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ABSTRACT The outliers remove, the classification of effective measurements, and the weighted optimiza-
tionmethod of the correspondingmeasurement are themain factors that affect the positioning accuracy based
on range-based multi-target tracking in wireless sensor networks. In this paper, we develop an improved
weighted least-square algorithm based on an enhanced non-naive Bayesian classifier (ENNBC) method.
According to the ENNBCmethod, the outliers in the measurement data are removed effectively, dataset den-
sity peaks are found quickly, and remaining effective measurements are accurately classified. The ENNBC
method improves the traditional direct classification method and took the dependence among continuous
density attributes into account. Four common indexes of classifiers are used to evaluate the performance of
the nine methods, i.e., the normal naive Bayesian, flexible naive Bayesian (FNB), the homologous model of
FNB (FNBROT ), support vector machine, k-means, fuzzy c-means (FCM), possibilistic c-means, possibilistic
FCM, and our proposed ENNBC. The evaluation results show that ENNBC has the best performance based
on the four indexes. Meanwhile, the multi-target tracking experimental results show that the proposed
algorithm can reduce the root-mean-squared error of the position compared with the extended Kalman filter.
In addition, the proposed algorithm has better robustness against large localization and tracking errors.

INDEX TERMS Range-based multi-target tracking, wireless sensor networks, weighted least-square, naive
Bayesian, localization root mean squared error.

I. INTRODUCTION
Wireless sensor network (WSN) have been applied in many
domains, such as smart home, intelligent transportation, and
intelligent computing technology and so on [1]. The multi-
target localization and tracking [2] are the important research
contents of WSN [3]–[8]. Although the advantages of WSN
(such as low cost, easy deployment and long-termwork) bring
new prospective for positioning applications, the character-
istics of sensor nodes with susceptible to interference, poor
reliability, random distribution, and communication distance
[9]–[12] also present great challenges to localization inWSN.
Usually, most of the tracking algorithms based on WSN can
be grouped into two categories: range-free localization (easily
implemented and suitable for large-scale deployment) and
range-based localization (higher accuracy) [13]. This paper

focuses on the research of range-based multi-target track-
ing technology. For the closely spaced multi-target tracking,
the accuracy of the localization [14] is significantly affected
by the processing algorithm of measurement data. Therefore,
it is of great significance to research the processing algorithm
of measurement data to improve the accuracy of the localiza-
tion [15]–[17].

In recent years, the research interest of range-based multi-
target localization and tracking has turned to the tracking
problem of closely spaced targets. The processing algorithms
of the classical measurement data for target tracking, such
as Kalman filter (KF) [18], track association algorithm based
on fuzzy comprehensive function [19], classical least-squares
(CLS) algorithm [20], and Bayesian algorithm [21] etc, have
no ability to identify the attributes of every measured data.
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The optimal estimate values are calculated by the predictive
values and the observation values based on most of the classi-
cal tracking algorithms in the process of range-based closely
spaced multi-target localization and tracking [22], which are
not accurate and is interfered by the measurement data of
closely spaced targets. In the actual case, a large amount of
measurement data is received from the sensor network, but
it is not clear whether the measurement data belongs to a
specific target, and measurement data of all targets is mixed
with noise. The main work of this paper is to identify and
classify measurement data by improving existing classifica-
tion algorithms. The improved classification algorithm can
distinguish the measurement data to the corresponding target
for data fusion, and the noise can be filtered out. Therefore,
the accuracy of the range-based closely spaced target tracking
can be improved by the classification algorithm [23].

Some new clustering algorithms have been further devel-
oped in recent years, such as object tracking and credal clas-
sification with kinematic data in a multi-target context [24],
non-naive Bayesian classifiers for classification problems
with continuous attributes [25], resident location-recognition
algorithm using a Bayesian classifier in the PIR sensor-
based indoor location-aware system [26], a novel adaptive
possibilistic clustering algorithm [27], a novel measurement
data classification algorithm based on SVM for tracking
closely spaced targets [28], real-time superpixel segmenta-
tion by DBSCAN clustering algorithm [29], measurement
data classification optimization based on a novel evolu-
tionary kernel clustering algorithm for multi-target track-
ing [13], a big data clustering algorithm for mitigating the
risk of customer churn [30], a cloud-friendly RFID trajec-
tory clustering algorithm in uncertain environments [31],
a collaborative fuzzy clustering algorithm in distributed net-
work environments [32], the differences between Bayesian
classifiers and mutual-information classifiers [33], knowl-
edge fusion for probabilistic generative classifiers with data
mining applications [34], clustering by fast search and
find of density peaks [35], k-means clustering with outlier
removal [36], maximum margin Bayesian network classi-
fiers [37]. In addition, the classification results of measure-
ment data can be improved based on the weight analysis of
classification process. References [38]–[40] show that better
classification results can be obtained by using weighted data.

In this paper, a measurement data fusion method
is designed to improve the distance-based close-range
multi-target tracking performance in WSNs. A new ENNBC
algorithm is proposed, which improves the traditional direct
classificationmethod and introduces the dependence between
continuous density attributes into wireless sensor networks.
First of all, a large number of outliers are removed from the
measurement dataset and the density peak of every target
measurement data is found quickly. Secondly, the ENNBC
algorithm is applied to accurately classify remaining effective
measurements. Thirdly, the weight values of each effective
measurement are optimized by probability factors, and the
optimal data centers of each target are calculated by weighted

TABLE 1. Main mathematical symbols.

least-squares. Finally, the estimated location of every target
at current time is obtained according to weighted least-square
algorithm. Table 1 indexes the main mathematical symbols
used in the description of the document.

The structure of the paper is as follows. In Section II,
the formulation of tracking problem, the method for position
determination, CLS, and NBC are discussed in a Cartesian
coordinate. In Section III, the novel outliers remove method,
the ENNBC and weight value optimization of WLF are
explained. In Section IV, we describe the hardware experi-
mental platform ofWSN and two Scenes. SectionV describes
the simulation results of the experiment in theWSN hardware
platform. Section VI summarizes this paper.

II. PRELIMINARIES
Themeasurement data of the multi-target is collected through
nodes in WSN, and is analyzed by several related methods.
In this section, the problem formulation, the method for
position determination, and CLS are discussed in a Cartesian
coordinate. The section is divided into three parts: prob-
lem formulation, position determination method, and CLS
analysis.

A. PROBLEM FORMULATION
The state variable is an effective method to describe the
dynamic system [41]. With this method, the relationship
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FIGURE 1. The geometric relationship between the target and sensor
nodes.

between the input data and output data of the system can be
discussed in time domain by the state transition model and
output observation model. The output is a function of the
state, which is usually disturbed by the random observation
error [42]. When multiple targets enter the observation area,
the sensor nodes begin to collect a large amount of measure-
ment data, and a dataset is formed at eachmoment. The range-
basedmulti-target tracking system is considered to be defined
by geometry relationship between multiple moving targets
and nodes. The black points (TP) in Fig. 1 are true position
of the moving target j; Due to each target is homogenous,
the subscript j is removed. k and k − 1 are the corresponding
time of the moving target. When the moving target moves to
the MP position, n sensor nodes observe it, and receive the
measured data at this time. At this time, position (xsi, ysi) of
the i-th sensor node, the direction angle θi, and the measured
distance ρi are obtained. Themeasured position of themoving
target from i-th sensor node target is as follows:[

xi
yi

]
=

[
xsi + ρi · sin θi
ysi + ρi · cos θi

]
(1)

A new observation dataset Zk for the target will be obtained
at time k . However, the uncertainty of maneuvering target
movement from time k − 1 to k should be considered. For
the sensor node i, the expression of multi-target localization
and tracking is as follows:

xk = f (xk−1)+vk−1
zi,k = gi(xk )+ wi,k (2)

where xk ∈ Rn is the n-dimensional state vectors of the multi-
target localization and tracking system at time k , f (·) is an
unknown and possibly function of the states. zi,k ∈ Rm is
the m-dimensional measurement vectors of the sensor node
i at time k . Rn and Rm are the n and m-dimensional real
space, respectively. gi(·) is a known and possibly function
of the m-dimensional measurement vectors of the sensor
i, vk and wi,k are independent of each other with added
zero meaning Gaussian measurement noise [43]. Because
each sensor is homogenous, the subscript i is removed.

z̃k =
[
z1,k , z2,k , · · · , zn,k

]
denote the measurement dataset

of the target at time k [13]. The mission of target track-
ing in WSNs is to reduce the minimum-mean-squared-error
(MMSE) estimator based on measurement dataset of each
target, the expression is as follows:

MMSE(xk ) =
∑

xi,k∈Rn
P
(
xi,k |zk

)
x̂k

=

∑
xi,k∈Rn

P
(
xi,k |zk

)
E
(
xk
∣∣zk , xi,k ) (3)

whereE is the expectation operator;E
(
xk |zk , xi,k

)
is the state

estimate of the tracking system according to the measurement
dataset of the target.

B. POSITION DETERMINATION ANALYSIS
For multi-target tracking, the mathematical model is estab-
lished at first according to our range-based sensor network.
The model includes the predicted and measured positions
of the target, and the sensor position. Then the deviation
between the predicted position and the measured value is
calculated at time k , the position of the sensor i and the
measurement position of the target, as shown in Fig. 2.

FIGURE 2. The geometric relationship between the prediction position,
measured position, and nodes i .

The predicted position of the target is (xk , yk ) at time k ,
and the coordinate of the sensor Si is (xsi, ysi). The measure-
ment position of the sensor Si is (xki, yki) from the target, and
the following equations are obtained:{

1xki = xk − xki = ri′ sin(θi′)− ri sin(θi)
1yki = yk − yki = ri′ cos(θi′)− ri cos(θi)

(4)

where (ri, θi) represents the measured value of the sensor Si
in the polar coordinate; (ri′, θi′) represents the distance and
angle between the sensor and the predicted position of the
target in the polar coordinate. The equations for measurement
and measurement error are as follows:{

ri = ri′ −1ri
θi = θi

′
−1θi

(5)
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where (1ri, 1θi) represents the error of the predictive value
of the sensor Si. According to the geometric relationship of
Fig. 2, the equation is obtained as follows:{

1xki = (xk − xsi)− ri sin θi
1yki = (yk − ysi)− ri cos θi

(6)

using (6), the corresponding1xki and1yki of the ns measure-
ment data of the sensors were calculated at time k . The matrix
of the 1xki and 1yki is defined as follows:

�k = (υkx ,υky)T

= (εk1, εk2, · · · εkns )

=

[
1xk1 1xk2 · · · 1xkns
1yk1 1yk2 · · · 1ykns

]
(7)

using (7) the distance 1rki = ‖εki‖2 is calculated. Then,
using (4) and (5), the following equation is calculated:{

1xki = (ri +1ri) sin(θi +1θi)− ri sin θi
1yki = (ri +1ri) cos(θi +1θi)− ri cos θi

(8)

first, 1xki is calculated according to the above equation:

1xki = ri sin θi cos1θi + ri cos θi sin1θi
+1ri sin θi cos1θi+1ri cos θi sin1θi−ri sin θi

(9)

in the actual target position detection, the error is less than the
measurement,1ri � ri and1θi � θi. The value of1θi tends
to be zero, and cos1θi ≈ 1, sin1θi ≈ 1θi. Therefore,
equation (9) can be simplified as:

1xki ≈ ri1θi cos θi +1ri sin θi +1ri1θi cos θi (10)

because the high-order item has little effect on the results,
equation (10) is further simplified as:

1xki ≈ ri1θi cos θi +1ri sin θi (11)

similarly, 1yki is calculated as:

1yki ≈ −ri1θi sin θi +1ri cos θi (12)

using (11) and (12), the following equation is calculated:1xki sin θi +1yki cos θi = 1ri1xki
cos θi
ri
−1yki

sin θi
ri
= 1θi

(13)

Note that (13) depends on the direction angle θi and the
distance ri of the node relative to the measurement.

C. CLS ANALYSIS
In order to perform it more conveniently, we use matrix
algebra for analysis, so that (13) can be simplified as:

Hδ = ξ (14)

where,

H =



sin θ1 cos θ1
cos θ1
r1

−
sin θ1
r1

...
...

sin θmk cos θmk
cos θmk
rmk

−
sin θmk
rmk


, δ =

[
1xk
1yk

]
,

ξ =


1ρ1
1θ1
...

1ρmk
1θmk

 (14a)

and 
1θi ≈ sin1θ =

xsi cos θi − ysi sin θi√
(xk − xsi)2 + (yk − ysi)2

1ri =
√
(xk − xsi)2 + (yk − ysi)2 − ri

(14b)

in typical practical situations, (14) [44] are overly defined,
so that a CLS solution was calculated from:

8δ = d (15)

where,

8 = HTH

=


mk∑
i

(sin2θi +
cos2θi
r2i

)
mk∑
i

(1−
1

r2i
) sin θi cos θi

mk∑
i

(1−
1

r2i
) sin θi cos θi

mk∑
i

(cos2θi +
sin2θi
r2i

)


(15a)

and

d = HT ξ =


mk∑
i

(1ri sin θi +
1θi cos θi

ri
)

mk∑
i

(1ri cos θi −
1θi sin θi

ri
)

 (15b)

the solution of linearmatrix (15) can be expressed in the form:

δ = (HTH )−1(HT ξ ) = 8−1d (16)

the vector ξ provides a correction estimate to modify the
initial estimate of the two variables 1x and 1y. therefore,
better estimates are:[

xk|k
yk|k

]
=

[
xk|k−1
yk|k−1

]
+

[
1xk
1yk

]
(17)

Equation (16) [44] is applied iteratively until the increments
are sufficiently small. Note that these corrections are not the
errors in the target predictive location, which are dependent
on the measurement errors, but are increments in the iterative
process. As the solution converges, these increments will
approach zero in most situations, although the algorithm may
not converge with large measurement errors.
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D. NBC ANALYSIS
This part will give a brief review of NBC. Suppose that the
decision attribute varies from {ν1, ν2, ..., νc}, which implies
that all effective measurement data x is categorized into c
classes. The NBC is used to judge the membership degree of
effective measurement data x belongs to νi class (the target
i). According to the prior probability and class-conditional
probability of the remaining effective measurement data,
Bayesian classifier calculates the posterior probability and
determines the value of decision attribute for the remaining
effective measurement data. The BC discriminates the class
of effective measurement data x as following:

ν (x) = argmax
νi,i=1,2,··· ,c

{P (νi|x̃)}

= argmax
νi,i=1,2,··· ,c

{
P (νi)P (x̃|νi)

P (x)

}
= argmax

νi,i=1,2,··· ,c
{P (νi)P (x̃|νi)} (18)

where c is the number of classes and P(νi) is the prior
probability of the i-th class, which can be estimated by
the frequency of the effective measurement data of the i-th
class, i.e., P(νi) = ni

/
N in which N is the number of the

remaining effective measurement data and ni is the number
of the effective measurement data in the i-th class. P (x|νi) is
the class-conditional probability. The main purpose of naive
BC is to estimate P (x|νi) according to the training effective
measurement data in the i-th class. The class-conditional
probability is as follows:

P (x|νi) = P (x1, x2, · · · , xm|νi) =
m∏
j=1

P
(
xj|νi

)
(19)

Each effective measurement data is defined by m condi-
tion attributes, which are devoted to describe the specific
characteristics of a measurement data. m condition attributes
may contain information such as coordinates, distance from
the predicted position, acceleration, density of measurement
data, and sensor accuracy, and so on. Humans are taken as
targets in this paper, and some conditional attributes can be set
based on the related attributes of human normal walking. The
velocity and acceleration of the target conform to the range of
the walking for ordinary human. If the velocity or accelera-
tion exceeds the threshold (the maximum velocity or acceler-
ation of walking for ordinary human), P (x |νi ) = 0. Hence,
using (19), the following decision rule of naive BC is obtained
for determining the decision attribute value of the effective
measurement data x.

ν (x) = arg max
νi,i=1,2,··· ,c

niN
m∏
j=1

P
(
xj|νi

) (20)

From (20), we can see that the calculation of P (x|νi) is
the key to establish the association between the measure-
ment data x and the class νi by naive BC. According to the
density estimation strategy, three methodologies NNB [45],

FNB [46], and FNBROT [47] are popular ways to estimate the
component P (x|νi) for x.

1) NNB
Denote the elements in the i-th class as x(i). NNB [45]
assumes that the x(i) obey a single Gaussian distribution.
Then, P (x|νi) can be calculated from:

P(xj|νi) =
1

√
2πσ (i)

j

exp

−
(
xj − µ

(i)
j

)2
2
(
σ
(i)
j

)2
 (21)

where µ(i)j =
∑ni

l=1 x
(i)
l

ni
and

(
σ
(i)
j

)2
=

∑ni
l=1

[
x(i)l −µ

(i)
j

]2
nl

are the

mean value and variance of all elements in x(i), respectively.

2) FNB
In many applications, to tackle the case of non-Gaussian
distribution, John and Langley [46] proposed the FNB which
estimates P (x|νi) through the following equation:

P(xj|νi) =
1

nih
(i)
j

∑ni

l=1

[
K

(
xj − x

(i)
l

h(i)j

)]
(22)

where h(i)j is the bandwidth and K (·) is the kernel function.

In FNB, h(i)j =
1
√
ni

and K (x) = 1
√
2π

exp
(
−
x2
2

)
. The exper-

imental study shows that the classification performance of
FNB mainly depends on the selection of the bandwidth h(i)j .

3) FNBROT
For evaluating the impact of different bandwidth parame-
ter selection methods on the classification performance, Liu
et al. [47] used the thumb rule to replace the traditional
bandwidth parameter in FNB h(i)j =

1
√
ni
with the following as:

h(i)j =
(

4
3ni

) 1
5

σ
(i)
j (23)

The kind of BC are called FNBROT . In addition to the rule of
thumb mentioned earlier, we can also obtain other parameter
selection methods from [48].

III. ANALYSIS OF IMPROVED WEIGHTED
LEAST-SQUARES ALGORITHM
The measurements in WSNs are integrated to acquire more
accurate position of the target. The novel outliers remove
method, the ENNBC analysis [21] andWLF [49], [50] can be
used to improve the performance of tracking system. In this
section, the WLS is enhanced according to the ENNBC and
novel outliers remove Method.

A. NOVEL OUTLIERS REMOVE AND DATASET DENSITY
PEAKS FAST SEARCH METHOD
According to measurement dataset X = {x1 , · · · , xi, · · · ,
xN } (1 ≤ i ≤ N ) from WSN, as shown in Fig. 3(a). ε neigh-
borhood of xi is expressed as the following equation:

Nε(xi) =
{
xi, xj ∈ X : d(xj, xi) ≤ ε

}
(24)
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FIGURE 3. The measurement data from WSN: (a) Measurement data.
(b) The 3D photograph of the location and density ρ of the measurement
data.

the local density ρt (i) of measurement data xi is expressed as
the following equation:

ρt (xi) =
∑
j

λ(d(xi, xj)− ε) (25)

where λ(x) = 1 if x < 0 and λ(x) = 0 otherwise. Basically,
ρk (xi) is the number of measurement data that is closer than
ε to measurement data xi [35], as shown in Fig. 3(b). The
algorithm is sensitive only to the relative magnitude of ρk (xi)
in different data, implying that, for large data sets, the results
of the analysis are robust with respect to the choice of ε.When
ρk (xi) ≤ ε1, xi is the outlier, and mk remaining effective
measurement data is obtained, as shown in Fig. 4.

After the outliers is removed, since it is not known how
many targets are included in the remaining measurements,
the following calculations are needed to determine the num-
ber of classes (one class corresponds to one target)and the
corresponding density peak. The method is based on the
assumption that each class center is at a relatively large dis-
tance from any data with a higher local density, and they are
surrounded by neighbors with lower local density. For every
measurement data xi, the local density ρk (xi) and the distance
ηk (i) from higher density data are calculated. Both these
quantities depend only on the distances d(xi, xj) between
measurement data, which are assumed to satisfy the triangular

FIGURE 4. The remaining effective measurement data: (a) Remaining
effective measurement data. (b) The 3D photograph of the location and
density ρ of the remaining effective measurement data.

inequality. ηk (i) is calculated based on the minimum distance
between the data xi and any other measurement data with
higher density, or the maximum distance between the data
xi and any other measurement data with lower density in ε2
neighborhood of xi, the expression is as follows:

ηk (i)=


min
j:ρj>ρi

(d(xi, xj)),

if ∃ xj, and ρk (xj)>ρt (xi), d(xi, xj) < ε2

max
j:ρj<ρi

(d(xi, xj)), otherwise

(26)

for the data xi, there is higher density in ε2 neighborhood
of xi, we define ηk (i) = maxj(d(xi, xj)), where xj has the
highest density. Note that ηk (i) is much larger than the typical
nearest neighbor distance only for data with maximum local
density. In addition, the same class in measurement dataset
may contain two or more peak density data. So it can be
based on λ(d(xi, xj)− ε3) to determine whether a two density
peak data belongs to the same class. If λ(d(xi, xj)− ε3) = 1,
the density peak data xi and xj are in same class. If there
are multiple density peak data belonging to the same class,
the class center is equal to the average value of these data.
After the previous calculation, themeasurement data Fig. 3(b)
contains four classes, and the density peak position of each
cluster is shown as the blue triangle in Fig. 4 The local
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density value of each measurement data is calculated based
on the position coordinate, and the density peak position of
each class is also calculated. If the local density value of
the measurement data is higher than the threshold, the data
is considered to be effective measurement. Otherwise, it is
outlier. Next, the effective measurement data with the highest
local density value in a certain neighborhood around itself
is searched, and considered to be the effective measurement
data with the peak density value (be used to associate with
known targets). However, the degree of association between
each effective measurement data and the class needs further
analysis (see following ENNBC algorithm analysis).

B. ENNBC ANALYSIS OF NEARBY TARGET
MEASUREMENTS
In the above, the number of targets, effective measurement
dataset X̃ after outliers remove, and density peaks were
obtained. However, the relationship between the remaining
effective measurement data x̃ and each target is unknown.
After the analysis in Section III-A, the performance of the
handling methodology is enhanced. Therefore, the method
is redefined as ENNBC. Three methodologies NNB, FNB,
and FNBROT have the following two limitations: a) they
are based on the assumption that all condition attributes are
independent given the decision attribute, which is obviously
not always valid in many practical applications. b) in the
process of estimating the marginal probability density func-
tion of each attribute, ENNBC assumes that each attribute
follows a Gaussian distribution problem; FNB/FNBROT is
suitable for the non-Gaussian distribution problem, while it
has not an appropriate method of the parameter selection.
The limitations seriously affect the accuracy of the proba-
bility density function estimation. In order to improve the
classification performance based on removing or relaxing

Algorithm 1 Outliers Remove

Require: dataset Xk =
{
x1,k , · · · , xi,k , · · · , xn,k

}
(1 ≤ i ≤

n).
Ensure: X̃k =

{
x̃1,k , · · · , x̃i,k , · · · , x̃mk ,k

}
(1 ≤ i ≤ mk ),

and centers Ck of classes.
1: repeat
2: the local density ρt (i) of data xi,k was calculated by (25);

3: until the local densities of all measurements were calcu-
lated

4: repeat
5: using ρt (i) ≤ ε1 determining outliers;
6: until all outliers were found
7: repeat
8: the density peak was calculated by (26);
9: until all density peaks were calculated
10: return: results dataset X̃k ={

x̃1,k , · · · , x̃i,k , · · · , x̃mk ,k
}
after outliers remove,

and density peaks Ck of clusters in the dataset;

the above two limitations, the ENNBC method in which the
restraint of independence among the attributes is removed and
the joint probability density function estimation replaces the
marginal probability density function estimations. ENNBC
determines the class of the new effective measurement data x̃
as follows [25]:

ν (x̃) = arg max
νi,i=1,2,··· ,c

{ni
N
P (x̃|νi)

}
= arg max

νi,i=1,2,··· ,c

{
1

Nhmi

∑ni

l=1

[
K

(
x1 − x

(i)
l1

hi
,

x2 − x
(i)
l2

hi
, · · · ,

xm − x
(i)
lm

hi

)]}
(27)

where K (·) is a multivariate kernel function and hi is a cru-
cial parameter called bandwidth. The multivariate Gaussian
kernel is K (x̃) = 1(√

2π
)m exp

(
−
x̃x̃T
2

)
, where x̃T is the

transpose of vector x̃. In addition, it is well acknowledged
that the estimation performance of Parzen window method
strongly relies on the selection of bandwidth hi, and the
detailed analysis for the optimal selection of hi is given in [25,
Sec. III-B]. Specifically, for a set of effective measurement
data belonging to the i-th class, the optimal bandwidth hi(1 ≤
i ≤ c) can be simplified as:

hi =

 4m

ni
∣∣∑

i

∣∣− 1
2
(
2tr

(∑
−1
i
∑
−1
i

)
+tr2

(∑
−1
i

))


1
m+4

(28)

where
∑

i= diag
{(
σ
(i)
1

)2
,
(
σ
(i)
2

)2
, · · · ,

(
σ
(i)
m

)2}
, and

variance
(
σ
(i)
j

)2
, (1 ≤ j ≤ m) has been given in (21).

Next, we analyze the time complexities of the abovemen-
tioned four BC algorithms,i.e., NNB, FNB, FNBROT , and
ENNBC. N denotes the number of training measurement
data,M denotes the number of testing measurement data, and
m denotes the number of condition attributes of the target.
Since NNB needs to calculate the means and variances for the
d condition attributes, the training time complexity of NNB is
T (Nm) and the classification time complexity is T (Mm). FNB
uses the superposition of N probability density functions of
the Gaussian distribution to fit the true probability density
function; thus, the training and classification time complexi-
ties of FNB are T (Nm) and T (MNm), respectively. FNBROT
used the rule of thumb to get some increase in the training
time, however the training and classification time complexi-
ties remain T (Nm) and T (MNm), respectively [25]. Similar
to FNBROT , the ENNBC also needs the additional time to
remove outliers T (R) and compute the optimal bandwidth in
the training time. However, the elements in the dataset are
greatly reduced after remove outliers, and the classification
time complexity for the determination of the required param-
eter will decrease rather than increase. Therefore, the training
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and classification time complexities of ENNBC are T (R),
≤ T (Nm), and ≤ T (MNm) as well.
According to the ENNBC algorithm, the effective mea-

surement data is associated with each class and assigned to
the class with the greatest degree of association. However,
the association between the classes and targets is unknown.
The establishing method is to calculate the degree of asso-
ciation between known targets and the classes according to
the Euclidean distance between the predicted positions and
the effective measurement data with peak density (the pre-
dicted positions of targets can be calculated based on existing
algorithms). After the measurement class is connected with
the target, the optimal estimation of each target’s at the cur-
rent time is analyzed based on the following weighted least-
squares algorithm.

C. WEIGHT OPTIMIZATION FOR THE WEIGHTED
LEAST-SQUARES ALGORITHM
The measurement matrix H and the dependent variable ξ in
(16) are processed by some filtering algorithms. However,
the model parameters may contain negative factors in the
solution for δ by using (16), and the calculated result will be
affected. These negative factors may be related to measure-
ment noise or any other irrelevant factor. After the analysis of
previous novel outliers remove and BC algorithms, the larger
noise has been removed and effective measurements have
been properly classified. After that, we need to use weighted
Least-Squares algorithm to further analyze the effective mea-
surement data for each target. According to previous BC
algorithm, different weights are set for each effective mea-
surement data, and the weight vector is ŵk ∈ Rn×1.

P(i) =
{
ν (x̃1) , ν (x̃2) , · · · , ν

(
x̃ni
)}

(29)

using (29), the expected value of ν(x̃) in i-th class is calculated
from:

E
[
ν(x̃(i))

]
= µi (30)

after the expected value of each class was calculated by using
(30), the weight parameters of each effective measurement
data are calculated by the bias parameter τ . The specific
equation is as follows:

w(i)
j = e

τ (ν
(
x̃(i)j

)
−µi)) (31)

the weight parameters are normalized:

ŵ(i)
j =

w(i)
j∑ni

l=1 w
(i)
l

(32)

using (32), the weight vector ŵ(i)
j is calculated. Therefore,

the diagonal weight matrix 3 is given by:

3= diag
{
ŵ(i)
1 , ŵ

(i)
1 , ŵ

(i)
2 , ŵ

(i)
2 , · · · , ŵ

(i)
ni , ŵ

(i)
ni

}
(33)

a in (15), (16), and (32), the data matrix H is corrected by the
diagonal weight matrix3. The corrected equation is given as

follows:

Ĥ = 3H (34)

the corresponding vector ξ is corrected by the diagonal
weight matrix 3, and the corrected vector is as follows:

ξ̂=
[
1r1 · ŵ

(i)
1 ,1θ1 · ŵ

(i)
1 , · · · ,1rni · ŵ

(i)
ni ,1θniŵ

(i)
ni

]T
(35)

the solution vector of the improved Bayesian enhanced least-
squares algorithm can be obtained from:

δ̂ =
[
(3H )T3H

]−1 [
(3H )T ξ̂

]
= (ĤT Ĥ )−1(ĤT ξ̂ ) = 8̂

−1
d̂ (36)

where 8̂ see equation (36a), as shown at the bottom of the
next page, and

d̂= ĤT ξ̂=


∑ni

j=1

(
ŵ(i)
j

)2
·

(
1rj sin θj +

1θj · cos θj
rj

)
∑ni

j=1

(
ŵ(i)
j

)2
·

(
1rj cos θj +

1θj · sin θj
rj

)


(36b)

using (36), the classical least-squares algorithm is corrected.
First of all, in the analysis of novel outliers remove algorithm,
the larger noise has been removed and the number of tar-
gets in the measurement of each cycle is obtained. Second,
the remaining effective measurement data is accurately clas-
sified based on the BC algorithm, and the weighting param-
eter is calculated based on the probability of each effective
measurement in i-th class. Finally, the measurement data of
each cycle is fused according to the improved weighted least-
squares algorithm. The details are presented in Algorithm 2.

Algorithm 2 Optimized Weighted Least-Squares Scheme

Require: Dataset X̃k =
{
x̃1,k , · · · , x̃i,k , · · · , x̃nk ,k

}
(1 ≤ i ≤

nk ), and centers θ t of clusters.
Ensure: Optimal location (xk|k , yk|k ) of the target.
1: repeat
2: using ENNBC calculating ν (x̃i) of effective measure-

ment data x̃i;
3: until ν (x̃) of every effective measurement data is calcu-

lated
4: using (29) calculating Pk ;
5: using (30) calculating E

[
ν
(
x̃(i)
)]
;

6: repeat
7: using (31) calculating w(i)

j of effective measurement data
x̃j;

8: until w(i)
j of every effective measurement data is calcu-

lated
9: Normalized w(i)

j ⇒ ŵ(i)
j ;

10: Establish diagonal matrix ŵ(i)
j ⇒ 3;

11: using (35) calculating ξ̂ ;
12: using (36) calculating δ̂;
13: return: Optimal location (xk|k , yk|k ) of the target.

13908 VOLUME 7, 2019



X. He et al.: Measurement Data Fusion Based on Optimized Weighted Least-Squares Algorithm for Multi-Target Tracking

FIGURE 5. The hardware experiment platform: (a) Sensor node. (b) Indoor scene 1. (c) Outdoor scene 2.

IV. HARDWARE EXPERIMENTAL
PLATFORM AND SCENES
A. HARDWARE EXPERIMENTAL PLATFORM OF WSN
In order to verify the performance of the proposed algorithm,
we designed a hardware experimental platform based on
WSN. The experimental platform is remote and open tool for
evaluating and comparing location and tracking algorithms.
Each sensor node in the experimental platform contains
ESP8266 WIFI from Espressif Systems as the communica-
tion module, the infrared ranging module for measured dis-
tance between the sensor and the target, and angle control for
measured direction, as shown in Fig. 5(a). The whole experi-
ment takes the human bodies as moving multi-target, and the
indoor and outdoor scenes with interference are considered.
In two scenes, we consider more than four sensor nodes
to avoid blind areas caused by mutual occlusion between
targets. More targets in both scenarios require more sensor
nodes to eliminate blind zones. A total of 14 sensor nodes
were deployed around the monitoring area in two scenes,
as shown in Figs. 5(b) and 5(c). A series of experiments were
carried out on the hardware experimental platform, and the
performance of the proposed algorithm was evaluated. In the
time test, each sampling period of all sensor nodes in WSN
is less than 250 × 10−3s. In the infrared ranging module
and angle module, the relevant data acquisition takes about
200 × 10−3s, the AD transforming and measurement data
collection of sink node required about 30 × 10−3s. When
the target enters the measurement area of the sensor node,
the activation mechanism required about 10× 10−3s.

B. EXPERIMENTAL SCENES
We first need to calibrate the position of each sensor node
in two different scenarios, and plan an accurate measurement

path to know the exact location of all moving targets at any
time. The exact positions of these targets are used as real
positions to verify the performance of the algorithms. In the
experiment of the targets location and tracking, one or more
targets move along metered path in the monitoring area at
a normal speed of roughly 2m/s, as shown in Fig. 5. The
details of the indoor scene and the outdoor scene are as
follows:

1) INDOOR SCENE 1
The experimental environment of the indoor scene is located
in the room, as shown in Fig. 5(b) and Fig. 6(a). In this
scene, we put some interference (a table and obstacles)
inside the sensing area, 14 sensor nodes are located around
a 5m× 8m rectangle monitoring region. The position coordi-
nates of the sensor nodes are SN1(0,0), SN2(2,0), SN3(4,0),
SN4(6,0), SN5(8,0), SN6(8,1.667), SN7(8,3.333), SN8(8,5),
SN9(6,5), SN10(4,5), SN11(2,5), SN12(0,5), SN11(0,3.333),
and SN12(0,1.667) in meters, respectively. The height of
every node is 1.15m.

2) OUTDOR SCENE 2
The experimental environment of the outdoor scene is located
in open ground, as shown in Fig. 5(c) and Fig. 6(b).
In this scene, three people walk around inside the sens-
ing area, 14 sensor nodes are located around a 8m ×
8m square monitoring region. The position coordinates
of the sensor nodes are SN1(0,0), SN2(2,0), SN3(4,0),
SN4(6,0), SN5(8,0), SN6(8,2.667), SN7(8,5.333), SN8(8,8),
SN9(6,8), SN10(4,8), SN11(2,8), SN12(0,8), SN11(0,5.333),
and SN12(0,2.667) in meters, respectively. The height of
every node is the same as above.

8̂ = ĤT Ĥ =


∑ni

j=1

(
ŵ(i)
j

)2
·

(
sin2θj +

cos2θj
r2j

) ∑ni

j=1
(1−

1

r2j
) ·
(
ŵ(i)
j

)2
· sin θj cos θj

∑ni

j=1
(1−

1

r2j
) ·
(
ŵ(i)
j

)2
· sin θj cos θj

∑ni

j=1

(
ŵ(i)
j

)2
·

(
cos2θj +

sin2θj
r2j

)
 (36a)
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FIGURE 6. The sketches for two scenes: (a) The sketches for indoor scene
1. (b) The sketches for outdoor scene 2.

V. PARAMETER DETERMINATION AND EXPERIMENT
RESULTS
In this section, the proposed classification algorithm [51] is
compared with the NNB, FNB, FNBROT , SVM, k-means,
FCM, [52]–[54], PCM, and PFCM [55] on training datasets
with respect to the four indexes, i.e., classification rate (CR)
index, Dunn (D) index, CalinskiHarabasz (CH) index, and
Silhouette (S) index. Then, the experimental results for single
target and multi-target show that the proposed classification
method can improve the performance of the range-based
target tracking when it is used to classify measurement data.
Meanwhile, the proposed classification method has better
robustness against large localization and tracking errors.

A. CLASSIFICATION PERFORMANCE EVALUATION
The indoor scene 1 contains single target and interference
(a table and obstacles) in Fig 5(b), and target as close as
possible to intermediate interference. The sink node of sensor
network receives the sample of 186 measurement points in
one cycle and 1314 noise points with uniform distribution
are increased. All these data points are set to training data and
distributed in a two-dimensional coordinate system, as shown
in Fig. 7(a). Obviously, we cannot judge the number of targets
in simple ways. By analyzing the proposed classification
algorithm, all data points are divided into noise and effective
measurement of two targets due to the measurement error of
sensor node and size of the human body, and the center c1
and c2 of two classes were obtained, as shown in Fig 8. In this
experiment, we first consider the novel outliers remove and
dataset density peaks fast search method. In Fig 8, effective
measurement data and initial centers Ck of two classes are
obtained, and the noise is brown points. Four neighborhood
parameters ε, ε1, ε2, and ε3 are 0.21m, 15, 0.32m, and
0.39m, respectively.When the target localization and tracking
system are certain, the optimal neighborhood parameters ε,
ε1, ε2, and ε3 of ENNBC can be applied to all remaining
cycle. Next, we used the proposed classification algorithm
to analyze the measurement data in Fig. 7(a). The number
of classes equal to 2, and the initial centers of two classes
are c1 = [4.0928, 2.3015] and c2 = [4.5281, 2.8640],
respectively. The classes ν1 and ν2 contain 16 and 58 effective

FIGURE 7. All measurement data in one cycle and decision graph of the
Scene 1 in two-dimensions: (a) Distribution of 186 measurement points
and 1314 noise points in one cycle. (b) Decision graph of the proposed
classification algorithm based on all data points in (a).

measurement data points, respectively. In ENNBC algorithm,
data points with densities greater than the threshold are con-
sidered to be reliable measurement data points, which may
result in low density data points being classified as noise.
For each class, we look for the measurement data points with
the highest density in their boundary regions. The data point
whose density is greater than the density of all data points
in its boundary region is considered to be the peak density
(robust delegation) of this class. In addition, the ENNBC
algorithm also consider the variance (σ (i))

2
of each condition

attribute of the measurement data. Thus, the classification
is more accurate. Fig. 7(b) shows decision method of the
proposed classification algorithm based on all data points
in Fig. 7(a). Through this experiment, the ENNBC algorithm
can successfully deal with data classification problems of
adjacent classes of different densities.

Next, the measurement dataset x̃ =
{
x̃(1), x̃(2)

}
of

two classes, dataset x̃(i) =
{
x(i)1 , · · · , x

(i)
j , · · · , x

(i)
ni

}
(i =

1, 2), (1 ≤ j ≤ ni) of i-th class(ni is number of measure-
ment data in i-th class), and the initial centers Ck of two
classes are obtained according to above experiment. Then,
we consider using the weighted Least-Squares algorithm to
calculate the final data fusion centers. Finally, the data fusion
centers of two classes are c1 = [4.1814, 2.3320] and c2 =
[4.6162, 2.7846], respectively, as shown in Fig. 8.
Similarly, the Scene 2 contains three targets closely

in Fig. 5(c), and three targets are as close as possible to each
other. The sink node of sensor network received the sample
of 211 measurement points in one cycle and 2089 noise
points with uniform distribution are increased. All these data
points are distributed in a two-dimensional coordinate sys-
tem, as shown in Fig. 9(a). Obviously, we also can’t judge
the number of targets in simple ways. After analysis of the
proposed classification algorithm, all data points are divided
into noise and effective measurement of three targets, and
the center c1 = [5.2185, 5.0680], c2 = [4.6713, 4.3100],
and c3 = [5.5543, 5.5058] of three classes were obtained,
as shown in Fig. 10. The classes ν1, ν2, and ν3 contain 67,
50, and 49 effective measurement data points, respectively.
Fig. 9(b) shows decision method of the proposed classifi-
cation algorithm based on all data points in Fig. 9(a). The
measurement dataset x̃ =

{
x̃(1), x̃(2), x̃(3)

}
of three classes,
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FIGURE 8. Final results of proposed classification algorithm for the data
in Fig. 7(a).

dataset x̃(i) =
{
x(i)1 , · · · , x

(i)
j , · · · , x

(i)
ni

}
(i = 1, 2, 3), (1 ≤

j ≤ ni) of i-th class, and the initial centers Ck of three classes
are obtained according to this experiment. Then, we also use
the weighted Least-Squares algorithm to calculate the final
data fusion centers. Finally, the data fusion centers of three
classes are c1 = [5.2853, 5.1409], c2 = [4.7325, 4.3932],
and c3 = [5.5730, 5.5494], respectively, as shown in Fig. 10.
In the following, the performance of the proposed clas-

sification method is compared with that of the NNB, FNB,
FNBROT , SVM, k-means, FCM, PCM, and PFCM algorithms
on training datasets. we use the four indexes, i.e., D index,
CH index, S index, and CR index, to compare a class with
the real data label information. These four indexes can be
described as:

1) D INDEX

D (ν)=min


min

min
x(l)i ∈νl ,x

(l)
j ∈νl

d
(
x(l)i , x

(l)
j

)

max

 max
x(l)i ∈νl ,x

(l)
j ∈νl

d
(
x(l)i , x

(l)
j

)


(37)

where x(l)i is i-th effective measurement data point in l-
th class. D index was recommended for recognition com-
pact and well separated classes. After simple analysis
(refequ:dmyy), it can be concluded that the greater D is,
the better classification performance is [13].

2) CH INDEX

CH (ν) =
1
c−1

∑c
i nid

2 (ci, c0)

1
N−c

∑c
i=1

∑ni
j=1,x(i)j ∈νi

d2
(
x(i)j , ci

) (38)

FIGURE 9. All measurement data in one cycle and decision graph of the
Scene 2 in two-dimensions: (a) Distribution of 211 measurement points
in one cycle and we increased 2089 noise points in one cycle. (b) Decision
graph of the proposed classification algorithm based on all data
points in (a).

FIGURE 10. Final results of proposed classification algorithm for the
2300 data points in Fig. 9(a).

where c0 is the center of the dataset and nc is the number
of all data. CH index is calculated for the ratio of separation
and affinity degree. Therefore, it can be concluded that the
greater CH is, the closer between data in same class and more
scattered between classes [13].

3) S INDEX

S (ν)

=
1
c

∑c

i=1

 1
ni

∑ni

j=1,x(i)j ∈νi

b
(
x(i)j
)
− a

(
x(i)j
)

max
[
b
(
x(i)j
)
, a
(
x(i)j
)]

(39)

where,

a
(
x(i)j
)
=

1
ni − 1

∑ni

l=1,x(i)j ,x
(i)
l ∈νi,x

(i)
j 6=x

(i)
l
d
(
x(i)j , x

(i)
l

)
(40)

b
(
x(i)j
)
= min

l,l 6=i

{
1
nl

∑
x(i)j ∈νi,x

(l)
k ∈νl

d
(
x(i)j , x

(l)
k

)}
(41)
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S index is used to measure the classification performance by
calculating the distance between two elements from different
classes and the distance between two elements in the same
class. Similar to the above, the greater the value of S is,
the better the classification performance of the algorithm is.

4) CR
CR measures the percentage of the points that have been
correctly labeled by each algorithm. The CR is determined
first by transforming the fuzzy partition matrix into a Boolean
partition matrix and by selecting the cluster with the max-
imum membership value for each pattern. Class labels are
assigned to each class based on the class that dominates that
class. the greater the value of CR is, the better the classifi-
cation performance of the algorithm is. For these algorithms,
the CR is often used as an important index to evaluate the
performance [56].

The performance of the NNB, FNB, FNBROT , SVM, k-
means, FCM, PCM, PFCM, and ENNBC is showed in Table 2
based on the Scene 1, respectively. As is well-known, when
the NNB, FNB, FNBROT , k-means, and FCM are initialized
with an exact number of classes. They are unable to resolve
underlying classification structures, which is caused by the
noise in the dataset and the great difference of variances
between adjacent classes. Finally, Table 2 shows that the
ENNBC algorithm has the best performance based on D, CH,
S, and CR four indexes, calculating more accurately the real
centers of the classes, and it requires the least iterations for
convergence. It is worth noting that the operation time of
ENNBC algorithm is less than that of the FNB, FNBROT ,
SVM, and PFCM, which can satisfy the real-time require-
ment of target tracking. This is due to the ENNBC algorithm
runs novel outliers remove and dataset density peaks fast
search method first, a large number of outliers in dataset
have been removed which greatly reduces iterations of the
algorithm, and the initial centerCk of the class is very close to
the real value. In addition, the performance of the NNB, FNB,
FNBROT , SVM, k-means, FCM, PCM, PFCM, and ENNBC
is showed in Table 3 based on the Scene 2, respectively.
Similarly, the ENNBC algorithm has the best performance
based on these four indexes, calculating more accurately the
real centers of the classes, and it can also satisfy real-time
requirement of multi-target tracking.

TABLE 2. Performance of classification algorithms in the scene 1.

TABLE 3. Performance of classification algorithms in the scene 2.

B. TRACKING PERFORMANCE EVALUATION
FOR SINGLE TARGET
We first design a scenario like this: a moving target enters
the monitoring area of the sensor network. the target is close
to the disturbance and walks around it in the indoor Scene 1.
Fig. 11 shows the target tracking results of two different algo-
rithms in the indoor Scene 1. The real moving trajectory on
the ground is marked as dotted line, and the trajectories of the
algorithms calculation are marked as solid line, red and blue
lines correspond to proposed algorithm and EKF algorithm,
respectively. The EKF algorithm in this section used for 2-D
maneuvering target tracking is based on the EKF-CMAC
algorithm in [44]. In the previous section, we discussed that
interferents are also measured, but they are immovable in
each period, so the final fusion position of the interference
in each period is basically the same, and we defined it as an
immovable target, which is not considered in this analysis.
In Fig. 11, the calculated trajectories by two algorithms are
compared (the standard error of the sensor node localization
is about 20cm). The tracking results show that the accuracy
of estimated trajectory based on the proposed algorithm in
the paper are better than those based on EKF algorithm.
Fig. 12 shows the position error (PE) between the estimated
location and the real ground location of the target at each

FIGURE 11. The tracking results of single target based on EKF and
proposed algorithm in Scene 1.
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FIGURE 12. Comparison of two different algorithms for the PE.

TABLE 4. Comparison of proposed algorithm and EKF algorithm for RMSE.

FIGURE 13. CDFs of tracking PE.

TABLE 5. Comparison of RMSE for proposed algorithm and EKF based on
three targets.

cycle according to the proposed algorithm and EKF. The
PE based on proposed algorithm is smaller for comparing
tracking results. The root-mean-square errors (RMSEs) of
proposed algorithm and EKF are shown in Table 4, and the
RMSE of the target location has been reduced by no less
than 24 percent. Fig. 13 shows the cumulative distribution
functions (CDFs) of proposed algorithm and EKF for the
tracking PE in indoor scene 1. We can easily observe that
the tracking PE of the proposed algorithm is less than EKF
algorithm. After calculation and analysis, 94 percent of the
PE based on proposed algorithm are less than 12.28cm in all
cycle, while 94 percent of the PE based on EKF are less than
22.49cm, a 45.4 percent improvement.

C. TRACKING PERFORMANCE EVALUATION FOR
MULTI-TARGET TRACKING
Similarly, we first design a scenario like this: Three nearby
moving targets enter simultaneously monitoring area of the
sensor network in the outdoor Scene 2. The tracking results
of three moving targets based on two different algorithms are

FIGURE 14. The tracking results of three targets in outdoor scene 2 based
on two algorithms: (a) Proposed algorithm. (b) EKF.

shown in Fig. 14. The real moving trajectories on the ground
are marked as dotted lines, and the trajectories of the algo-
rithms calculation are marked as solid lines. Different targets
correspond to different colors. In Fig. 14, the calculated tra-
jectories by two algorithms are compared (the standard error
of the sensor node localization is about 20cm). The same as
the previous part, the tracking results show that the accuracy
of estimated trajectories based on the proposed algorithm
in the paper are better than those based on EKF algorithm.
Fig. 15 shows the PE between the estimated location and the
real ground location of three moving targets at each cycle
according to the proposed algorithm and EKF. The PE based
on proposed algorithm is smaller for comparing tracking
results. Comparison of RMSE for proposed algorithm and
EKF based on three moving targets is shown in Table 5. The
RMSE of the target location has been reduced by no less than
24 percent. Fig. 16 shows the CDFs of proposed algorithm
and EKF for the tracking PE in the outdoor scene 2. We can
also easily observe that the tracking PE of the proposed
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FIGURE 15. Comparison of the PE for three targets based on two
algorithms: (a) The PE of target 1. (b) The PE of target 2. (c) The PE of
target 3.

FIGURE 16. CDFs of tracking PE.

FIGURE 17. Comparison of the RMSE for two algorithms based on
50 trajectories.

algorithm is less than EKF algorithm. In addition, we calcu-
late the RMSEs of two algorithms based on 50 trajectories for
better illustrate the performance of the proposed algorithm,
as shown in Fig. 17. In conclusion, the proposed algorithm
improves accuracy of range-based multi-target tracking in
compared with EKF algorithm.

VI. CONCLUSION
The main works of the paper are concluded as follows:
1) the measurement data density estimation is successfully

applied to effective measurement data identification and clas-
sification, which effectively improves the traditional direct
classification method and takes the dependence among con-
tinuous density attributes into account; 2) The weight values
of each effective measurement data are optimized by using
the density and probability information calculated in the
previous steps, and the optimized weights are applied to the
weighted least-squares algorithm; and 3) The detailed exper-
imental results show that the proposed algorithm based on
four indicators has the best classification performance, which
can calculate the real centers of the classes more accurately
and meet the real-time requirements of multi-target track-
ing. Meanwhile, the single target and multi-target tracking
experiments show the provided enhancement of the tracking
performance when proposed algorithm is used measurement
data classification. The RMSE based on proposed algorithm
has been reduced by no less than 24 percent in compared with
EKF. Our future research content is to introduce image fac-
tors into existing multi-target localization and tracking, and
improve and optimize the corresponding image recognition
algorithms.
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