based positioning for smartphones,’’ in Proc. 8th Int. Conf. Mobile
Syst., Appl., Services (Mobisys), San Francisco, CA, USA, Jun. 2010,
pp. 299–314.

[25] A. Thiagarajan, L. Ravindranath, H. Balakrishnan, S. Madden, and
L. Girod, ‘‘Accurate, low-energy trajectory mapping for mobile devices,’’
inProc. 8th USENIX Symp. Netw. Syst. Design Implement. (NSDI), Boston,
MA, USA, Mar./Apr. 2011, pp. 1–14.

[26] L. Isella et al., ‘‘Close encounters in a pediatric ward: Measuring face-to-
face proximity and mixing patterns with wearable sensors,’’ PLoS ONE,
vol. 6, no. 2, p. e17144, Feb. 2011.

[27] M. Salathé, M. Kazandjieva, J. W. Lee, P. Levis, M. W. Feldman, and
J. H. Jones, ‘‘A high-resolution human contact network for infectious
disease transmission,’’ Proc. PNAS, vol. 107, no. 51, pp. 22020–22025,
Dec. 2010, doi: 10.1073/pnas.1009094108.

[28] M. Bolić,M. Rostamian, and P.M.Djuric, ‘‘Proximity detectionwith RFID
in the Internet of things,’’ in Proc. Asilomar Conf. Signals, Syst. Comput.,
Pacific Grove, CA, USA, Nov. 2014, pp. 711–714.

[29] H. Shafagh and A. Hithnawi, ‘‘Poster: Come closer: Proximity-based
authentication for the Internet of things,’’ in Proc. 20th Annu. Int. Conf.
Mobile Comput. Netw., Maui, HI, USA, Sep. 2014, pp. 421–424.

[30] A. Signorini, A. M. Segre, and P. M. Polgreen, ‘‘The Use of Twitter to
Track Levels of Disease Activity and Public Concern in the U.S. during
the Influenza A H1N1 Pandemic,’’ PLoS ONE, vol. 6, no. 5, May 2011,
Art. no. e19467, doi: 10.1371/journal.pone.0019467. [Online]. Available:
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0019467

[31] E. Yom-Tov, D. Borsa, I. J. Cox, and R. A. McKendry, ‘‘Detecting disease
outbreaks in mass gatherings using Internet data,’’ J. Med. Internet Res.,
vol. 16, no. 6, p. e154, Jun. 2014, doi: 10.2196/jmir.3156.

[32] Y. Kim, J. Huang, and S. Emery, ‘‘Garbage in, garbage out: Data collection,
quality assessment and reporting standards for social media data use in
health research, infodemiology and digital disease detection,’’ J. Med.
Internet Res., vol. 18, no. 2, p. e41, Feb. 2016, doi: 10.2196/jmir.4738.

[33] D. A. Broniatowski, M. J. Paul, and M. Dredze, ‘‘National and local
influenza surveillance through twitter: An analysis of the 2012-
2013 influenza epidemic,’’ PLoS ONE, vol. 8, no. 12, Dec. 2013,
Art. no. e83672, doi: 10.1371/journal.pone.0083672. [Online]. Available:
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0083672

[34] A. Stewart et al. ( Nov. 2016). ‘‘Why is it difficult to detect sudden
and unexpected epidemic outbreaks in Twitter?’’ [Online]. Available:
https://arxiv.org/abs/1611.03426

[35] V. Virlogeux, V. J. Fang, M. Park, J. Wu, and B. Cowling, ‘‘Comparison
of incubation period distribution of human infections with MERS-CoV in
South Korea and Saudi Arabia,’’ Sci. Rep., vol. 6, p. 35839, Oct. 2017,
doi: 10.1038/srep35839.

[36] J. Ginsberg, M. H. Mohebbi, R. S. Patel, L. Brammer, M. S. Smolinski,
and L. Brilliant, ‘‘Detecting influenza epidemics using search
engine query data,’’ Nature, vol. 457, pp. 1012–1014, Feb. 2009,
doi: 10.1038/nature07634.

[37] K. Chen, C. Wang, Z. Yin, H. Jiang, and G. Tan. ‘‘Slide: Towards fast
and accurate mobile fingerprinting for Wi-Fi indoor positioning systems,’’
IEEE Sensors J., vol. 18, no. 3, pp. 1213–1223, Feb. 2018.

[38] I. Carreras, A. Matic, P. Saar, and V. Osmani, ‘‘Comm2sense: Detecting
proximity through smartphones,’’ in Proc. PerCom Workshops, Lugano,
Switzerland, Mar. 2012, pp. 253–258.

[39] A. Varshavsky, A. Scannell, A. LaMarca, and E. de Lara, ‘‘Amigo:
Proximity-based authentication of mobile devices,’’ in Proc. 9th Int. Conf.
Ubiquitous Comput., 2007, pp. 253–270.

[40] A. Kalamandeen, A. Scannell, E. de Lara, A. Sheth, and A. LaMarca,
‘‘Ensemble: Cooperative proximity-based authentication,’’ in Proc.
8th Int. Conf. Mobile Syst., Appl., Services (MobiSys), New York, NY,
USA, 2010, pp. 331–344.

[41] Y. Agata, J. Hong, and T. Ohtsuki, ‘‘Room-level proximity detection
based on RSS of dual-band Wi-Fi signals,’’ in Proc. IEEE Int. Conf.
Commun.(ICC), May 2016, pp. 1–6.

20746 VOLUME 7, 2019



S. Jeong et al.: Smartphone Magnetometer-Based Diagnostic Test for Automatic Contact Tracing in Infectious Disease Epidemics

[42] A. Montanari, ‘‘Multimodal indoor social interaction sensing and real-
time feedback for behavioural intervention,’’ in Proc. Workshop Wireless
Students, New York, NY, USA, 2015, pp. 7–9.

[43] S. Jamil, A. Basalamah, A. Lbath, and M. Youssef, ‘‘Hybrid participatory
sensing for analyzing group dynamics in the largest annual religious
gathering,’’ in Proc. ACM Int. Joint Conf. Opervasive Ubiquitous Comput.
(UbiComp), New York, NY, USA, 2015, pp. 547–558.

[44] A. F. Harris, III, V. Khanna, G. Tuncay, R. Want, and R. Kravets,
‘‘Bluetooth low energy in dense IoT environments,’’ IEEE
Commun. Mag., vol. 54, no. 12, pp. 30–36, Dec. 2016,
doi: 10.1109/MCOM.2016.1600546CM.

[45] K. Farrahi, R. Emonet, and M. Cebrian, ‘‘Epidemic contact tracing via
communication traces,’’ PLoS ONE, vol. 9, no. 5, p. e95133, May 2014.

[46] A. Wesolowski, C. O. Buckee, L. Bengtsson, E. Wetter, X. Lu, and
A. J. Tatem, ‘‘Commentary: Containing the Ebola outbreak—The potential
and challenge of mobile network data,’’ PLoS Currents, vol. 6, Sep. 2014.
doi: ecurrents.outbreaks.0177e7fcf52217b8b634376e2f3efc5e.

[47] H. Satoh, M. Suzuki, Y. Tahiro, and H. Morikawa, ‘‘Ambient sound-based
proximity detection with smartphone,’’ in Proc. ACM Sensys, 2013, p. 58.

[48] N. Karapanos, C. Marforio, C. Soriente, and S. Čapkun, ‘‘Sound-proof:
Usable two-factor authentication based on ambient sound,’’ in Proc.
24th USENIX Secur. Symp., 2015, pp. 1–17.

[49] M. Wirz, D. Roggen, and G. Tröster, ‘‘A wearable, ambient sound-based
approach for infrastructureless fuzzy proximity estimation,’’ in Proc. Int.
Symp. Wearable Comput., 2010, pp. 1–4.

[50] M. Angermann, M. Frassl, M. Doniec, B. J. Julian, and P. Robertson,
‘‘Characterization of the indoor magnetic field for applications in localiza-
tion and mapping,’’ in Proc. Int. Conf. Indoor Positioning Indoor Navigat.,
Sydney, NSW, Australia, Nov. 2012, pp. 1–9.

[51] B. Gozick, K. P. Subbu, R. Dantu, and T. Maeshiro, ‘‘Magnetic maps for
indoor navigation,’’ IEEE Trans. Instumentation Meas., vol. 60, no. 12,
pp. 3883–3891, Dec. 2011, doi: 10.1109/TIM.2011.2147690.

[52] B. Li, T. Gallagher, A. G. Dempster, and C. Rizos, ‘‘How feasible is the use
of magnetic field alone for indoor positioning?’’ in Proc. Int. Conf. Indoor
Positioning Indoor Navigat. (IPIN), Sydney, NSW, Australia, Nov. 2012,
pp. 1–9.

[53] D. Carrillo, V. Moreno, B. Úbeda, and A. F. Skarmeta, ‘MagicFinger:
3D magnetic fingerprints for indoor location,’’ Sensors, vol. 15, no. 7,
pp. 17168–17194, 2015, doi: 10.3390/s150717168.

[54] B. Brzozowski and K. Kaźmierczak, ‘‘Magnetic field mapping as a support
for UAV indoor navigation system,’’ in Proc. IEEE Int. Workshop Metrol.
AeroSpace (MetroAeroSpace), Padua, Italy, Jun. 2017, pp. 583–588.

[55] T. H. Riehle, S. M. Anderson, P. A. Lichter, J. P. Condon, S. I. Sheikh,
and D. S. Hedin, ‘‘Indoor waypoint navigation via magnetic anomalies,’’
in Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc., Boston, MA, USA,
Aug. /Sep. 2011, pp. 5315–5318.

[56] T. W. Liao, ‘‘Clustering of time series data—A survey,’’ Pattern Recognit.,
vol. 38, no. 11, pp. 1857–1874, 2005, doi: 10.1016/j.patcog.2005.01.025.

[57] J. Cohen, P. Cohen, S. G. West, and L. S. Aiken, Applied Multiple Regres-
sion/Correlation Analysis for the Behavioral Sciences, 3rd ed. Hove, U.K.:
Psychology Press. 2002.

[58] D. G. Bonett and T. A. Wright, ‘‘Sample size requirements for estimating
Pearson, Kendall and Spearman correlations,’’ Psychometrika, vol. 65,
no. 1, pp. 23–28, Mar. 2000, 10.1007/BF02294183.

[59] M. Shahzamal, R. Jurdak, R. Arablouei, M. Kim, K. Thilakarathna, and
B. Mans, ‘‘Airborne disease propagation on large scale social contact
networks,’’ in Proc. 2nd Int. Workshop Social Sens., Pittsburgh, PA, USA,
Apr. 2017, pp. 35–40.

[60] D. J. Berndt and J. Clifford, ‘‘Using dynamic time warping to find patterns
in time series,’’ in Proc. 3rd Int. Conf. Knowl. Discovery Data Mining
(AAAIWS), Seattle, WA, USA, Jul./Aug. 1994, p. 359.

[61] N. E. Klepeis et al., ‘‘The national human activity pattern survey (NHAPS):
A resource for assessing exposure to environmental pollutants,’’ J. Expo-
sure Anal. Environ. Epidemiol., vol. 11, no. 3, pp. 231–252, 2011,
doi: 10.1038/sj.jea.7500165.

[62] N. G. Reich, J. Lessler, J. K. Varma, and N. M. Vora, ‘‘Quantifying the risk
and cost of active monitoring for infectious diseases,’’Nature, vol. 8, no. 1,
Jan. 2018, Art. no. 1093.

[63] D. L. Mills, ‘‘Internet time synchronization: The network time proto-
col,’’ IEEE Trans. Commun., vol. 39, no. 10, pp. 1482–1493, Oct. 1991,
doi: 10.1109/26.103043.

[64] R. V. Levine and A. Norenzayan, ‘‘The pace of life in 31 countries,’’
J. Cross-Cultural Psychol., vol. 30, no. 2, pp. 178–205, Mar. 1999,
doi: 10.1177/0022022199030002003.

[65] I. Von Sivers and G. Köster, ‘‘Dynamic stride length adaptation accord-
ing to utility and personal space,’’ Transp. Res. B, Methodol., vol. 74,
pp. 104–117, Apr. 2015, doi: 10.1016/j.trb.2015.01.009.

[66] A. Wahdan, J. Georgy, W. F. Abdelfatah, and A. Noureldin, ‘‘Magnetome-
ter calibration for portable navigation devices in vehicles using a fast and
autonomous technique,’’ IEEE Trans. Intell. Transp. Syst., vol. 15, no. 5,
pp. 2347–2352, Oct. 2014, doi: 10.1109/TITS.2014.2313764.

[67] A.-M. Šimundić, ‘‘Measures of diagnostic accuracy: Basic definitions,’’
J. Int. Fed. Clin. Chem., vol. 19, no. 4, pp. 203–211 Jan. 2009.

SEUNGYEON JEONG is currently pursuing the
B.E. degree in computer science and engineering
with Korea University, Seoul, South Korea. Her
research interests include digital disease detection
and mobile computing.

SEUNGHO KUK received the B.E. degree in com-
puter science and engineering from Korea Uni-
versity, Seoul, South Korea, in 2014, where he is
currently pursuing the Ph.D. degree. His research
interests include mobile computing, the Internet of
Things, and vehicular communication.

HYOGON KIM received the B.S. and M.S.
degrees in computer engineering from Seoul
National University, Seoul, South Korea,
in 1987 and 1989, respectively, and the Ph.D.
degree in computer and information science from
the University of Pennsylvania, in 1995. From
1996 to 1999, he was a Research Scientist with
Bell Communications Research. He is currently
a Professor with Korea University. His research
interests include wireless communication, vehicu-

lar networking, the Internet of Things, and mobile computing.

VOLUME 7, 2019 20747


	INTRODUCTION
	RELATED WORK
	GPS
	RFID AND SENSOR NETWORK
	SOCIAL MEDIA AND SEARCH RECORDS
	WI-FI
	BLUETOOTH
	CELLULAR NETWORK
	ACCELEROMETER
	AMBIENT SOUND SENSOR
	MAGNETOMETER

	A MAGNETOMETER-BASED DIAGNOSTIC TEST
	SIMILARITY MEASURE: PEARSON'S R
	PARAMETERS FOR CONTACT DECISION
	PERFORMANCE MEASURES
	COMPARISON WINDOW IS NARROWER THAN THE CONTACT DURATION (NW < LC)
	COMPARISON WINDOW IS WIDER THAN THE CONTACT DURATION (NW > LC)


	EVALUATION
	MAGNETOMETER TRACE COLLECTION
	RESULTS
	ON PREVALENCE AND ITS DEPENDENT MEASURES
	SENSITIVITY AND SPECIFICITY
	LIKELIHOOD RATIOS
	DIAGNOSTIC ODDS RATIO

	SUMMARY OF RESULTS AND RECOMMENDATIONS

	CONCLUSION
	REFERENCES
	Biographies
	SEUNGYEON JEONG
	SEUNGHO KUK
	HYOGON KIM


