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ABSTRACT In this paper, a reinforcement learning (RL) approach is developed to solve the robust control
for uncertain continuous-time linear systems. The objective is to find a feedback control law for the uncertain
linear system using an online policy iteration algorithm. The robust control problem is solved by constructing
an extended algebraic Riccati equation with properly defined weighting matrices for a general uncertain
linear system. An online policy iteration algorithm is developed to solve the robust control problem based
on RL principles without knowing the nominal systemmatrix. The convergence of the algorithm to the robust
control solution for uncertain linear systems is proved. The simulation examples are given to demonstrate the
effectiveness of the proposed algorithm. The results extend the design method of robust control to uncertain
linear systems.

INDEX TERMS Reinforcement learning, uncertain linear system, robust control, algebraic Riccati equation.

I. INTRODUCTION
Over the past few decades, the problem of robust control
design for uncertain systems has attracted considerable atten-
tion from researchers. Many significant results have been
obtained on the topic, which can be applied not only in aircraft
control and robot control [1], [2] but also in biological and
physical sciences [3]. Many real models have uncertainties
due to data measurement errors or disturbance. Several meth-
ods are available for robust control of uncertain systems,
such as Kharitonov interval theory [4], structured singular
value theory [5] and H∞ control theory [6]. In this paper,
we present a new robust controller design method based on
reinforcement learning (RL) principles.

RL principles and adaptive dynamic programming (ADP)
theory have been broadly applied to solve optimal control
problems [7]–[10]. ADP consists of a class of RL methods
that have shown their importance in a variety of applications,
including feedback control of dynamical systems. In [11], for
the first time, Werbos presented the idea of ADP that can
approximate the (generally intractable) solution of Bellman’s
equation. In [12]–[14], RL techniques were first employed to
seek solutions to the optimal regulator problem for discrete-
time systems. In [15], an advantage updating algorithm for
RL was presented. It does not require a model to be given
or learned. An RL framework for continuous-time dynamical
systems has been presented in [16], which derives algorithms

for estimating value functions and improving policies with
the use of function approximators. The application of RL
in control theory is mainly related to optimal regulation and
optimal tracking problems. For a linear system, optimal con-
trol or tracking is mainly achieved by online policy itera-
tion or value iteration, which consists of the following two
steps: policy evaluation and policy improvement [17]–[22].
RL application in nonlinear system control mainly combines
integral RL and neural network approximation [23]–[25].

There are two advantages in using RL to solve feedback
control problems. First, it can effectively solve the so-called
‘‘curse of dimensionality’’ in optimal control problems [23].
Second, the RL method can be used to solve the optimal
control problem without knowledge of the system dynamics.
In many practical applications, it is often difficult to fully
know the system dynamics, and unknown model control
problems can be solved using the RL algorithm.

On the other hand, robust controller design for uncertain
systems has been studied by many scholars since the 1980s.
A nonlinear controller that stabilizes an uncertain system
was given in [26]. Linear controllers that guarantee sta-
bility were derived in [27]–[29]. These papers all require
that the system satisfy the so-called ‘‘matching conditions’’.
Using the algebraic Riccati equation (ARE), the design of
linear robust controllers for uncertain linear systems was
proposed in many studies. Petersen and Hollot [30] and
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Schmitendorf [31] considered a special uncertain linear sys-
tem in which the uncertainty matrix can be decomposed into
a linear combination of rank-one matrices. ARE was used
to obtain robust controllers for this special system. An opti-
mal control design method for robust control of a general
uncertain linear system was proposed in [32]. However, for
an unmatched uncertain system, no direct design method was
given. Using ARE and an optimal control method, a robust
control law to stabilize an matched uncertain system expo-
nentially was presented in [33]. An alternative method for
the design of robust controllers was given in [34]. There,
the main idea involves making the Lyapunov derivative neg-
ative via a one-dimensional parameter search. If the sys-
tem satisfies the matching conditions, then the search is
guaranteed to result in an answer. Later, for the matched
system, a non-iterative design method for the robust con-
troller was investigated by Jabbari and Schmitendorf [35].
The method proves to be effective since it does not require
a numerical search procedure. However, precompensators
are necessary for non-Hurwitz nominal systems. Tsay [36]
and Dolphus and Schmitendorf [37] also investigated robust
controllers for uncertain systems. However, their methods
are not effective for general matched systems since strong
conditions are imposed on the uncertainty in the input matrix
of the system in the studies. It is noted that there are many
more results on the robust stabilization of uncertain systems.
The readers can refer to the literature [38]–[40] and the refer-
ences cited in the articles. Among various methods for robust
controller design, there are some results on optimal control-
basedmethods. An optimal control approach to robust control
design was presented in [41] and [42]. The robust control law
is an optimal control law for a nominal system, obtained by
selecting suitable weighting matrices. However, the results
are based on time-invariable uncertainty in the system, and
for the unmatched uncertain linear system, too many design
parameters are required, while no effective parameter design
method is proposed.

At present, the literature on robust control by RL is limited
to nonlinear uncertain systems. A novel RL-based robust
adaptive control algorithm was developed for a class of
continuous-time uncertain nonlinear systems subject to input
constraints [43]. Based on the neural network approxima-
tor, an online RL algorithm was proposed for a class of
affine multiple input and multiple output nonlinear discrete-
time systems with unknown functions and disturbances [44].
An online adaptive RL-based solution was developed for the
infinite-horizon optimal control problem for continuous-time
uncertain nonlinear systems in [45]. In addition, the robust
control of uncertain nonlinear systems is also studied in other
papers such as [46]–[50]. In all the papers listed above, neural
networks are used to approximate the solutions of Hamilton
Jacobi Bellman (HJB) equation. In fact, the infinite-time
optimal control problem is mainly to solve the corresponding
HJB equation [51]. The HJB equation is a nonlinear partial
differential equation which is difficult to solve. For nonlin-
ear system, neural network-based approximation is generally

used to solve HJB equation. While in the linear system,
the HJB equation reduces to ARE which does not need to use
neural network to solve. There are some differences between
the methods of solving robust control problems of linear
systems and those of non-linear systems. However, to the best
of our knowledge, almost no literature concerning RL-based
robust control problems for uncertain linear systems has been
presented.

The primary objective of this paper is to improve exist-
ing robust control methods for unmatched continuous-time
linear systems with time-variable uncertainty. Using an
extended ARE, an RL-based systemic method for the robust
control of linear systems with unmatched uncertainties is
proposed. According to the constructed ARE, an integral
performance index is constructed. Based on the performance
index, an integral RL algorithm is developed to solve the
robust control for continuous-time linear systems with par-
tially unknown nominal dynamics. To find a feedback control
law for the uncertain linear system using an online policy
iteration algorithm, the value function is prescribed by a
quadratic form of the state and input of the system. The
convergence of the algorithm to the robust control solution
for uncertain linear systems is proved. Simulation examples
are given to demonstrate the effectiveness of the proposed
algorithm.

The main contributions of this paper include two aspects.
First, we consider more general uncertain linear systems,
with uncertainty entering both the system matrix and the
input matrix. Based on the ARE, we propose a systemic
method of robust control for uncertain linear systems. In [52],
for linear systems with input matrix uncertainty, the author
considered three cases. In this paper, we discuss the case that
both the system matrix and the input matrix do not satisfy the
matching conditions. The case discussed here is not included
in [52]. Second, an online RL method is proposed to solve
the robust control problem for uncertain linear systems. The
corresponding algorithm is established, and its convergence
is proved. Moreover, this is the first attempt to use the RL
method to solve the robust control problem for uncertain
linear systems. The advantage of using the RL algorithm is
that there is no need to know the nominal system matrix.

The remainder of this paper is organized as follows.
In Section II, we formulate the control objective and
present basic results for the robust control problem. Then,
in Section III, we propose an robust control design method
for unmatched uncertain linear systems based on an extended
AREwith properly defined weighting matrices. The RL algo-
rithm and its convergence to the robust control solution are
presented in Section IV. Specialization to matched uncertain
linear systems is presented in Section V. To validate the
theoretical results presented in this paper, three numerical
examples are given in Section VI. Finally, the entire work
is summarized and the future of this field is discussed in
Section VII.
Notation: Throughout the paper, R denotes the set of real

numbers;A > 0 andA ≥ 0 denote that thematrixA is positive
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definite and positive semi-definite, respectively; A > B and
A ≥ B imply that A − B > 0 and A − B ≥ 0, respectively;
AT denotes the transpose of the matrix A. The notation ‖.‖
represents the Euclidean norm for vectors or the induced
matrix norm for matrices, and I denotes the identity matrix
of appropriate dimensions.

II. FORMATION OF THE PROBLEM AND PRELIMINARIES
Consider the uncertain continuous-time linear system
described by

ẋ(t) = [A+1A(s(t))]x(t)+ [B+1B(l(t))]u(t) (1)

where x(t) ∈ Rn is the state variable, u(t) ∈ Rm is the control
input vector, and A ∈ Rn×n and B ∈ Rn×m are nominal
system and input matrices, respectively. s(t) ∈ S, l(t) ∈ L
are uncertain parameter vector functions that are Lebesgue
measurable, where S and L are uncertain parameter sets.
1A(s(t)), 1B(l(t)) are the n × n, n × m uncertain parame-
ter matrices, which depend continuously on the uncertainty
vectors s(t) and l(t), respectively.
For the sake of brevity, the argument of the time function

is omitted in some of the following sections.
The objective of this paper is to find a feedback control law

u(t) = Kx(t) such that uncertain system (1) is asymptotically
stable for all s(t) ∈ S and l(t) ∈ L.
Definition 1: System (1) is said to satisfy the systemmatrix

matched condition if for any s(t) ∈ S, there exists an m × n
matrix φ(s) such that

1A(s) = Bφ(s) (2)

where φ(s) is bounded.
Definition 2: System (1) is said to satisfy the input matrix

matched condition if for any l(t) ∈ L, there exists an m× m
matrix φ̄(l) such that

1B(l) = Bφ̄(l) (3)

where φ̄(l) ≥ 0.
Definition 3: System (1) is termed a matched uncertain

linear system if it satisfies (2) and (3) for any s(t) ∈ S and
l(t) ∈ L.
Definition 4: System (1) is termed an unmatched uncertain

linear system if it does not satisfy (2) or (3) for any s(t) ∈ S
and l(t) ∈ L.

The following lemma will be used later to prove the con-
vergence of the algorithm proposed in this paper. For more
details, see [53].
Lemma 1: Let K0 ∈ Rm×n be any stabilizing feedback gain

matrix for nominal system dynamics (A,B). Q ≥ 0,R > 0
are weighting matrices of appropriate dimensions. Let Pi
be the symmetric positive definite solution of the Lyapunov
equation

(A− BKi)TPi + Pi(A− BKi)+ Q+ KT
i RKi = 0

where Ki, with i = 1, 2, . . ., are defined recursively by

Ki = R−1BTPi−1

Then, the following properties hold:
1. A− BKi is Hurwitz for i = 1, 2, . . .,
2. P∗ ≤ Pi+1 ≤ Pi, and
3. limi→∞Ki = K∗, limi→∞Pi = P∗.
In [53], by iteratively solving the Lyapunov equation,

which is linear in Pi, and updating Ki, the solution to the
following ARE is numerically approximated

PA+ ATP+ Q− PBRBTP = 0.

III. UNMATCHED UNCERTAIN LINEAR SYSTEM
In this section, we consider the robust control problem of
uncertain linear system (1), which does not necessary satisfy
matched conditions (2) and (3). The robust control problem
is solved by constructing an extended ARE with properly
defined weighting matrices. A robust controller of uncertain
linear systems can be obtained from the ARE solution.

By using the pseudo-inverse B+ of B, we decompose the
uncertain system matrix and the input matrix into a matched
component and an unmatched component as follows:

1A(s) = BB+1A(s)+ (I − BB+)1A(s) (4)

and

1B(l) = BB+1B(l)+ (I − BB+)1B(l) (5)

where B+ = (BTB)−1BT .
Generally, the condition for the existence of pseudo-

inverse of matrix B is that its column vectors are linearly
independent [54]. In practical control systems, input matrix B
is usually column full rank. Therefore, the existence condition
of pseudo-inverse of input matrix B is generally satisfied.
It should be noted here that the pseudo-inverse matrix B+

satisfies B+B = I but does not satisfy BB+ = I .
To obtain the solution of the robust control problem,

the following assumptions are made.
Assumption 1: Assume that the nominal system dynamics

(A,B) is controllable.
Assumption 2: There exists a positive semi-definite

matrix F such that

1A(s)T (B+)TB+1A(s) ≤ F (6)

Assumption 3: There exists a positive semi-definite
matrix H such that

1A(s)T1A(s) ≤ H (7)

Denote BI = I − BB+. We construct an extended ARE as
follows.

PA+ ATP+ Q− P[BBT + BIBTI ]P = 0 (8)

where Q = F + H + β2I and β > 0 is a design parameter.
The following theorem shows that robust controllers for

uncertain linear systems can be obtained from solving the
ARE (8).
Theorem 1: Assume that the matrix P is the symmetric

positive definite solution of the ARE (8). For uncertain linear
system (1) subjected to Assumption 1, Assumption 2 and
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Assumption 3, one can choose the parameter β such that the
following conditions hold

β2I − 2PBIBTI P > 0,1B(l)BT ≥ 0. (9)

Then, the feedback control u = Kx with K = −BTP can
stabilize uncertain linear system (1) for all s(t) ∈ S, l(t) ∈ L.

Proof: Taking the time derivative of Lyapunov function
V (x) = xTPx along uncertain linear system (1) with u = Kx,
we can obtain

dV
dt
= xT [(A+1A(s))T + KT (B+1B(l))T ]Px

+ xTP[(A+1A(s))+ (B+1B(l))K ]x

= xT [1A(s)TP+ P1A(s)]x

+ xT [ATP+ PA+ 2PBK + 2P1B(l)K ]x (10)

By using (4) and (5), we have

dV
dt
= xT [ATP+ PA+1A(s)TB+TBTP

+1A(s)TBTI P]x

+ xT [PBB+1A(s)+ PBI1A(s)]x

+ xT [2PBK + 2P1B(l)K ]x

It follows from (8) that

dV
dt
= −xTQx + xTP[BBT + BIBTI ]Px

+ xT1A(s)TB+TBTPx + xT1A(s)TBTI Px

+ xTPBB+1A(s)x + xTPBI1A(s)x

+ 2xTPBKx + 2xTP1B(l)Kx

By K = −BTP, we have

dV
dt
= −xTQx + xTKTKx + xTPBIBTI Px

− xT1A(s)TB+TKx + xT1A(s)TBTI Px

− xTKTB+1A(s)x + xTPBI1A(s)x

− 2xTKTKx − 2xTP1B(l)BTPx

Let L = −BTI P; then,

dV
dt
= −xTQx − xTKTKx + xTLTLx

− 2xTKTB+1A(s)x − 2 xT1A(s)TLx

− 2xTP1B(l)BTPx

Since

−xTKTKx − 2xTKTB+1A(s)x

= −xT (K − B+1A(s))T (K − B+1A(s))x

+ xT (B+1A(s))T (B+1A(s))x

≤ xT (B+1A(s))T (B+1A(s))x

and

−2xTLT1A(s)x ≤ xTLTLx +1A(s)T1A(s)x

≤ xTLTLx + xTHx

we have
dV
dt
= −xTQx − xTKTKx + xTLTLx

− 2xTKTB+1A(s)x − 2xT1A(s)TLx

− 2xTP1B(l)BTPx

≤ −xT (F + H + β2I )x + xTLTLx

+ xTFx + xTLTLx + xTHx

− 2xTP1B(l)BTPx

= −xT (β2I − 2LTL)x − 2xTP1B(l)BTPx

It follows from the conditions in (9) that
dV
dt

< 0

Therefore, by the Lyapunov stability theory, the closed-loop
unmatched uncertain linear systemwith u(t) = Kx(t) is stable
for all s(t) ∈ S and l(t) ∈ L. In other words, u(t) = Kx(t)
is a stabilizing control law of unmatched uncertain linear
system (1). The proof is complete.
Remark 1: In [52], for linear systems with time-invariance

uncertainty, the author considered three cases. The first case
is that both the system matrix and input matrix satisfy the
matching conditions. The second case is that the system
matrix does not satisfy the matching condition but the input
matrix satisfies the matching conditions. The third case is that
the input matrix does not satisfy the matching conditions but
the system matrix has no uncertainty. This paper addresses
systems with time varying uncertainties. Moreover, we dis-
cuss the case that both the system matrix and the input matrix
do not satisfy the matching conditions. The case discussed
here is not included in [52], so this paper extends the existing
results.
Remark 2: The robust control design for unmatched uncer-

tain linear systems is a challenging problem. In the existing
literature on the robust control for unmatched linear systems,
the design method is not direct or too many parameters in the
design process need to be determined. This leads to problems
that are not easy to solve. In Theorem 1, the conditions in (9)
are easily satisfied. If the parameter β is selected such that it is
large enough, then the first condition in (9) easily holds, as the
term 2PBIBTI P is a symmetric matrix. By properly selecting
the nominal input matrix B, the second condition of (9) is also
easily satisfied.

IV. RL ALGORITHM AND ITS CONVERGENCE
In this section, based on RL principles, an online iterative
algorithm is derived to solve the robust control problem for
unmatched uncertain linear system. The corresponding con-
vergence analysis is presented.

A. RL ALGORITHM
According to the weighting matrices in (8), we construct a
performance index as follows:

J =
∫
∞

t
[xTQx + ūT ū]dt (11)
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The performance index can be regarded as one of the
optimal control problems of the system

ẋ = Ax + B̄ū (12)

where B̄ =
[
B I − BB+

]
and ū =

[
uT vT

]T .
For any initial time t , the optimal value corresponding

to (11) and (12) can be written as

V (x(t)) =
∫
∞

t
[xTQx + ūT ū]dt

=

∫ t+1t

t
[xTQx + ūT ū]dt +

∫
∞

t+1t
[xTQx + ūT ū]dt

that is,

V (x(t)) =
∫ t+1t

t
[xTQx + ūT ū]dt + V (x(t +1t))

where Q = F + H + β2I .
Further, we can obtain

x(t)TPx(t) =
∫ t+1t

t
[xTQx + ūT ū]dt

+ x(t +1t)TPx(t +1t) (13)

where P is the symmetric positive definite solution of
the ARE (8). Based on this, the following algorithm can
be used to compute a robust control law of uncertain linear
system (1) with unmatched uncertainty.
Algorithm 1: Robust Control Algorithm For Unmatched

Uncertain Linear System.
1. Choose the least upper bound matrices F and H satisfy-

ing (6) and (7), respectively, and a constant β. Compute
Q = F + H + β2I ;

2. Choose a stabilizing initial control policy u = K̄0x from
the extended nominal linear system (12);

3. Policy evaluation: Given a control policy K̄i, solve Pi
using the Bellman equation

x(t)TPix(t) =
∫ t+1t

t
[xTQx + xT K̄T

i K̄ix]dt

+ x(t +1t)TPix(t +1t); (14)

4. Policy improvement: update the control input using

K̄i+1 = −B̄TPi; (15)

5. Check whether the condition β2I − 2PBIBTI P > 0 is
satisfied. If the condition is not satisfied, return to the
first step, and take a larger constant β.

The policy evaluation and improvement steps (14) and (15)
are repeated until the policy improvement step no longer
changes the present policy, that is, until ‖Pi+1 − Pi‖ ≤ ε

is satisfied, where ε is a small constant; thus, convergence to
the optimal controller is achieved.
Remark 3:Although a robust controller for uncertain linear

system (1) can be obtained by directly solving the ARE (8)
offline, the nominal system matrix must be known, which is
difficult to obtain in some cases. Algorithm 1 does not require
knowledge of the nominal system matrix A. Compared with

the existing robust control methods, it has advantages in terms
of operability and practicability.

B. CONVERGENCE ANALYSIS
The convergence of the algorithm is derived from the follow-
ing conclusions.
Lemma 2: Assuming that (A + B̄K̄i) is stable, solving for

Pi in (14) is equivalent to finding the solution of the equation

(A+ B̄K̄i)TPi + Pi(A+ B̄K̄i)+ Q+ K̄T
i K̄i = 0 (16)

Proof: Dividing both sides of (14) by 1t and taking the
limit yields

0 = lim
1t→0

xT (t +1t)Pix(t +1t)− xT (t)Pix(t)
1t

+ lim
1t→0

∫ t+1t
t xT (Q+ K̄T

i K̄i)xdt

1t

=
dxT (t)Pix(t)

dt
+ lim
1t→0

d
d1t

∫ t+1t

t
xT (Q+ K̄T

i K̄i)Xdt

= xT [(A+ B̄K̄i)TPi + Pi(A+ B̄K̄i)

+Q+ K̄T
i K̄i]x

Thus, (14) implies (16).
On the other hand, consider the stable system ẋ =

(A+ B̄K̄i)x; taking the time derivative of Lyapunov function
Vi(x) = xTPix along the closed-loop system yields

d
dt
(xTPix) = xT (A+ B̄K̄i)TPix + xTPi(A+ B̄K̄i)x

Integrating from t to t +1t on both sides yields

x(t +1t)TPix(t +1t)− x(t)TPix(t)

= −

∫ t+1t

t
xT (Q+ K̄T

i K̄i)xdτ,

which results in (14). The proof is complete.
Lemma 3: Assume that the matrices F and H satisfy

(6) and (7), respectively. For appropriately chosen parame-
ter β that satisfies condition (9), the iteration (14) and (15)
converges to the solution of the ARE (8). Thus, it converges
to the solution of the robust control problem.

Proof: According to the the results of [53], the iteration
(16) and (15) will converge to the solution of the correspond-
ing ARE (8). It follows from Lemma 2 that the iteration (14)
and (15) converges to the solution of the corresponding ARE
because of the equivalence between (14) and (16) shown in
Lemma 2. The proof is complete.
Remark 4: In Step 4 of Algorithm 1, solving Pi from (14)

can be reduced to a least squares problem [18]. Through
online reading of sufficient data along the system trajectory
on the interval [t, t + 1t], the matrix Pi can be computed
using the least squares method.
Remark 5: Algorithm 1 is a online policy iteration algo-

rithm based on reinforcement learning. In [18], this method
is used to solve the optimal regulation problem of linear
systems with unknown system dynamics. We develop this
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algorithm to solve robust control problems for uncertain
continuous-time linear systems.

V. MATCHED UNCERTAIN LINEAR SYSTEM
In this section, we consider system (1) that satisfies the
matched conditions (2) and (3), which is termed a matched
uncertain system. Robust control of the uncertain linear sys-
tem is obtained by constructing an ARE with properly cho-
sen weighting matrices. An online reinforcement learning
method is used to solve the robust control problem.

According to matched conditions (2) and (3), the matched
uncertain linear system can be described by

ẋ(t) = [A+ Bφ(s)]x(t)+ [B+ Bφ̄(l)]u(t) (17)

where φ(s), φ̄(l) are uncertain matrices of appropriate
dimensions.

We construct an ARE as follows:

PA+ ATP+ Q− PBBTP = 0 (18)

where Q = F + I and F is an upper bound on uncertainty
φ(s)Tφ(s), i.e. φT (s)φ(s) ≤ F .
Theorem 2: Assume that φ̄(l) ≥ 0 in system (17). Then,

the feedback control u = Kx with K = −BTP can stabilize
uncertain linear system (17) for all s(t) ∈ S, l(t) ∈ L, where
P > 0 is the solution of the ARE (18).

Proof: The proof is similar to that of theorem 1 and is
omitted.

The linear system corresponding to the ARE (18) is

ẋ(t) = Ax(t)+ Bu(t) (19)

and the performance index can be written as

V (x(t0), u(.)) =
∫
∞

t0
[xTQx + uT u]dt (20)

where Q = F + I > 0.
Similar to algorithm 1, it is easy to prove the convergence

of the following algorithm, which can be used to compute
robust controllers for matched uncertain linear system (17).
Algorithm 2: Robust Control Algorithm For Matched

Uncertain Linear System.
1. Choose F as an upper bound on uncertainty φ(s)Tφ(s)

and compute Q = F + I ;
2. Choose a stabilizing initial control policy u = K0x from

the nominal linear system (19);
3. Policy evaluation: Given a control policy Ki, solve Pi

using the Bellman equation

x(t)TPix(t) =
∫ t+1t

t
[xTQx + xTKT

i Kix]dt

+ x(t +1t)TPix(t +1t); (21)

4. Policy improvement: update the control input using

Ki+1 = −BTPi. (22)

Remark 6: The convergence of the algorithm is completely
analogous to algorithm 1, which is applicable to unmatched

uncertain linear systems. From this perspective, matched lin-
ear systems are a special case of unmatched linear systems.
Combining (4) and (5) with Definition 2 and Definition 3,
the system (1) satisfies matched conditions (2) and (3) when
(I − BB+)1A(s) = 0 and (I − BB+)1B(l) = 0. It is a
matched system by letting φ(s) = B+1A(s) and φ̄(l) =
B+1B(l). This also shows that matched linear system is a
special case of unmatched linear system.We propose a robust
control method based on RL, which does not need to know
the nominal system matrix of uncertain linear systems. This
extends existing robust control methods.

VI. NUMERICAL EXAMPLES
In this section, three simulation examples are provided to
demonstrate the feasibility of the theoretical results for robust
control of uncertain linear systems.
Example 1: Consider the uncertain linear system

ẋ(t) = A(s(t))x(t)+ B(l(t))u(t) (23)

with

A(s) =

−3 −1 0

50 0 s

2 1+ s −1

 , B(l) =

 0 0
1+ l 0

0 l


where −9 ≤ s(t) ≤ 3 and 1 ≤ l(t) ≤ 3 are uncertainties.
The objective is to design gainK such that closed-loopmatrix
A(s) + B(l)K is asymptotically stable for all −9 ≤ s(t) ≤ 3
and 1 ≤ l(t) ≤ 3.

Let A =

−3 −1 0
50 0 1

2 2 −1

 and B =

 0 0
2 0
0 1

. Obviously,
nominal system dynamics (A,B) is controllable.

By simple computation, we have

1A(s) =

 0 0 0

0 0 s− 1

0 s− 1 0



=

 0 0

2 0

0 1


 0 0

s− 1
2

0 s− 1 0


≡ Bφ(s) (24)

and

1B(l) =

 0 0

l − 1 0

0 l − 1



=

 0 0

2 0

0 1

[ l − 1
2

0

0 l − 1

]

≡ Bφ̄(l) (25)
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FIGURE 1. Control signal.

which implies that the matched conditions are satisfied. It is

clear that φ̄(l) =
[ l−1

2 0
0 l − 1

]
≥ 0 for any 1 ≤ l(t) ≤ 3.

φT (s)φ(s) =

 0 0 0
0 (s− 1)2 0

0 0 (s−1)2
4


≤

 0 0 0
0 100 0
0 0 25


= F (26)

The weight matrix Q in the ARE (18) is chosen as

Q = F + I =

 1 0 0
0 101 0
0 0 26

 (27)

The RL Algorithm 2 is used to obtain robust control
for uncertain system (23). The initial control policy is cho-
sen as [0 0 0], as the nominal system is asymptomati-
cally stable. For the purpose of demonstrating the algorithm,
the initial state of the nominal system is chosen as x0 =
[0.1 0.2 0.1]. Using MATLAB software, after 5 itera-
tions, the control gain and P matrix parameters converge to
the following optimal solutions:

K =
[
−14.2312 −9.4012 −0.8424
−3.0028 −0.4212 −4.2093

]
and

P =

 85.6724 7.1156 3.0028
7.1156 4.7006 0.4212
3.0028 0.4212 4.2093


Due to the 6 independent elements in the symmetric matrix P,
6 data samples are collected to perform batch least squares in
each iteration. The evolution of the feedback control signal
is presented in Fig. 1, where u1 and u2 are two control
components. Fig. 2 shows the convergence process of the
Pmatrix. Here, P(i, j) is the element lying on the intersection
of the ith row and the jth column in the symmetric matrix P,
i = 1, 2, 3 and j = 1, 2, 3.

FIGURE 2. P matrix iteration.

TABLE 1. Eigenvalues for different s with l = 1.

TABLE 2. Eigenvalues for different s with l = 2.

For comparison purposes, using MATLAB software to
directly solve the ARE, we obtain the following optimal
feedback gain and the P matrix. To avoid confusion, we use
the following notations.

Kd =
[
−14.2247 −9.3959 −0.8431
−2.9985 −0.4215 −4.2089

]

Pd =

 85.4828 7.1124 2.9985
7.1124 4.6980 0.4215
2.9985 0.4215 4.2089


Obviously, the results obtained by using the RL method are
only marginal different from those obtained by the direct
solution of the ARE.

The corresponding partial eigenvalues of the closed-loop
uncertain linear system with u = Kx for different s and l
are listed in Table 1, Table 2 and Table 3. From Table 1,
Table 2 and Table 3, we can see that the eigenvalues of
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TABLE 3. Eigenvalues for different s with l = 3.

FIGURE 3. The state trajectories of the original system with l = 1.

FIGURE 4. The state trajectories of the original system with l = 2.

the closed-loop system all have negative real parts. Thus,
the uncertain linear system with robust control u = Kx is
asymptotically stable for all−9 ≤ s(t) ≤ 3 and 1 ≤ l(t) ≤ 3.
We chose the initial state of the original system (23) as x0 =
[−2 −5 1]. For different values of the parameter s, Fig. 3,
Fig. 4 and Fig. 5 show the orbits of the original system with
l = 1, 2 and 3, respectively.

FIGURE 5. The state trajectories of the original system with l = 3.

Example 2: Consider the uncertain linear system with

A(s) =
[
−2 0
s s− 5

]
, B(l) =

[
l + 1
l

]
(28)

where −1 ≤ s(t) ≤ 2 and 0 ≤ l(t) ≤ 4 are uncertainties.
We would like to design gain K such that closed-loop matrix
A(s) + B(l)K is asymptotically stable for all −1 ≤ s(t) ≤ 2
and 0 ≤ l(t) ≤ 4 .

Let A =
[
−2 0
0 − 5

]
and B =

[
1
0

]
. Moreover,

1A(s) =
[
0 0
s s

]
, 1B(l) =

[
l
l

]
It is clear that the system matrix and the input matrix are

all unmatched.

B+ = (BTB)−1BT =
[
1 0

]
I − BB+ =

[
1 0
0 1

]
−

[
1
0

] [
1 0

]
=

[
0 0
0 1

]
We chose β = 5.

1A(s)TB+TB+1A(s) =
[
0 0
0 0

]
= F

1A(s)T1A(s) =
[
s2 s2

s2 s2

]
≤

[
4 4
4 4

]
= H

Therefore, the corresponding weight matrix Q in ARE (8)
is obtained as follows.

Q = F + H + β2I =
[
29 4
4 29

]
By using the RL method, Algorithm 1 is implemented

online to obtain robust control for unmatched uncertain linear
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system (28). The initial control policy is chosen as [0 0 0],
as the extended nominal linear system (A, B̄) is asymptomat-
ically stable. For the purpose of demonstrating the algorithm,
the initial state of the extended nominal linear system is
chosen as x0 = [3.5 −5] . Due to the 3 independent elements
in the symmetric matrix P, 6 data samples are collected to per-
form batch least squares in each iteration. Using MATLAB
software, after 4 iterations, the control gain and P matrix
parameters converge to the following optimal solutions:

K̄ =

−3.7365 −0.3058
0 0

−0.3058 −2.3421


and

P =
[
3.7365 0.3058
0.3058 2.3421

]
Thus, K =

[
−3.7365 −0.3058

]
is the feedback control

gain of unmatched uncertain linear system (28). The feedback
control signal evolution is presented in Fig. 6, where u1, u2
and u3 are three control components. Fig. 7 shows the con-
vergence process of the P matrix. Here, P(i, j) is the element
lying on the intersection of the ith row and the jth column in
the symmetric matrix P, i = 1, 2 and j = 1, 2.

FIGURE 6. Control signal.

Using MATLAB software to directly solve the ARE,
the following optimal feedback gain and the P matrix are
obtained. We use the notations with subscript to distinguish
them.

K̄d =

−3.7364 −0.3058
0 0

−0.3058 −2.3421


and

Pd =
[
3.7364 0.3058
0.3058 2.3421

]
By comparison, it is found that solving the robust control
problem for an unmatched uncertain linear system using the
RL method completely meets the error requirements.

FIGURE 7. P matrix iteration.

TABLE 4. Eigenvalues for different s with l = 0, 1.

TABLE 5. Eigenvalues for different s with l = 2, 3.

TABLE 6. Eigenvalues for different s with l = 4.

The corresponding partial eigenvalues of the closed-loop
system for different s and l are listed in Table 4, Table 5 and
Table 6. From the tables, it is clear that the eigenvalues of
the uncertain closed-loop system all have a negative real part.
Thus, unmatched uncertain linear system (28) with robust
control u = Kx is asymptotically stable for all s ∈ [−1, 2]
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FIGURE 8. The state trajectories of the original system with l = 0.

FIGURE 9. The state trajectories of the original system with l = 1.

and l ∈ [0, 4] . The initial state of the original system (28) is
chosen as x0 = [−2 3]. For different values of the parameter s,
Fig. 8, Fig. 9 and Fig. 10 show the orbits of the original system
with l = 0, 1 and 4, respectively.
Example 3: Consider the uncertain linear system with

unstable nominal dynamics.

ẋ(t) = A(s(t))x(t)+ B(l(t))u(t) (29)

with

A(s) =

 1 0 1
0 s− 4 0
0 s+ 1 2

 , B(l) =

 0
l + 1
l + 1


where −3 ≤ s(t) ≤ 3 and 0 ≤ l(t) ≤ 2 are uncertainties.
The goal is to design a robust controller based on an unstable
nominal system.

Let A =

 1 0 1
0 − 2 0
0 3 2

 and B =

 0
1
1

. Obviously, nom-

inal system dynamics (A,B) is controllable and the matrix A
has eigenvalue with positive real part.

FIGURE 10. The state trajectories of the original system with l = 4.

By simple computation, we have

1A(s) =

 0 0 0
0 s− 2 0
0 s− 2 0


=

 0
1
1

[ 0 s− 2 0
]

≡ Bφ(s) (30)

and

1B(l) =

 0
l
l

 =
 0
1
1

 l ≡ Bφ̄(l) (31)

which implies that the matched conditions are satisfied. It is
clear that φ̄(l) = l ≥ 0 for any 0 ≤ l(t) ≤ 2.

φT (s)φ(s) =

 0
s− 2
0

[ 0 s− 2 0
]

≤

 0 0 0
0 25 0
0 0 0


= F (32)

The weight matrix Q in the ARE (18) is chosen as

Q = F + I =

 1 0 0
0 26 0
0 0 1

 (33)

The initial state of the nominal system is chosen as x0 =
[1 2 1]. The initial matrix P0 is chosen as

P0 =

 0 0 2.5
0 0 1.7
2.5 1.7 1.5


The corresponding initially stabilizing control gain is K0 =

[−2.5 −1.7 −3.2]. The RLAlgorithm 2 is used to obtain
robust control for uncertain system (29). Using MATLAB
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FIGURE 11. Control signal.

FIGURE 12. P matrix iteration.

software, after 4 iterations, the control gain and P matrix
parameters converge to the following optimal solutions:

K =
[
−7.1707 −3.1336 −6.6162

]
and

P =

 25.1930 −0.2345 7.4052
−0.2345 3.4994 −0.3659
7.4052 −0.3659 6.9820


The evolution of the control signal u is presented in Fig. 11.
Fig. 12 shows the convergence process of the Pmatrix. Here,
P(i, j) is the element lying on the intersection of the ith row
and the jth column in the symmetric matrix P, i = 1, 2, 3 and
j = 1, 2, 3.
By solving ARE directly, the following results are

obtained.

P =

 25.1872 −0.2346 7.4052
−0.2346 3.4983 −0.3672
7.4052 −0.3672 6.9796


Obviously, the results obtained by using the RL method are
only marginal different from those obtained by the direct
solution of the ARE.

The initial state of the original system (29) is chosen as
x0 = [−2 −2 5]. For different values of the parameter s,

FIGURE 13. The state trajectories of the original system with l = 0.

FIGURE 14. The state trajectories of the original system with l = 1.

FIGURE 15. The state trajectories of the original system with l = 2.

Fig. 13, Fig. 14 and Fig. 15 show the orbits of the original
system with l = 0, 1 and 2, respectively. As can be seen
from the figures, the system orbit quickly converges to zero.
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Thus, the uncertain linear system with robust control u =
Kx is asymptotically stable for all −3 ≤ s(t) ≤ 3 and
0 ≤ l(t) ≤ 2.

VII. CONCLUSION
In this paper, a policy iteration algorithm is proposed to solve
robust control problems for uncertain linear systems. The
algorithm is based on online RL without the use of nominal
system dynamics. Based on the corresponding nominal linear
system, an online RL algorithm is established. By using
equivalence between an ARE and the integral reinforcement
relation, the convergence of the proposed algorithm is proved.
Three numerical examples are given to show the correctness
of the theoretical results. It can be seen that the RL method
used to solve the robust control of uncertain linear systems is
effective. This enriches the method for solving robust control
problems for uncertain systems. Using the method in [55],
the RL algorithm may be extended to solve the robust control
of uncertain linear systems in the case of fully unknown
nominal system dynamics. Moreover, the method used in
this paper may be extended to the robust control problem of
uncertain discrete-time systems.
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