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ABSTRACT Machining refers to a variety of processes, in which a cutting tool is used to remove the
unwanted material from a workpiece. Tool wear, advertently or inadvertently, occurs after long-time use.
It is crucial to monitor the tool wear so that the cutting tool can deliver the best performance and meet
the technological challenges nowadays. In this paper, through different fractional-order chaotic systems,
i.e., Chen–Lee, Lorenz, and Sprott, extension theory is proposed to predict the tool life. The results of
the three chaotic systems are compared. The centroid of the 2-D plane of dynamic errors is used as
the characteristics. Four wear states are defined in accordance with different levels of surface roughness,
i.e., normal, slight, moderate, and severe. The boundaries of the four states are identified according to the
locations of the centroid generated with the systems of different fraction orders. The boundaries are then fed
into the extension model, and the relational function calculation is performed. In this way, the identification
of tool state can be easily achieved. The experiment results indicate that Chen–Lee system and the Lorenz
systems exhibit the same diagnosis rate (97.375%), higher than that of the Sprott system (35.75%). It is
demonstrated that the two chaotic systems are fit for use with the method proposed in this paper. It is also
proven that Chen–Lee and Lorenz fractional-order master–slave chaotic systems are very effective for tool
life monitoring. The robustness of diagnosis is also greatly improved.

INDEX TERMS Fractional order chaotic system, cutting, wear, machine tool.

I. INTRODUCTION
As we enter Industry 4.0, various industries, such as elec-
tronic component manufacturing, photo-electronics, semi-
conductors, aerospace technologies, etc., are all moving in
the direction of intelligent production in order to catch up
the trend of high precision, high yield and small size of
products. CNC machine tools play a crucial role in the pre-
cision industry. Manufacturing precision, quality, production
capacity and tool life of components must all be improved
in order to satisfy the high standard required for production.
In metal milling process, the cutting is achieved by applying
the cutting tool held in the spindle to the workpiece. Although
the research papers in the past are mostly focused on the
study of spindle [1], [2], cutting tool plays an important
role in milling process as well. The quality of products
can be greatly improved if the life cycle of cutting tool is

properly controlled. More and more papers about cutting
tools have been published [3], [4], meaning that this subject is
receiving more and more attention. Bhagat and Nalbalwar [5]
use three types of sensors (temperature sensor, accelerometer
and current sensor) and Labview software in the experiment.
Three tool wear conditions, i.e. initial, normal and severe
are defined and data for different parameters are collected.
However, the use of many sensors leads to large amount of
data and high costs. This method also needs a lot of com-
puting time to determine the characteristic parameters and
thus makes it difficult to use in the industry. Niaki et al. [6]
use wavelet decomposition to extract the statistical charac-
teristics from time and frequency domains. The vibration and
power signals are used as input to determine the condition of
the cutting tool when used with materials that are difficult
to process. Elgargni and Al-Habaibeh [7] also use wavelet
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analysis to process infrared images and the power of the
spindle and recognize the condition of cutting tool. Therefore,
the wavelet analysis is a technique widely used in monitoring
the condition of cutting tool. However, this frequency domain
based method requires a lot of time to extract characteristics.
In addition, the complicated milling environment in realistic
world are accompanied with a great variety of variables that
may affect the accuracy of recognition. This method is there-
fore not appropriate to be used in real-time situations. In this
paper, a study is performed on the cutting tool of lathe. The
goal is to explore how to identify tool wear condition with-
out relying on experience or visual inspection. The method
must also improve production efficiency and overcome the
drawbacks of the methods previously mentioned. Thanks to
the synchronized chaotic system’s high-contrast and high-
sensitivity property between output and input, we are able
to choose the Centroid as characteristics from the ordered
but aperiodic trajectory of dynamic errors generated by chaos
attractor [8]. Four too wear conditions (i.e. normal, slight,
moderate and severe) and their respective range of states
are defined based on the degree of surface roughness of the
workpiece. Extension theory is then applied to transform
the state boundaries into mathematic model. The extension
distance of the matter-element model is then established.
The calculation of relational function helps better clarify the
relations between the states and improve the accuracy of
identifying tool wear conditions.

In Section 2 of this paper, we will introduce how to use
three common fractional order chaotic systems so that the
change rate of the system will improve. The architecture
that combines characteristic extraction and extension theory
will be presented as well. The experiment steps, methods of
signal acquisition and feeding into the systems are covered
in Section 3. The diagnosis rates of the three methods that
integrate fractional order chaotic systems and extension the-
ory are also compared. Lastly, the results of this study are
concluded in Section 4.

II. INTRODUCTION TO RELATED THEORIES
A. FRACTIONAL ORDER DIFFERENTIAL EQUATIONS
Generally, systems are mostly modeled with the mathematic
equations of integral order. However, a wide variety of phys-
ical phenomena are better expressed with the fractional order
systems based on their physical meaning. Fractional order
systems are widely used in fluidmechanics, signal processing
and control theories [10]. The definition of a fractional order
system [9] is shown in Equations (1) and (2):

D±αe em ≈
0(m+ 1)

0(m+ 1∓ α)
em∓α (1)

dαe(t)
dtα

= lim
1t→0

e(t)− αe(t − t0)
(t − (t − t0))α

≈
e(t)− αe(t − t0)

(1t)α
(2)

In this paper, fractional order systems are used to provide
better description of the characteristics than the systems of
integer order do. In order to better describe the characteristics,
the interval is chosen to be 0 < α < 1.

B. CHAOS THEORY
Chaos is a phenomenon in nonlinear systems [11]. A dynamic
system will be affected by chaos attractor which exhibits
an ordered but aperiodic trajectory. The trajectory is highly
sensitive and any small change may lead to significantly
different behavior.

C. MASTER-SLAVE CHAOTIC SYSTEM
A synchronized chaotic system consists mainly of master sys-
tem and slave system [12], [13]. Dynamic errors are generated
when different signals are fed into the system. The master
and slave systems of the chaotic system are defined below in
Equation (3): {

Ẋ = Ax + f (x)
Ẏ = Ay+ f (y)+ u

(3)

where X ∈ Rn and Y ∈ Rn are state vectors, A system matrix,
f (x) and f (y) nonlinear vectors, u nonlinear control input.
Since we are focused on the characteristics of dynamic errors
that are generated in the master-slave system tracking, we can
therefore let control input u = 0.

D. CHEN-LEE CHAOTIC SYSTEM
Chen-Lee chaotic system was proposed in 2004 [1],
[13], [14]. Its dynamic equation is expressed in Equation (4):

ẋ = −yz+ ax
ẏ = xz+ by

ż =
(
1
3

)
xy+ cz

(4)

The above equation can be then rewritten in the form of
master-slave system matrix. Its dynamic errors are defines
as e = [ė1, ė2, ė3], where ė1 = x1 − y1, ė2 = x2 − y2 and
ė3 = x3 − y3, as shown in Equation (5): ė1ė2

ė3

 =
 a 0 0
0 b 0
0 0 c

 e1e2
e3

+
−e3e2e1e3

1
3
e1e2

 (5)

where α, β and γ are system parameters. Substitute the
definition equation of fractional order system (1) into the
Chen-Lee system equation(5) as shown in Equations (6)
and (7):

d−α

dt−α

ė1ė2
ė3

≈
α 0 0
0 β 0
0 0 γ

 d+α

dt+α

e
1
1

e12
e13

+ d+α

dt+α


−e3e2e01
e3e1e02
1
3
e2e1e03


(6)

⇒

Dρe1Dρe2
Dρe3

≈
a′ 0 0
0 b′ 0
0 0 c′


 e

1+α
1

e1+α2

e1+α3

+


−0 (1)e2e3eα1
0(1+ α)
0 (1)e1e3eα2
0(1+ α)
0 (1)e1e2eα3
30(1+ α)


(7)
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where ρ = (1 − α), ρ the fractional order, 0 the gamma
function. To realize the behavior of dynamic errors between
master and slave systems, we can let e1 [i] = x1 [i] − y1 [i],
e2 [i] = x2 [i]− y2 [i] and e3 [i] = x3 [i]− y3 [i]. The system
equation of the dynamic errors of the synchronized chaotic
system is defined in Equation (8). Its parameters are shown
in Equation (9):E1[i]E2[i]
E3[i]

 =
 a′ 0 0

0 b′ 0
0 0 c′

 e1[i]1+αe2[i]1+α

e3[i]1+α



+


−0 (1)e2[i]e3[i](e1[i])α

0(1+ α)
0 (1)e1[i]e3[i](e2[i])α

0(1+ α)
0 (1)e1[i]e2[i](e3[i])α

30(1+ α)

 (8)

a′ =
a0 (2)
0(2+ α)

, b′ =
b0 (2)
0(2+ α)

, c′ =
c0 (2)
0(2+ α)

(9)

E. LORENZ CHAOTIC SYSTEM
Lorenz chaotic system was proposed in 1963 by Edward
Norton Lorenz [15]. Its dynamic equation [16] is shown in
Equation (10): ẋ = b (y− x)

ẏ = bx − y− xz
ż = xy+ cz

(10)

The above equation can be then rewritten in the form of
master-slave system matrix. Its dynamic errors are defined
as e = [ė1, ė2, ė3], where ė1 = x1 − y1, ė2 = x2 − y2 and
ė3 = x3 − y3, as shown in Equation (11). ė1ė2

ė3

 =
−a a 0

b −1 0
0 0 −c

 e1e2
e3

+
 0
−e1e3
e1e2

 (11)

Substitute the definition equation of fractional order sys-
tem (1) into the Lorenz system equation (11) as shown in
Equations (12) and (13).E1[i]E2[i]
E3[i]

 =
−a′ a′ 0

b′ 0 0
0 0 −c′

 e1[i]1+αe2[i]1+α

e3[i]1+α



+



−0 (1)(e1[i])α

0(1+ α)
0 (1)e1[i]e3[i](e2[i])α

0(1+ α)
0 (1)e1[i]e2[i](e3[i])α

0(1+ α)

 (12)

α′ =
α0 (2)
0(2+σ )

, β ′ =
β0 (2)
0(2+σ )

, γ ′ =
γ0 (2)
0(2+σ )

(13)

F. SPROTT CHAOTIC SYSTEM
Sprott system is a common chaotic system. Its dynamic equa-
tion [15] is shown in Equation (14):ẋ = y

ẏ = z
ż = −az− by− 1.2x + 2sign(x)

(14)

The above equation can be then rewritten in the form of
master-slave system matrix. Its dynamic errors are defined
as e = [ė1, ė2, ė3], where ė1 = x1 − y1, ė2 = x2 − y2 and
ė3 = x3 − y3, as shown in Equation (15). ė1ė2
ė3

=
 0 1 0

0 0 1
−1.2 −b −a

 e1e2
e3

+2
 0

0
sign(x)− sign(y)


(15)

According to the literature, we can let sign(x1m) −
sign(y1s) = 0 and ignore ė1. The above can then be expressed
as a second order system as shown in Equation (16):[

ė2
ė3

]
=

[
0 1
−b −a

] [
e2
e3

]
(16)

Substitute the definition equation of fractional order sys-
tem (2) into the Sprott system equation (16) as shown in
Equations (17) and (18).[
Dρt e2
Dρt e3

]
≈

[
0 t ′

−b −a

] [
e2(t)
e3(t)

]
+

[
0 −kt ′

−kb′ −ka′

] [
e2(t − t0)
e3(t − t0)

]
(17)

a′ =
a
1tα

, Bb′ =
b
1tα

, Bt ′ =
1
1tα

(18)

In this paper, the signals of a brand new cutting tool and
the signals collected by sensors are fed to the master and
slave systems, respectively. The dynamic errors generated
and Centroid are located. The use of fractional order systems
makes the change of the systems and characteristics more
obvious so that the trend analysis of tool life can be made
easy.

G. EXTENSION THEORY
Extension theory was first proposed by Chinese scholar
CaiWen in 1983 to solve fuzzy problems in things. The theory
explores the rules among the states using the extension prop-
erty of matters, which are transformed into mathematic form
in order to facilitate categorization [17]. Extension theory
consists of two parts, matter-elementmodel and extension set.
In classical mathematics, only 0 and 1 are used to represent
the property of things. However, there exists a fuzzy area
over (0, 1). Fuzzy theory is therefore developed to solve the
problem in this interval. Extension theory, which is based on
fuzzy theory, extends the relation of things to −1 and 1 after
normalization; the negative domain is represented within the
red box in Figure 1 below, which extends things to (−∞,∞)
based on the extension theory and its negative domain (x-axis)
can be extended to -∞ and ∞.Figure 1(a) shows the extent
of property that things have or do not have.
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FIGURE 1. Schematic diagram of extension set.

To apply extension theory, the definition of things and state
phenomena must be given and added into the matter-element
model as shown in Equation (19):

R =


N C1 v1

C2 v2
...

...

Ci vi

 (19)

where N is the name of the matter, C the characteristic of the
matter, v the value ofC and i the number of the values,. Based
on the distance or range of the state phenomena defined,
the classical field Vo = (a, b) and segment field Vp = (a, b)
are defined as well. The extension distance τ is then defined
in Equation (20):

τ (vi,Voi) =

∣∣∣∣x − aoi − boi
2

∣∣∣∣− boi − aoi
2

τ
(
vi,Vpi

)
=

∣∣∣∣x − api − bpi
2

∣∣∣∣− bpi − api
2
i = 1, 2, 3, · · · , n (20)

Once the classical field and segment field are defined,
the relational function can be calculated as in Equation (21):

Ki (vi)

=


−τ (vi,Voi)
|Voi|

, vi∈Voi& τ (vi,Vpi)=τ (vi,Vpi)

τ (vi,Voi)
τ (vi,Vpi)−τ (vi,Voi)

, vi /∈ Voi

(21)

In this paper, the current tool wear condition can be identified
by selecting appropriate fractional order, feeding the bound-
ary of Centroid of cutting tool state into the matter-element
model and constructing/calculating the relational function.
Figure 2 shows the system’s architecture and flowchart.

III. EXPERIMENT STEPS AND RESULTS
The above figure shows the system architecture of this
paper. This paper captures the vibration signals of lathe turn-
ing and substitutes the captured vibration signals into the
master-slave chaotic system. The master system represents
the turning vibration signals when the tool is in healthy state,
while the slave system represents the actual captured signals

FIGURE 2. System architecture/flowchart diagram.

FIGURE 3. System architecture.

FIGURE 4. The milling setup for measurement and experiment.

FIGURE 5. The position of accelerometer.

during the manufacturing process. The master-slave chaotic
system is defined in Equation (3). The chaotic dynamic
errors are generated by the output differences between the
master and slave systems, and the chaotic attractor extracted
from the dynamic error is then substituted into the exten-
sion system, for the subsequent malfunction diagnosis in
this paper. The aim of this paper is to perform precision
turning on 30∗175 (mm∗mm) cylinders with machine tool.
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FIGURE 6. Four tool wear levels based on the degree of roughness on
workpiece surface.

FIGURE 7. Frequency-domain plots for four tool wear levels.

FIGURE 8. Schematic diagram of dynamic errors of cutting tool and its
Centroid.

After carrying through and repeating the processing process
several times, we carry out an analysis for the vibration
signals of turning processing through three different master-
slave chaotic systems, and we also utilize extension theory
as a subsequent diagnostic tool. Figure 4 shows the hybrid
sphere CNC lathe MC4200BL (manufactured by MIKE
Machine Industry Co., LTD.) used in the long-time linear
milling experiment.

Figure 5 shows the KS943B.100 accelerometers (man-
ufactured by Metra Mess-und Frequenztechnik), which is
attached to the turret with magnet. The acceleration signals
are picked and measured with National Instruments NI-9234
signal acquisition module and NI USB 9162 module carrier.
The surface roughness of each workpiece milled is recorded

TABLE 1. Milling parameters.

FIGURE 9. Distribution diagram of Centroid of tool wear for Chen-Lee
chaotic systems of different fractional orders.

using magnifier. The machining conditions and extracted
parameters are shown in Table 1.

Based on the degree of roughness on workpiece sur-
face, four tool wear levels (i.e. normal, slight, moderate
and severe) are defined and shown in Figure 6, and accord-
ing to the ISO standard and the tool wear definition of
Kurada and Bradley [17] a corresponding precision compar-
ison table of cutting products is as shown in Table 2. The
corresponding signals are stored in the database for this
experiment. 40 sets of data are collected for each tool wear
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FIGURE 10. Distribution diagram of Centroid of tool wear for Lorenz
chaotic systems of different fractional orders.

TABLE 2. Tool wear levelsState.

level, with 20 sets to be used to build the model and the other
20 sets to be used for system verification.

MATLAB software is used in the experiment of this
study. The signals from machining process are used to build
and verify the systems. The different results of three frac-
tional order chaotic systems combined with extension theory
are compared. Their diagnosis rates are calculated as well.
Figure 7 shows the frequency-domain plots of the signals of
four tool wear levels.

The frequency-domain plots of the four tool wear lev-
els, i.e normal, slight, moderate and severe, are shown in
Figures 7(a)∼(d), respectively. It can be seen that no obvious
characteristics in frequency domain can be used as references

FIGURE 11. Distribution diagram of Centroid of tool wear for Sprott
chaotic systems of different fractional orders.

for wear level change. As described previous in Section 1, it is
a time-consuming task to select characteristics by using tradi-
tional methods. In this study, the data are fed into the system
and chaotic dynamic errors are generated. The characteristic
points are extracted as shown in Figure 8.

Figures 8(a)∼(d) show the chaotic dynamic trajectories of
the four tool wear levels, i.e. normal, slight, moderate and
severe, respectively. It can be seen that the distribution of
dynamic errors changes accordinglywith tool wear condition.
The position of Centroid changes too. The use of fractional
order system makes the position change of Centroid more
obvious. In this paper, the data are fed into three different
fraction order chaotic systems. The plots of Centroid distri-
bution for tool wear condition at orders 0.1∼1 are shown
in Figures 9 to 11.

The diagrams in Figures 9 to 11 are plotted with the first
20 sets of data of the four tool wear conditions. It can be seen
that the Chen-Lee system exhibits an ambiguous distribution
of Centroid for moderate and severe wear levels between
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FIGURE 12. The matter-element models of tool wear for Chen-Lee chaotic
systems of different fractional orders.

orders 0.1 and 0.5. However, the distributions of Centroid
at orders 0.6 to 1 become obvious. For Lorenz system, the
distributions are obvious with orders 0.1 to 0.8 but begin to
exhibit ambiguity with orders 0.9 and 1 for moderate and
severe wear levels. The results of Sprott system show that
the distribution of Centroid of various orders for severe wear
level is more obvious than those for the other three levels. The
distributions of Centroid for normal and slight wear levels
are overlapping to a great extent. The extension distances of
extension models are created based on the results described
above and shown in Figures 12 to 14.

The last 20 sets of data are fed into the matter-element
models just established. The state is then determined based on

FIGURE 13. The matter-element models of tool wear for Lorenz chaotic
systems of different fractional orders.

the results of the relational function calculation. The statistics
of diagnosis rates are shown in Table 3.

The above table shows that Chen-Lee and Lorenz systems
deliver better overall performance. Chen-Lee system even
produces 100% diagnosis rate at orders 0.1, 0.4, 0.5, 0.6,
0.8 and 0.9. Lorenz system achieves 100% diagnosis rate
at orders 0.2, 0.3, 0.6, 0.7, 0.9 and 1. However, the overall
performance delivered by Sprott system is poor. Its diagnosis
rate is low due to the ambiguous distribution of Centroid
described previously.
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FIGURE 14. The matter-element models of tool wear for Sprott chaotic
systems of different fractional orders.

TABLE 3. Statistics of diagnosis rates for chaotic systems of different
fractional orders.

IV. CONCLUSION
In this paper, three master-slave fractional order chaotic sys-
tems, i.e. Lorenz, Chen-Lee and Sprott, are proposed. The
boundaries of Centroid of tool wear conditions are located

through the dynamic errors generated using the unique high-
sensitivity property of chaotic system. The application of
different fractional orders (0.1 to 1) to the system also
changes the behavior of dynamic errors, leading to more
obvious distribution of characteristics of tool wear condi-
tions. The experiment results demonstrate that, as shown in
Figures 8 to 10, intuitive categorization is easier to achieve
by using the characteristics of Centroid than the method
based on frequency-domain analysis and dynamic errors. The
extension distances based on the ranges of Centroid from all
fractional order states are used to build matter-element model
(as shown in Figures 11 to 13). The current state of cutting
tool is then determined by the calculation of relational func-
tion. The diagnosis rate is therefore improved by using this
method. This study is the first one of the studies of fractional
order chaotic theory to compare the dynamic systems based
on three different chaotic architectures. Table 2 shows that
Sprott system has the lowest diagnosis rate (35.75) of the
three. The diagnosis rates of Chen-Lee and Lorenz systems
are the same (97.375%) and even reach 100%diagnosis rate at
orders 0.6 and 0.9. Both systems exhibit very clear distinction
between the distributions of Centroid of cutting tool at order
0.6. Although there exists ambiguity between the moderate
and severe wear conditions for Lorenz system at order 0.9,
the intelligent categorization achieved with extension theory
helps clarify the boundary so that the diagnosis rate can reach
as high as 100%. Therefore, Chen-Lee and Lorenz systems
of orders 0.6 and 0.9 are chosen to be the architectures
for system testing and verification in the future study. This
method has the advantages of high accuracy, high reliability
and simplicity since it does not need many sensors or long
time to extract characteristics. Using this method, users can
determine the current condition of the cutting tool andmilling
accuracy quickly and efficiently.
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