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ABSTRACT In this paper, we propose a bi-level, real-time economic dispatch method of a virtual power
plant (VPP), including various distributed energy resources (DERs). Considering the different interests of
VPPs and a system operator, the real-time economic dispatch of VPPs is described as a bi-level programming
problem, where a system operator dispatches VPPs based on the price incentive mechanism on the upper
level, and the VPPs provide response according to the optimal control of their DERs on the lower level.
Considering the uncertainties of DERs and loads, the decision risks of a system operator on the upper level
and VPPs on the lower level are further dealt with by the fuzzy chance constrained programming, such that
they can make reasonable decisions according to their own preferred risks. The mapping method and the bi-
level optimization method are also presented as the solutions for the proposed model. In this way, the fuzzy
chance constraints and objective functions of both levels are transformed into deterministic forms and, then,
are calculated dispersedly. As a result, the calculation burden of a system operator and the information
privacies of VPPs all can be treated availably. The case studies verify the effectiveness of the proposed
method in the end.

INDEX TERMS Virtual power plant, real-time economic dispatch, price incentive scenario, uncertainty,
hybrid algorithm.

I. INTRODUCTION
The rapid development of distributed energy resources
(DERs) is playing an increasingly important part in the eco-
nomic dispatch of power systems, particularly in the real-time
economic dispatch affected significantly by the uncertainty of
DERs [1]–[3]. If they excessively generate or consume power,
the real-time balance of power systems will bear too much
pressure. On the contrary, the DERs will play a positive role
when they are managed and controlled appropriately.

However, as DERs are generally the small power plants
and controllable loads belonging to common users, they are
prohibited from interacting directly with the electric net-
work [4], [5]. In order to solve this problem, the virtual
power plant (VPP) concept, which aggregates DERs either for
trading electric energy or providing system support services,
can be adopted [6], [7]. VPP was proposed conceptually
in 1997 [8], and was then investigated in some projects,
such as the Europe union project [9], the Fenix project [10],
and others. As the aggregation of DERs can be guided by

different functional needs and geographical locations, there is
no consensus regarding the components, geographical loca-
tions, generation technologies, and control architectures of
VPP [11]–[13]. From the perspective of a control strategy,
VPP can be controlled in a distributed or centralized manner.
In the distributed control manner, each DER unit of VPP
decides its strategy respectively, while the VPP with the cen-
tralized control manner always controls DER units as a whole
generating system. The advantages and requirements of these
two control manners are analyzed in [14]. Comparatively
speaking, the centralized control manner of VPP has been
applied in more fields [15], e.g., the Fenix VPP project and
the European VPP project mentioned above all adopted the
centralized control strategies.

In order to offer a path for VPP to interact with the electric
network, the bidding method is addressed in [16] and [17].
A bid should contain information on how much power and
at which price VPP is willing to sell, such that VPPs can bid
at the prices with their preferences. However, this scenario
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would frustrate the small VPPs with weak market power.
In this respect, the price incentive scenario can be used as
an alternative [18]. In this scenario, a system operator gives
an initial electricity price, and then VPPs will offer their
own price-based power responds. If a power shortage occurs,
the system operator will raise the price to encourage VPPs
to offer more power and vice-versa regarding lowering the
price. After several rounds of adjustment, a power balance
can be achieved. In this way, each VPP is able to maximize
its profit at the given price, no matter the size. Furthermore,
during this process, the calculation is undertaken by each
VPP, and no private information from the VPP needs to be
unloaded to the system operator. These features all ensure
its valid implication, especially when the calculation burden
and information privacy of a large number of participants are
considered. However, the price incentive scenario is still a
method framework rather than the strict mathematical model.
The uncertainties associated with DERs and loads are also
unexploited in this process.

The objective of this paper is to propose a method for real-
time economic dispatch of VPPs, whereby individual DERs
can gain more visibility and accessibility to the distribution
network. The distribution network can also benefit from the
optimal use of available resources. Specifically, the dispatch
strategy is carried out under a bi-level dispatch structure.
On the upper level, the system operator dispatches VPPs
based on the aforementioned price incentive mechanism,
in which electricity price is used to provide incentive to VPPs
and so adjust their outputs. On the lower level, the control
center of each VPP is responsible for controlling DERs in a
centralized manner. The control centers also handle the inter-
actions between VPPs and the distribution network. When
electricity price is posted by the system operator, the VPPs
with control centers should make optimal responses to maxi-
mize profits.

The bi-level dispatch structure mentioned above is
described as a bi-level programming model in this paper.
Furthermore, taking the uncertainties of DERs and loads into
consideration, it is necessary to weigh the profits and the risks
nomatter when the system operator incentivize VPPs or when
VPPs respond to the system operator in the bi-level pro-
gramming model. For instance, what is the probability of
realizing the objective values? What is the probability of sat-
isfying the constraints? Hence, the fuzzy chance constrained
programming is further embedded into the above bi-level
programming. For the solution of the proposed model, it is
first transformed into a deterministic form by the crisp equiv-
alent method and the mapping method. This helps to avoid
massive computation caused by the fuzzy simulation. Then,
the bi-level optimization method comprising of the pattern
search (PS) algorithm and the particle swarm optimization
(PSO) algorithm is used for solving the bi-level real-time
economic dispatch model with the deterministic form. Since
the optimization problem on the lower level is executed by
every VPP, problems like calculation burden and information
privacy can be solved efficiently.

This paper is organized as follows: Section II establishes
the bi-level real-time economic dispatch model of VPP con-
sidering uncertainty, namely the price incentive model for
system operator and the power respond model for VPPs.
Section III proposes the solution method of the proposed
model. Section IV provides the simulation analysis results
which demonstrates the effectiveness of themethod presented
in this paper. The conclusion is drawn in Section V.

II. BI-LEVEL REAL-TIME ECONOMIC DISPATCH MODEL
OF VPP CONSIDERING UNCERTAINTY
A. BRIEF INTRODUCTION OF BI-LEVEL PROGRAMMING
Consider a decision system with a leader and several follow-
ers. The leader can’t control the follower directly, and what it
can do is to influence the responses of followers through his
decision, while the followers have full authority to optimize
their own decisions. Thus, the leader and the followers have
the decision variables and objective functions, respectively,
being described by the following bi-level programming as

min
x
F
(
x, y∗1, y

∗

2, · · · y
∗
m, ξ0

)
s.t. G

(
x, y∗1, y

∗

2, · · · y
∗
m, ξ0

)
≤ 0

y∗i is solved by
max
yi

fi
(
x, y1, y2, · · · ym, ξ i

)
s.t. gi

(
x, y1, y2, · · · ym, ξ i

)
≤ 0

(1)

where F and fi are the objective functions of the upper level
and the lower level, respectively; G and gi are the constraint
functions of the upper level and the lower level, respectively;
x and yi are the decision vectors of the upper level and the
lower level, respectively; ξ0 and ξ i are the uncertainty vectors
of the upper level and the lower level, respectively.

Since the price incentive scenario has a system operator
and multiple VPPs, and the system operator can adjust the
price for motivating VPPs, while the VPPs respond to the
price for maximizing their profits, it can be modeled by the
bi-level programming felicitously.

B. DESCRIPTION OF UNCERTAINTY
As shown in equation (1), the uncertainty variables existing
on the upper level and the lower level also affect their deci-
sions to some extent. For the rational decisions of both levels,
the uncertainty should be described at first.

In the VPPs with centralized control strategies, the output
of DERs should be scheduled within a certain range. Con-
sidering the uncertainties of wind farms, the upper and lower
limits are described as the fuzzy variables in this paper. As for
conventional loads, since they cannot be controlled by VPPs,
they are described as fuzzy variables directly.

When the commonly used trapezoidal number is adopted,
fuzzy variables can be described as:

wmax,i,j =

(
r1w,max,i,j, r

2
w,max,i,j, r

3
w,max,i,j, r

4
w,max,i,j

)
(2)

wmin,i,j =

(
r1w,min,i,j, r

2
w,min,i,j, r

3
w,min,i,j, r

4
w,min,i,j

)
(3)
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L =
(
r1L, r

2
L, r

3
L, r

4
L

)
(4)

li =
(
r1l,i, r

2
l,i, r

3
l,i, r

4
l,i

)
(5)

where wmax,i,j and wmin,i,j are the upper limit and the lower
limit of power of wind farm j in VPP i, respectively; L and
li represent the conventional loads in the distribution system
and VPP i, respectively.
Then themembership function of fuzzy variables described

in equations (2)-(5) can be calculated as follows:

µ (ξ) =



ξ − r1

r2 − r1
r1 ≤ ξ < r2

1 r2 ≤ ξ < r3

r4 − ξ
r4 − r3

r3 ≤ ξ < r4

0 else

(6)

where ξ represents the fuzzy variables described in equations
(2)-(5); µ (ξ) is the membership function of ξ .

C. PRICE INCENTIVE MODEL OF SYSTEM OPERATOR ON
THE UPPER LEVEL
1) OBJECTIVE FUNCTION ON THE UPPER LEVEL
The objective of system operator is to minimize the cost of
distribution systems as:

min F̄ (7)

F =
N∑
i=1

p× qi + F ′ (8)

where p is the electricity price; qi is the power of VPP i
supplied to the distribution system; N is the number of VPPs;
F ′ is the imbalance cost of distribution system; F is the total
cost of distribution system; F̄ is the α0-pessimistic value of
F in the chance constrained programming.

The imbalance power and the imbalance cost of distribu-
tion system can be written as:

1D = L −
N∑
i=1

qi (9)

F ′ =


k11D2, 1D > 0
k21D2, 1D < 0
0, 1D = 0

(10)

where 1D is the imbalance power of distribution system; k1
and k2 are the cost coefficients when the power of distribution
system is insufficient and excessive, respectively.

2) CONSTRAINTS ON THE UPPER LEVEL
The constraints on the upper level include the upper and lower
limit constraints of electricity price and the chance constraints
of objective cost and imbalance power, which are given as:

pmin ≤ p ≤ pmax (11)

Cr
{
F ≤ F

}
≥ α0 (12)

Cr{Smin ≤ 1D ≤ Smax} ≥ β0 (13)

where pmax and pmin are the upper limit and the lower limit
of price, respectively; Smax and Smin are the upper limit and
the lower limit of imbalance power, respectively; α0 and β0
are the confidence level of objective cost and the confidence
level of imbalance power, respectively.

D. POWER RESPOND MODEL OF VPP ON THE LOWER
LEVEL
1) OBJECTIVE FUNCTION ON THE LOWER LEVEL
The objective of VPP is to maximize its profit by selling
power to the power system. It can be written as:

max fi (14)

fi = p× qi −
Ng,i∑
j=1

f gi,j −
Nv,i∑
j=1

f vi,j +
Ne,i∑
j=1

f ei − f
d
i (15)

where f gi,j is the cost of micro gas turbine j in VPP i; f vi,j is the
cost of electric vehicle j in VPP i; f ei is the comfort utility of
air conditioning j in VPP i; f di is the imbalance cost of VPP
i; Ng,i, Nv,i and Ne,i are the numbers of micro gas turbines,
electric vehicles, and air conditionings in VPP i, respectively;
fi is the objective profit of VPP i; f̄i is the αi-optimistic value
of fi in the chance constrained programming.

The costs and the utility functions in formula (15) can be
described as follows:

(1) Operation cost of micro gas turbine
The cost of micro gas turbine can be represented by the

following quadratic function:

f gi,j = b′′i,jx
2
i,j + b

′
i,jxi,j + bi,j (16)

where b′′i,j, b
′
i,j and bi,j are the cost coefficients of the micro

gas turbine j in VPP i; xi,j is the output of micro gas turbine j
in VPP i.

(2) Dispatching cost of electric vehicle
As a typical controllable load, the dispatching cost of

electric vehicle can be described by the quadratic function,
which is convex and non-decreasing within the dispatching
range [19], [20]. In this paper, the dispatching cost of electric
vehicle is formulated as:

f vi,j = ai,j
(
v2i,j + gi,jvi,j

)
(17)

where vi,j is the output of electric vehicle j in VPP i; vi,j > 0
represents the electric vehicle discharges power, vice versa;
ai,j and gi,j are the cost coefficients of electric vehicle j in VPP
i; gi,j is set to be 2

∣∣vmin,i,j
∣∣, such that f vi,j is non-decreasing

within
[
vmin,i,j, vmax,i,j

]
; vmax,i,j and vmin,i,j are the upper limit

and the lower limit of power of electric vehicle j in VPP i,
respectively.

In (17), f vi,j is positive when the electric vehicle discharges
power. Conversely, f vi,j is negative if it is in the charge state.

(3) Comfort utility of air conditioning
Similar to the electric vehicle, the comfort utility of air

conditioning can be described by the quadratic function for-
mulated as:

f ei = ci,j
((
t0,i,j − ts,i,j

)2
−
(
ti,j − ts,i,j

)2) (18)
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where ci,j is the utility coefficient of air conditioning j in
VPP i; ti,j, t0,i,j, and ts,i,j are the setting temperature, initial
temperature, and optimum temperature of air conditioning j
in VPP i, respectively.
In equation (18), when the temperature ti,j set by air condi-

tioning equals to the optimum temperature ts,i,j, the comfort
utility f ei obtains the largest value. If ti,j turns farther away
from ts,i,j, the value of f ei decreases correspondingly.
(4) Imbalance cost of VPP
The imbalance power of VPP is:

1di = qi + li +
Ne,i∑
j=1

ei,j −

Ng,i∑
j=1

xi,j +
Nw,i∑
j=1

wi,j +
Nv,i∑
j=1

vi,j


(19)

ei,j =

{
λ′i,j

(
ti,j − t0,i,j

)
, ti,j ≥ t0,i,j

λ′′i,j

(
t0,i,j − ti,j

)
, ti,j < t0,i,j

(20)

where 1di is the imbalance power of VPP i; ei,j is the power
consumed by air conditioning j in VPP i; wi,j is the output
of wind farm j in VPP i; Nw,i is the number of wind farms in
VPP i; λ′i,j and λ

′′
i,j are the power consumption coefficients of

air conditioning j in VPP i.
Then the cost due to the imbalance power of VPP i can be

described as:

f di =


k31d2i , 1di > 0
k41d2i , 1di < 0
0, 1di = 0

(21)

where k3 and k4 are the cost coefficients when the power of
VPP i is insufficient and excessive, respectively.

2) CONSTRAINTS ON THE LOWER LEVEL
There are three types of chance constraints in VPPs, including
the constraint of objective profit, the constraint of imbalance
power, and the limit of output of wind farm:

Cr
{
f ≥ fi

}
≥ αi (22)

Cr
{
smin,i ≤ 1di ≤ smax,i

}
≥ β1,i (23)

Cr
{
wmin,i,j ≤ wi,j ≤ wmax,i,j

}
≥ β2,i (24)

where smax,i and smin,i are the upper limit and the lower limit
of imbalance power, respectively; αi, β1,i, and β2,i are the
confidence levels of chance constraints of VPPi.
The deterministic constraints should also be satisfied as:

tmin,i,j ≤ ti,j ≤ tmax,i,j (25)

xmin,i,j ≤ xi,j ≤ xmax,i,j (26)

vmin,i,j ≤ vi,j ≤ vmax,i,j (27)

where tmax,i,j and tmin,i,j are the upper temperature limit and
the lower temperature limit of air conditioning j in VPP i,
respectively; xmax,i,j and xmin,i,j are the upper output limit
and lower output limit of micro gas turbine j in VPP i,
respectively.

III. SOLUTION METHODOLOGY
For the solution of the above model, two issues should
be handled: 1) how to deal with the uncertainties, namely,
transforming the fuzzy chance constraints and the objective
functions into deterministic forms; and 2) how to optimize
the models in two levels which interact each other deeply.

A. DEALING WITH UNCERTAINTY
1) TRANSFORMATION OF FUZZY CHANCE CONSTRAINT
For translating the fuzzy chance constraints of the proposed
model into deterministic forms, the crisp equivalent method
is used in this paper.

Assume that g (x, ξ) is written as:

g (x, ξ) = h1(x)ξ1 + h2(x)ξ2 + · · · + ht (x)ξt + h0(x) (28)

If a ≥ 0.5, the fuzzy chance constraint Cr {g (x, ξ) ≤ 0} ≥ a
can be converted to:

(2− 2a)
t∑

k=1

[
rk3h

+

k (x)− rk2h
−

k (x)
]
+ (2a− 1)

·

t∑
k=1

[
rk4h

+

k (x)− rk1h
−

k (x)
]
+ h0 (x) ≤ 0 (29)

h+k (x) =

{
hk (x) , hk (x) > 0
0, else

(30)

h−k (x) =

{
−hk (x) , hk (x) < 0
0, else

(31)

where ξk is the trapezoidal fuzzy variable determined by the
quadruplet (rk1, rk2, rk3, rk4), and k = 1, 2 . . . t .
In order to use the crisp equivalent method described in

(29)-(31), the fuzzy chance constraints in this paper should
be rewritten as Cr {g (x, ξ) ≤ 0} ≥ a at first. Taking equation
(13) for example, it can be divided into two chance con-
straints:

Cr {−1D ≤ −Smin} ≥ β0 (32)

Cr {1D ≤ Smax} ≥ β0 (33)

Then according to formula (29)-(31), they can be trans-
formed into:

N∑
i=1

qi ≤ −Smin + (2− 2β0)× r2L + (2β0 − 1)× r1L (34)

N∑
i=1

qi ≥ −Smax + (2− 2β0)× r3L + (2β0 − 1)× r4L (35)

In this way, the fuzzy chance constraint of imbalance power
on the upper level is transformed into a deterministic con-
straint as other fuzzy chance constraints in this paper.

2) TRANSFORMATION OF FUZZY OBJECTIVE FUNCTION
The fuzzy objective function can be deal with by the fuzzy
simulation method [21]. The procedures are as follows:
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Step 1)Generate θk from the ε-level set of fuzzy variable ξ
randomly, namelyµ (θk) ≥ ε, k = 1, 2, . . .N , where ε andN
are the sufficiently small positive number and the sufficiently
large number, respectively.
Step 2) Denote vk = µ (θk) , k = 1, 2, · · ·N .
Step 3) Set the credibility measure H

(
F̄
)

=

Cr
{
F (ξ (θk)) ≤ F̄

}
, then for any given F̄

H
(
F̄
)
=

1
2

max
1≤k≤N

{
vk |F (ξ (θk)) ≤ F̄

}
+

1
2

min
1≤k≤N

{
1− vk |F (ξ (θk)) > F̄

}
(36)

Step 4) Find the minimum F̄ satisfying H
(
F̄
)
≥ α0.

Since H
(
F̄
)
in Step 4) is monotonic, the minimum F̄

satisfying H
(
F̄
)
≥ α0 is just the F̄ satisfying H

(
F̄
)
= α0. It

can be optimized by dichotomy.
However, the fuzzy simulation is very time-consuming,

particularly when carried out during the process of real-
time economic dispatch. To address this problem, a mapping
method based on the fuzzy simulation and the radical basis
function (RBF) neural network is proposed in this paper.
That method gives multiple groups of decision vectors in
the decision space randomly, and calculates their pessimistic
objective values by the fuzzy simulation. Next, it trains the
RBF neural network with the decision vectors and the pes-
simistic objective values as inputs and outputs, respectively.
Since the fuzzy simulation is approximated by the RBF neural
network in advance, it should not be executed during the
optimization process in the following.

The flowchart of the mapping method based on the fuzzy
simulation and the RBF neural network is shown in Fig.1.

3) BI-LEVEL OPTIMIZATION METHOD
When the proposed bi-level real-time economic dispatch
model is transformed into deterministic form, its mathemat-
ical property is no longer clear. Thus, the optimization algo-
rithm based on derivative information cannot be used as its
solution. In this paper, a hybrid algorithm comprising of the
PS algorithm (see in [22]) and the PSO algorithm (see in [23])
is presented. The steps are as follows:
Step 1) An initial electricity price pn is given randomly by

the system operator on the upper level.
Step 2) The PSO algorithm is employed to solve the

respond models of VPPs on the lower level dispersedly, then
the optimum power response qni of each VPP at p

n is obtained.
Step 3) Calculate the pessimistic value of system cost

F̄ (pn) on the upper level based on pn and qni .
Step 4)Make pnew = pn ±1p, respectively; return to step

2) and step 3) for calculating the pessimistic values of system
costs on either hand of pn. Denote the better one as F̄ (pnew).
Step 5) If F̄ (pnew) < F̄ (pn), the searching is successful,

go to step 6); else go to step 7).
Step 6) Let pn = pnew, 1p = 1p · λ(λ > 1), and return to

step 4).
Step 7) Let 1p = 1p · τ (τ < 1), and return to step 4).
Step 8) Repeat step 4) - 7) until 1p is small enough.

FIGURE 1. Flowchart of the mapping method.

IV. CASE STUDIES
A. TEST SYSTEM
A test system is given in Fig. 2, which consists of three VPPs;
each one includes the micro gas turbine, wind farm, electric
vehicles, air conditionings, and conventional loads. In order
to demonstrate the feasibility of the proposed method, the
accuracy of the mapping method, the calculation speed of
the solution algorithm, the incentive of the system operator
and the response of VPPs, and the impact of coefficients,
uncertainty and risk preference are tested respectively in the
following. The computer with the Intel Core i5 M480 CPU
2.67GHz is used in these tests.

B. TEST RESULTS
(1) Accuracy test of the mapping method. Take the pes-
simistic value of system cost on the upper level as an exam-
ple. Assume that the electric price is 48.4$/MWh, generate
3000 groups of outputs of VPPs randomly, and calculate the
pessimistic values of system costs by the fuzzy simulation.
Then regard 2,000 groups of outputs of VPPs for training
the RBF neural network, and the rest are used for testing
the mapping accuracy. The tests are carried out at different
confidence levels, and the results are shown in Table 1.

Table 1 shows that no matter which value the confidence
level is, the maximum error of 1,000 groups of test data is
smaller than 1 percent. This verifies the accuracy of mapping
method adequately.

(2) Calculation speed of the solution algorithm. In order to
test the calculation speed of the bi-level optimization method,
we carry out the test once randomly. The changes of price and
system cost during the iteration process of the PS algorithm
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FIGURE 2. Test system.

TABLE 1. Maximum error at different confidence levels.

FIGURE 3. Change of price during iteration process on the upper level.

on the upper level are shown in Fig. 3 and Fig. 4, respectively.
It is found that the system cost decreases sharply in the
beginning. When the PS algorithm reaches the third iteration,
the price and the system cost are already close to the final
values. In order to gain better price and smaller system cost,

FIGURE 4. Change of system cost during iteration process on the upper
level.

FIGURE 5. Optimal response of DERs of VPP 1 to electricity price.

the iteration continues and reaches the termination condi-
tion (which is set to be the change of price is smaller than
0.30$ /MWh in this paper) at the fourteenth iteration.

As for the PSO algorithm on the lower level, it is run at
each iteration of the PS algorithm in the proposed bi-level
optimization method. However, since the PSO algorithm can
be utilized by each VPP dispersedly, the total calculation time
of the bi-level optimization method is just 17.28s in this case.
Furthermore, the calculation speed is almost unaffected by
the number of VPPs. Thus, the requirement of calculation
speed of real-time economic dispatch can be met effectively.

(3) The incentive of system operator and the response of
VPPs. By changing the electricity price from 32$/MWh to
97$/MWh, each VPP optimizes its power response at every
price, while the system operator calculates the system cost
correspondingly. The results are shown in Fig. 5 and Fig. 6.

Fig. 5 provides the optimal outputs of DERs of VPP 1 at
different prices. It can be seen that the power of wind farm
stay maximum no matter how much the price is because the
cost of wind power is not considered in this paper. When the
price is low, the total output of electric vehicles is negative,
indicating they are charging power at such circumstances.
However, with the increase of electricity price, the electric
vehicles reduce the charge power and even change to dis-
charge state gradually; the air conditionings also decrease
their consuming power to rise the total power of VPP 1
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FIGURE 6. Change of system cost with different prices: (a) Power
purchase cost; (b) Power imbalance cost; (b) Total cost.

supplied to the distribution system. When the micro gas tur-
bine and the electric vehicles reach the upper limits of outputs
and the air conditionings reach the lower limits of consumed
power, VPP 1 gets the maximum power as well.

Fig. 6 shows the change of power purchase cost, power
imbalance cost, and total cost of the distribution system with
the increase of electricity price, respectively. For the power
purchase cost, it increases gradually as the price rises. But
the imbalance cost decreases at first and then increases as the
price increases. In a combination, the total cost also decreases
at first and increases later. When the total cost reaches the
minimum, the corresponding price should be the optimal
price.

(4) The impact of coefficients. The costs or profits of
electric vehicles, air conditionings and so on are considered
in the method proposed in this paper, which is the basis
of optimal operation of DERs. In the practical applications,
the coefficients of cost or profit functions should be pro-
vided in advance according to the specific condition of each
participant. To make clear the impact of these coefficients
on the real-time economic dispatch, the cost coefficient a1j
of electric vehicle in VPP1 is studied as an example in the
following, and the results are shown in Fig. 7 and Table 2.

Fig. 7 indicates that the smaller a is, the bigger the output
of VPP 1 is. This indicates that the small cost coefficients of
DERs would promote the output of VPP to some extent.

The change of profits of VPPs and system cost
in Table 2 are more complex. As the increase of a, VPP1 will
reduce its output at the same price. In order to realize the

FIGURE 7. Impact of cost coefficient of electric vehicle on the total power
of VPP 1.

TABLE 2. Impact of coefficient of electric vehicle on the result of
real-time economic dispatch.

real-time balance, the system operator must raise price to give
more incentive to VPPs. Thus, it paysmore when a1j increase.
For VPP2 and VPP3, their profits also increase due to the
rise of price. However, the change of the profit of VPP1 is
non-unilateral. On one hand, the selling income will increase
with the rise of price; on the other hand, the costs of electric
vehicles will also increase correspondingly. Therefore, the
profit of VPP1 decreases and then increases with the increase
of a1j in this case.
(5) The impact of uncertainty. Two cases are tested to study

the impact of the number of fuzzy variables at first. In case 1,
the fuzzy variable set, including the fuzzy variables described
in equations (2)-(5) are considered. While in case 2, the fuzzy
variables about the wind farm are removed from the fuzzy
variable set of case 1. The results are shown in Fig. 8. The
profit of VPP1 in case 1 is always less than that in case
2 because more fuzzy variables means greater uncertainties,
which will lead to less profit of VPP when other conditions
are the same.

Secondly, the impact of confidence level on the profit of
VPP is studied. As shown in Fig. 9, the lower the confidence
level is, the bigger the profit of VPP is. The main cause is
that the lower confidence level means the VPP bears more
risk, which is conducive to better profit as a result.

The impact of uncertainty due to different descriptions is
also studied. The uncertainty of conventional load on the
upper level is described by trapezoidal fuzzy variable and
triangle fuzzy variable respectively, then the system costs
in these two cases are calculated, and the results are shown
in Fig. 10. It can be seen that when the trapezoidal fuzzy
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FIGURE 8. Impact of number of fuzzy parameters on the profit of VPP.

FIGURE 9. Impact of confidence level on the profit of VPP.

FIGURE 10. Impact of uncertainty description method on the system cost.

method is chosen, the system cost is more than that when the
triangle fuzzy method is chosen. It indicates that the shape
of fuzzy membership function has a certain impact on the
optimization results. However, this impact becomes smaller
and smaller as the confidence level rises.

In the proposed method, each participant can choose the
confidence level according to its risk preference. In order
to reveal this feature of the proposed method, three scenar-
ios with different confidence levels for the participants are
provided in Table 3, then the real-time economic dispatch is
executed respectively, showing the results in Table 4.

TABLE 3. Confidence level of participants in different scenarios.

TABLE 4. Comparison of results in different scenarios.

By comparing scenario 2 with scenario 1, we found that
as the confidence level of the distribution system and VPP
1 decrease from 1.0 to 0.9. The system cost, profits of VPP
2, and VPP3 all decrease while the profit of VPP1 increases
correspondently. The main reason is that the system operator
and VPP1 take higher risks as their confidence levels decline.
But for VPP2 and VPP3, their profits decrease due to the
decline of optimal price given by the system operator. When
scenarios 2 and 3 are compared, the system cost decreases as
the confidence levels of VPP2 and VPP3 decrease from 1.0 to
0.9. Considering the influence of price and output together,
the profits of VPP2 and VPP3 increase, while the profit of
VPP1 decreases to some extent.

V. CONCLUSION
A novel bi-level real-time economic dispatch method of VPP
is proposed in this paper. The main conclusions are as fol-
lows:

1) By describing the real-time economic dispatch of VPP
as the bi-level programming model, both the interaction
between the distribution system and VPPs, and the operation
of DERs inside VPPs can be optimized simultaneously.

2) Considering the uncertainties of DERs and conven-
tional loads, the fuzzy chance constrained programming is
further embedded into the abovemodel. Through thismethod,
the system operator and VPPs in different levels can make
decisions according to their risk preferences effectively.

3) The proposed bi-level real-time economic dispatch
model considering uncertainty is converted to deterministic
form through the mapping method. This way, massive com-
putation caused by the fuzzy simulation can be avoided in the
process of real-time solution of the proposedmodel, while the
error of the mapping method is quite small.

4) The bi-level optimization method is proposed to solve
the bi-level real-time economic dispatch model. As the PSO
algorithm on the lower level can be utilized by each VPP
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dispersedly, the requirement of calculation speed of the real-
time economic dispatch can be met availably.
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