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ABSTRACT Detection of epistatic interactions, which are referred to as nonlinear interactive effects of single
nucleotide polymorphisms (SNPs), is increasingly being recognized as an important route in capturing the
underlying genetic causes of complex diseases. Its methodological and computational challenges have been
well understood, and many methods also have been proposed from different perspectives. Among them
ant colony optimization (ACO)-based methods are promising due to their controllable time complexities,
heuristic positive feedback search, and high detection power. Nevertheless, there is no comprehensive
overview of them so far. This paper, therefore, provides a systematic review of 25 ACO-based epistasis
detection methods. First, the generic ACO algorithm, as well as how it is applied to detect epistatic
interactions, is briefly described. Then, an in-depth review of ACO-based methods for detecting epistatic
interactions is discussed from four aspects, including path selection strategies, pheromone updating rules,
fitness functions, and two-stage designs. Finally, this paper analyzes the strengths and limitations of involved
methods, provides guidelines for applying them, and gives several views on the future directions of epistasis
detection methods.

INDEX TERMS Ant colony optimization (ACO), epistatic interactions, single nucleotide polymorphisms
(SNPs), heuristic information, genome-wide association studies (GWAS).

I. INTRODUCTION
Genome-Wide Association Studies (GWAS) have become
routine strategies in investigating the underlying genetic
mechanisms of complex diseases during the past decade.
Some promising methods of GWAS have been proposed [1],
resulting in hundreds of thousands of Single Nucleotide
Polymorphisms (SNPs) speculated to associate with complex
diseases being reported. Nevertheless, these SNPs can only
explain a small proportion of genetic causes of complex
diseases, and the mystery of ‘‘missing heritability’’ needs
to be further unraveled [1]–[3]. This is mainly because the
proposed GWAS methods normally assume SNPs having
independent effects on the phenotype and therefore use the
single-SNP tests, in which SNPs are tested one by one for
association with the phenotype [4]. Although they can suc-
cessfully identify multiple SNPs, only additive effects of
these SNPs are considered, ignoring the nonlinear interactive
effects of SNPs on disease susceptibility [5].

It has been widely accepted that the detection of epistatic
interactions, also known as epistasis, SNP-SNP interac-
tions, or gene-gene interactions, which are referred to as
the nonlinear interactive effects of SNPs, is a compelling
step forward from GWAS to better unravel the mystery of
‘‘missing heritability’’ [6]–[10]. Hence, a vast number of
methods for the detection of epistasis have been proposed
from different perspectives in recent years [11]. Among
them, the most direct and simplest way to detect epistatic
interactions is by exhaustively searching all combinations
of SNPs within the data sets. Multifactor dimension reduc-
tion (MDR) [12] is the typical representative of exhaustive
search methods, which has enjoyed great popularity in appli-
cations [13]. Its main idea is to reduce high dimensional
SNP combination data to a one-dimensional variable by
pooling multiple combination genotypes into high-risk and
low-risk groups. Exhaustive search methods usually per-
form well on two-order interactions or small scale data sets.
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Higher-order interactions or large scale data sets are not
scalable due to high computational burden. Filtering methods
select a subset of candidate SNPs, rather than the whole
data set like exhaustive search methods, for the subse-
quent epistasis detection. Besides the apparent advantage of
speed, they sometimes have greater detection power than
exhaustive search methods because of much reduced mul-
tiple tests [7], [14], [15]. One of the most famous filter in
GWAS is the Relief [16], [17], as well as its extensions
and modifications [18], [19], which is capable of capturing
SNP dependencies even in the absence of marginal effects
by estimating SNP weights based on whether the nearest
neighbor of a randomly selected sample from the same class
and the one from the different class have the same or different
genotypes. However, filtering methods could miss interacting
SNPs in subsets since they are very sensitive to filters and
thresholds. Recently, many swarm intelligence methods have
been proposed to infer epistatic interactions [20]–[47]. These
methods mimic collective behaviors of organisms which can
jointly perform many complex tasks though each individual
is very limited in its capability, and adopt some heuristics
to avoid exhaustive search in initial data sets. Among them,
ant colony optimization (ACO) based methods are promising
due to their controllable time complexities, heuristic positive
feedback search, and high detection power. Therefore several
ACO based methods have been presented [23]–[47] and it is
necessary to provide an in-depth review of them to analyze
their strengths and limitations, provide guidelines for apply-
ing them, and give several views on future directions of the
detection of epistatic interactions.

In fact, many reviews of epistasis detection methods have
been reported [1], [3]–[11], [48]–[62]. They systematically
summarized background, challenges, methods, and direc-
tions of epistasis detection, and therefore are essential for
researchers to develop new methods and for users to properly
apply them. However, though many promising ACO based
methods have been presented for detecting epistatic interac-
tions, there is no comprehensive overview of them yet except
two summarizing them briefly in only one chapter [4], [11].
Niel et al. [4] presented the main strategies proposed to detect
epistatic interactions. They classified ACO based methods
into the group of non-exhaustive combinatorial optimization
approaches, and discussed their operating principles, con-
cluding that the positive feedback effect is an interesting
feature of the algorithm and its main limitation is that many
parameters require fine tuning. Uppu et al. [11] reviewed
7 groups of epistasis detection methods, including exhaustive
search methods, random forests, neural networks, support
vector machines, regression models, Bayesian approaches,
and ACO approaches. For the group of ACO approaches, they
provided a brief overview of 7 extensions and modifications
of the generic ACO algorithm for detecting epistatic interac-
tions [26], [31], [35], [37], [40], [43], [46].

The aim of this paper is to summarize 25 variations of
ACO algorithm for detecting epistatic interactions. Firstly,
the generic ACO algorithm and its application to detect

epistatic interactions are described. Then, all ACO based
methods for detecting epistatic interactions are discussed
by categories, which are classified according to their core
modifications, including path selection strategies, pheromone
updating rules, fitness functions, and two-stage designs.
Finally, their strengths and limitations are analyzed to pro-
vide guidelines for applying them, and several clues are
given for future directions of methods for detecting epistatic
interactions.

II. ANT COLONY OPTIMIZATION (ACO) ALGORITHM
A. BIOLOGICAL MODEL OF ACO
ACO algorithm, proposed by Dorigo et al. [63], [64], takes
inspiration from the foraging behavior of some biological
ant species. These ants explore an optimal path from nest to
a food source by communicating with each other indirectly
through releasing and perceiving pheromones along the path.
The pheromones on paths gradually evaporate as time passes.
The subsequent ants perceive the presence of pheromones and
are more likely to follow the paths with higher pheromones,
thereby creating a positive feedback and eventually most of
the ants, if not all, are able to transport food to their nest
in the optimal path. Figure 1.A shows the foraging behav-
ior of biological ants. Specifically, at the beginning, ants
randomly select paths to search for a food source because
there are no pheromones on both paths (Figure 1.A1); later,
ants on the short path firstly arrive at the food source and
release pheromones on path that have passed (Figure 1.A2);
despite pheromones continuously evaporate on both paths,
the short path has relatively higher pheromone levels and
the return ants select the short path with a higher probability
(Figure 1.A3); as the number of iterations increases, the pro-
portion of pheromones on the short path to those on the long
path increases accordingly, resulting in more and more ants
selecting the short paths (Figure 1.A4).

B. SNP DATA FOR EPISTASIS DETECTION
Mathematically, SNP sequences are generally mapped
into two numerical matrices (Figure 1.B): one being
SNP data matrix, and one being sample labels matrix.
For the SNP data matrix, a row represents genotypes
of a sample and a column represents a SNP. Genotypes
of a sample are usually coded as 0, 1, 2, 3, corre-
sponding to missing data, homozygous common genotype
(e.g., AA), heterozygous genotype (e.g., Aa and aA), and
homozygous minor genotype (e.g., aa) [2], [20], [65]. The
sample labels matrix has only one column listing the binary
phenotype of each sample, where 0 denotes control and
1 denotes case. There are, of course, other numerical rep-
resentation forms of SNP sequences. For example, these
two matrices can be merged into one, where the first or the
last column saves the sample labels; the transposes of related
matrices are sometimes used; genotypes and sample labels
are coded as other numbers. In essential, these representation
forms are consistent with the introduction one.
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FIGURE 1. The generic ACO algorithm for epistasis detection. Figure 1.A is the foraging behavior of biological ants. Figure 1.B is the SNP data matrix and
the sample labels matrix. Figure 1.C is the flow chart of generic ACO algorithm on epistasis detection.

Based on this SNP mapping, epistasis detection can be
mathematically described as finding multiple SNP combina-
tions to predict the phenotype as high as possible, where SNPs
in each combination have nonlinear interactive effects rather
than additive effects to the phenotype, and SNPs between
combinations are not allowed to overlap with each other.

C. MATHEMATICAL MODELING OF ACO ALGORITHM
ON EPISTASIS DETECTION
ACO algorithm is a particularly appropriate strategy for epis-
tasis detection because of its simplicity and parallelization.
Figure 1.C shows its mathematical modeling on epistasis
detection, from which it is seen that path selection strate-
gies, fitness functions, and pheromone updating rules are its
highlights.

In the ACO algorithm, unlike biological ants, the artificial
ants exchange information and select paths via a probability
function determined by pheromones and heuristic informa-
tion. Suppose the algorithm uses I ants and T iterations to
infer K -order epistatic interactions from the data that hav-
ing N SNPs genotyped with M samples. The path here is
represented by a set of K SNPs. Specifically, the probability

of ant i at iteration t selecting SNP X into its path is defined
as

PiX (t) =


(τX (t))α · (ηX )β∑

j/∈Tabui(t);j∈[1,N ]

(
τj (t)

)α
·
(
ηj
)β X /∈ Tabui (t)

0 X ∈ Tabui (t),
(1)

where i ∈ [1, I ], t ∈ [1,T ], X ∈ [1,N ], τX (t) is the
pheromones of SNP X at iteration t , ηX is the heuristic
information of SNP X , Tabui (t) is the already selected SNPs
in ant i’s path at iteration t , α and β are parameters that
determine the weights of pheromones and heuristic informa-
tion, respectively. Though heuristic information is a crucial
component, it is difficult to get heuristic information since no
prior knowledge is usually available. Therefore, it is normally
set to 1. Besides, both α and β are normally set to 1, and initial
pheromones of all SNPs are set to a constant τ0.

Using such a roulette wheel selection strategy, each ant
at iteration t can select a set of K SNPs. This SNP set is
then evaluated by an employed fitness function to quantify
its association effect to the phenotype. For the SNP set S i (t)
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FIGURE 2. A full picture of discussed ACO based methods for detecting epistasis interactions.

that selected by ant i at iteration t , its fitness function value
is denoted as f

(
S i (t)

)
. Here, the higher the fitness function

value, the stronger the association between the SNP set and
the phenotype.

While all ants having selected and measured their paths
at iteration t , the pheromones of each SNP X are updated
according to the following formula,

τX (t + 1) = (1− ρ) · τX (t)+1τX (t) , (2)

where ρ is the evaporate coefficient between 0 and 1,
1τX (t) is the additional pheromones of SNP X contributed
by ants whose paths contain the SNP X during the t iteration
cycle, which can be written as

1τX (t) =
∑

X∈S j(t);j∈[1,I ]

f
(
S j (t)

)
. (3)

After completing the iteration process, several shortest
paths, that is, best SNP sets, with their fitness function values
being greater than a given threshold, are reported as epistatic
interactions.

III. ACO BASED METHODS FOR DETECTING EPISTATIC
INTERACTIONS
In total 25 ACO basedmethods for detecting epistatic interac-
tions are discussed from four aspects, including path selection
strategies, pheromone updating rules, fitness functions, and

two-stage designs [23]–[47]. A full picture of these meth-
ods is shown in Figure 2, each leaf of which represents an
ACO based method. It should be noted that most of them
have more than one main modification and thus they could
be discussed in multiple sections.

A. PATH SELECTION STRATEGIES
1) PROBABILITY FUNCTIONS
Shang et al. [23] presented AntMiner for the detection of
epistatic interactions with different orders simultaneously.
Besides the probability function of formula (1), AntMiner
also introduced another probability function to avoid falling
into local optimal solution, which was defined as

PiX (t) =

{
1 X = rand (N − Tabui (t))
0 otherwise,

(4)

where N − Tabui (t) is the feasible set in which SNPs are
not yet visited by ant i at iteration t , rand (·) is a function
to uniformly select a SNP from the given set. For each ant,
these two probability functions are chosen randomly with a
user-defined threshold. Specifically, the ant first generates a
random value; if the value is greater than the threshold, the
ant selects the probability function of formula (1), otherwise,
formula (4). These two probability functions and the random
selection mechanism increases the diversity of the search,
and also has been adopted by other ACO methods, including
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epiACO(Z) [24], MACOED [25], [26], IACO [27], and
epiACO(S) [28].

Zhou et al. [29] developed a modified ACO method for
detecting epistatic interactions, and implemented it on a
hadoop cluster utilizing Google’s MapReduce framework.
Similarly, they provided another probability function to
greedily find the best SNP, which was defined as

PiX→Y (t) =


1 Y = argmaxj/∈Tabui(t);j∈[1,N ]{(

τX→j (t)
)α
·
(
ηX→j

)β}
0 otherwise,

(5)

where PiX→Y (t) is the probability of ant i from SNP X to
SNP Y at iteration t , τX→j (t) is the pheromones on the path
from SNP X to SNP j at iteration t , and ηX→j is heuristic
information of the path from SNP X to SNP j. It is seen that
in this method the pheromones are deposited on connections
between SNPs rather than on SNPs, detailed descriptions of
which can be seen later. This probability function is based on
the greedy search and always selects the best SNP. To increase
the diversity of the search, the probability function of
formula (1) is also considered in the method. Besides this
method, another method [30] also used such path selection
strategy to select path.

Rekaya et al. [31], [32] provided a probability function
with two-layer pheromones, which was defined as

PiX (t) =



(τX (t))α · (τ2X (t))α
′

· (ηX )
β∑

j/∈Tabui(t);j∈[1,N ]

(
τj (t)

)α
·
(
τ2j (t)

)α′
·
(
ηj
)β

X /∈ Tabui (t)
0 X ∈ Tabui (t),

(6)

where τX (t) and τ2X (t) are the first and the second
layer pheromones of SNP X at iteration t . This two-
layer pheromones design is to overcome the limitation of
pheromones of a SNP depending on not only its association
strength to the phenotype but also times that ants selected.

Yuan et al. [33] presented a framework FAACOSE with
fast adaptive ACO algorithm to detect epistatic interactions.
For the modified algorithm, the weight of pheromones α
in the formula (1) was adaptively adjusted according to the
following formula,

α (t + n) =

{
g1α (t) α (t) ≤ αm
αm otherwise,

(7)

where g1 is a user-specified parameter greater than 1, n is
a predefined iteration window and αm ≤ 5. If the opti-
mal SNP set is not changed after n iterations, α should
be adjusted according to formula (7). The authors said that
with the increase of α, FAACOSE can jump out of local
optimal solution and had ability to search for global opti-
mal solution [33]. However, an example of two SNPs with
their pheromones being (2, 3), selection probabilities are
(0.4, 0.6), (0.308, 0.692) and (0.229, 0.771) corresponding
to α being 1, 2, and 3, respectively, resulting in that with

the increase of α, the selection probability of the SNP
with pheromones being 3 becomes higher, much easier for
FAACOSE to fall into local optimal solution.

2) TABU SEARCH
Sapin et al. [34] incorporated tabu search into path selec-
tion strategy to prevent the modified ACO algorithm from
continually selecting SNPs displaying strong main effects.
The modification of this ACO_Tabu method can be described
as follows. First, let the modified ACO algorithm run num
iterations and the SNP snp1 with the highest pheromones is
picked out, where num is a user specified parameter. Second,
all the 2-SNP combinations of snp1 and the remaining SNPs
are evaluated and the best combinations are recorded. Third,
the SNP snp1 is removed from the data set. This process is
repeated until end of the run, which allows ACO_Tabu to
concentrate on SNP combinations displaying small marginal
effects.

3) HEURISTIC INFORMATION
The major innovation of AntMiner [23] is that heuristic infor-
mation was incorporated into path selection strategy to direct
the search, which was defined as

ηX = SMUC (X ,C)+ SURF (X ,C) , (8)

where SMUC (X ,C) is the SymMetrical UnCertainty
(SMUC) score between SNP X and the phenotype C ,
SURF (X ,C) is the Spatially Uniform ReliefF (SURF) score
between X and C . SMUC [66] is the normalized mutual
information that can effectively measure the dependence
between a SNP and the phenotype, which was defined as

SMUC (X ,C) = 2 ·
MI (X;C)

H (X)+ H (C)
, (9)

where H (X) is the entropy of X , MI (X;C) is the mutual
information between X and C . SURF [19], as a member of
Relief family, is able to capture interacting SNPs even in the
absence ofmarginal effects. Because SMUC focuses on SNPs
with strong main effects and SURF focuses on interacting
SNPswithweak or even nomain effects, combination of them
is promising in finding various types of SNP effects to the
phenotype.

Similarly, Zhou et al. [24] developed an epistasis detection
method epiACO by incorporating heuristic information into
path selection strategy. Since two methods that respectively
proposed by Zhou et al. [24] and Sun el al. [28] have the same
name epiACO, in order to distinguish them, they are referred
to as epiACO(Z) and epiACO(S) here. For epiACO(Z), the
heuristic information was defined as

ηX = TuRF (X ,C) , (10)

where TuRF (X ,C) is the Tuned ReliefF (TuRF) [18] score
between SNP X and the phenotype C . The TuRF, as another
member of Relief family, is capable of capturing SNPs that
predict the phenotype primarily through interactions with
other SNPs. Though requiring more computational costs,
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the TuRF improves its performance when the data contain
a large number of noise SNPs by iterating the ReliefF and
deleting SNPswith the lowest ReliefF scores at each iteration.

For the method proposed by Zhou et al. [29], its heuristic
information, they called it distance, was got by the following
formula,

ηX→j =
2

f1 ({X , j})+ 1
(11)

where f1 ({X , j}) is the fitness function value of SNP combi-
nation {X , j}. This fitness function will be descripted in detail
later.

4) TOURNAMENT SELECTION
For most of discussed methods, the roulette wheel selection
strategy is used for ants selecting SNPs into their paths.
However, for large scale data sets, especially those in GWAS,
the roulette wheel selection strategy slows down the con-
vergence speed since each SNP only owns a very small
segment of the roulette wheel, resulting in this strategy tend-
ing to a random selection. In order to overcome this limi-
tation, Sapin et al. [34]–[38] adopted tournament selection
strategy to guide ants selecting SNPs. Firstly, nts SNPs are
randomly selected to form a tournament, where nts is the
tournament size specified by users, which can be adjusted
to alter the convergence speed. Secondly, one SNP with the
highest pheromones in the tournament is selected as part of
its path. Thirdly, this process repeats K times to form a path,
i.e., a SNP set. The tournament selection strategy incorporates
elements of random selection and a bias towards those SNPs
with higher pheromones. This biased random nature ensures
a balance between the exploration and exploitation [37], [38].
Compared with the roulette wheel selection strategy, the tour-
nament selection strategy has several merits, including lower
time complexity, easy to parallelize, not easy to fall into local
optimal solution, not need to sort, and so on, and was proven
to be better for high dimension problems [67].

B. PHEROMONE UPDATING RULES
1) PHEROMONE DEPOSITION
For most of discussed methods here, pheromones are nor-
mally deposited on SNPs, except the methods [25], [26],
[29], [30], [33], which deposit pheromones on connec-
tions between SNPs. Specifically, pheromones are stored
as a square matrix, whose dimensionality is equal to the
SNP number N , to reflect association strengths between two-
SNP combinations and the phenotype. This means that for-
mulas (1), (2) and (3) should be slightly adjusted: PiX→Y (t),
τX→Y , τX→j, ηX→j, and 1τX→Y (t) instead of PiX (t), τX , τj,
ηX , and1τX (t) respectively. Though this modification seems
simple and easy to understand, there are in totalN (N − 1)

/
2

elements in square matrix that need to be deposited by ants.
In real applications, especially GWAS, this astronomical
number leads the matrix extremely sparse, thus making it dif-
ficult to converge to optimal solution steadily. Sapin et al. [38]
gave a more detailed explanation. The detection of epistatic

interactions can be described as a subset problem since there
is no concept of order between SNPs. The ACO algorithm
can deal with not only the ordering problems but also the
subset problems. They differ in the way that pheromones are
deposited. For ordering problems, the connections between
elements receive pheromones, whereas the components them-
selves receive pheromones in subset problems.

2) UPDATING FUNCTIONS
The MACOED [25], [26] and the method [30] employed a
variant of formula (2) to update pheromones,

τX (t + 1) = (1− ρ) · τX (t)+ ρ ·1τX (t) . (12)

As a matter of fact, this variant, as well as another fre-
quently used variant inmethods [34]–[39], whichwas defined
as

τX (t + 1) = (1− ρ) · (τX (t)+1τX (t)) , (13)

is equivalent to formula (2), just a range adjustment of addi-
tional pheromones.

Recently, Sun el al. [28] developed a method epiACO(S)
to identify epistatic interactions. Besides that path selec-
tion strategy like AntMiner [23], both fitness function and
memory based strategy like IACO [27], its highlight is the
pheromone updating rule,

τX (t + 1) = (1− ρ) · τX (t)+1τX (t)+1τ ∗X (t) , (14)

where1τ ∗X (t) is reward pheromones for the SNPs that belong
to the candidate SNP sets at each iteration, defined as

1τ ∗X (t) =
∑

X∈S j(t);j∈[1,I ];S j(t)∈CS(t)

fSvalue
(
S j (t)

)
, (15)

where CS (t) is the candidate SNP sets at iteration t , fSvalue is
the fitness function.
Rekaya et al. [31], [32] provided a path selection strat-

egy with two-layer pheromones. The first layer pheromones
are updated according to formula (2). The second layer
pheromones are updated using the following formula,

τ2X (t + 1) =
t · τ2X (t)+1τ2X (t)

t + ns
, (16)

where 1τ2X (t) is the change in pheromones of SNP X
based on the sum of fitness function values of all SNP sets
containing genotypes of SNP X ; ns is times of SNP X being
selected at iteration t .
For MACOED [25], [26], two fitness functions

(fK2 log and fAIC ) and a Pareto optimality approach [68] were
used to update pheromones. Based on the Pareto optimality
approach, a SNP set S i (t) is considered to dominate another
SNP set S j (t), or S i (t) is a non-dominated solution and
accordingly S j (t) is a dominated solution, only if they satisfy
the following two conditions,{
fK2 log

(
S i (t)

)
≤ fK2 log

(
S j (t)

)
&fAIC

(
S i (t)

)
≤ fAIC

(
S j (t)

)
fK2 log

(
S i (t)

)
< fK2 log

(
S j (t)

)
|fAIC

(
S i (t)

)
< fAIC

(
S j (t)

)
.

(17)

13502 VOLUME 7, 2019



J. Shang et al.: Review of ACO-Based Methods for Detecting Epistatic Interactions

Therefore, at each iteration, all SNP sets that collected by ants
can be divided into two groups: a non-dominated group and a
dominated group. Pheromones are only updated by SNP sets
in the non-dominated group,

1τX→Y (t) =
∑

{X ,Y }∈Sk (t);k∈[1,I ];Sk (t)∈NDG

δ, (18)

where X and Y are neighbor SNPs in the set, δ is a
user-specified weight for SNP sets in the non-dominated
group NDG. This Pareto optimality approach and the
multiple fitness functions strategy were also employed
by FAACOSE [33].

For FAACOSE [33], it adopted an adaptive evaporate coef-
ficient of pheromones to optimize the pheromone updating
rule. The evaporate coefficient ρ is used to balance the
effects of deposited and additional pheromones. The small
ρ leads to deposited pheromones dominating the search
process and therefore the method is easily to fall into
local optimal solution, while the large ρ leads to additional
pheromones dominating the search process and therefore the
method tends to be a stochastic one. The adaptive evaporate
coefficient of FAACOSE was defined as

ρ (t + n) =

{
g2ρ (t) ρ (t) ≤ ρm
ρm otherwise,

(19)

where g2 is a user-specified parameter greater than 1,
n is the predefined iteration window and ρm is the control
value of evaporate coefficient. If the optimal SNP set is not
changed after n iterations, the weight of pheromones should
be adjusted.

3) STATISTICAL EXPERT KNOWLEDGE
Except being incorporated into path selection strategies to
guide the ACO search, heuristic information, known as expert
knowledge, can also be integrated into pheromone updating
rules.

Greene et al. [40] presented an expert knowledge guided
ACO method for inferring epistatic interactions, and showed
that it was successful when expert knowledge was sup-
plied through the pheromone updating rule to prevent single
SNPs dominating the search space. More specifically, expert
knowledge is included as additional pheromones 1τX (t) of
SNP X contributed by ants whose paths contain the SNP X at
iteration t according to the following formula,

1τX (t) =
∑

X∈S j(t),j∈[1,I ]

(
MDR

(
S j (t)

))a
· (EX )b , (20)

where S j (t) is the SNP set that selected by ant j at iteration t ,
MDR

(
S j (t)

)
is the MDR classification accuracy of S j (t),

EX is the expert knowledge of SNP X , Both a and b are coef-
ficients that determine the weights of MDR

(
S j (t)

)
and EX .

In the method, TuRF [18] scores were used as the expert
knowledge. i.e.,

EX = TuRF (X ,C) . (21)

For simplicity, this method is called TuRF-ACO in
subsequent discussions for short. Later, the TuRF-ACO was
implemented on graphics processing units (GPUs) [41], [42]
to further improve its performance. The TuRF-ACO reduces
computation costs by testing small portions of the data effec-
tively but this presents a tradeoff between computation time
and the portion of the search space. By using GPUs, the por-
tion of the search space can be increased while significantly
reducing computation costs.

Greene et al. [43] modified TuRF-ACO by using selection
probabilities rather than TuRF scores as its expert knowl-
edge. Frist, SNPs are sorted according to their ascending
TuRF scores. Second, TuRF scores of SNPs are normalized
by Min-Max normalization method,

FrX =
ErX − E1
EN − E1

. (22)

where rX ∈ [1,N ] is the index of SNP X in the sorted
list. Third, an exponential probability selection function is
developed to transform normalized TuRF scores into selec-
tion probabilities,

EF
(
ErX

)
=

θ−FrX

N∑
j=1
θ−Fj

, (23)

where θ ∈ (0, 1] is a user-adjustable parameter, which
facilitates users to control scaling of TuRF scores to selec-
tion probabilities. The lower the value of θ , the more likely
that SNPs with high expert knowledge scores are selected
over those with low scores. In a word, EX in formula (20)
is replaced by EF

(
ErX

)
to improve the performance

of TuRF-ACO.
Gilmore et al. [44] developed other three expert knowl-

edge scaling strategies for TuRF-ACO, which were described
as linear fitness (LF), linear rank (LR), and exponential
rank (ER),

LF
(
ErX

)
=

FrX
N∑
j=1

Fj

, (24)

LR
(
ErX

)
=

LrX
N∑
j=1

Lj

, (25)

ER
(
ErX

)
=

θ−LrX

N∑
j=1
θ−Lj

, (26)

where LrX is also a normalized value of ErX , defined as

LrX =
rX − 1
N − 1

. (27)

It is seen that formula (22) respects the interval between TuRF
scores, but formula (27) only uses the ranking of the SNPs.

In epiACO(Z) [24], pheromones of each SNPwere updated
according to both the MDR classification accuracy and
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B-statistic [69] score of involved SNP sets. The pheromone
updating rule is similar with the formula (20) except using
B
(
S j (t)

)
instead of EX , where B

(
S j (t)

)
is the B-statistic

score of SNP set S j (t). The B-statistic uses a mixture
distribution to accommodate the possibilities that SNPs
in the controls may or may not be in linkage equilib-
rium, which is more powerful than the standard chi-squared
statistic for measuring epistatic interactions [69]. Similarly,
Zhou et al. [29] also updated pheromones of each SNP using
the formula (20) except using SMUC (X ,C)+ SURF (X ,C)
instead of EX .

4) BIOLOGICAL EXPERT KNOWLEDGE
Sulovari et al. [45] presented an expert knowledge guided
ACO method for detecting epistatic interactions by including
biological expert knowledge as additional pheromones. The
bright spot of the method is that it generates biological expert
knowledge from a network of gene-gene interactions pro-
duced by a literature mining software, Pathway Studio [70].
The Pathway Studio is developed for navigation and analysis
of biological pathways. In the method, for a given real SNP
data set, all genes corresponding to these SNPs are queried
by Pathway Studio, result of which is a network of gene-
gene interactions. The number of connections for each gene
is counted as expert knowledge scores of its corresponding
SNPs under the hypothesis that SNPs belonging to genes
with many interactions are more important to predict the
phenotype than those with less interactions. This method is
a preliminary exploration of how expert knowledge can be
obtained from real biological information, which is a trend
for further epistasis detection. Nevertheless, the hypothesis
is not always correct, especially for SNPs displaying strong
interactive effects with weak or even no marginal effects.
Besides, many SNPs are in the inter-genic regions, which
cannot be handled by the method.

C. FITNESS FUNCTIONS
1) CONTINGENCY TABLE
Christmas et al. [39] used the basic ACO algorithm to dis-
cover epistatic interactions associated with type 2 diabetes,
and demonstrated that it was both accurate and computa-
tionally tractable on large scale data sets. They introduced
two implementations based on different SNP data matrices
derived from Fig.1B. For each SNP, three genotypes are re-
coded according to their descending frequencies: the most
common genotype with the highest frequency being coded
as 0, other two uncommon genotypes being coded as 1 in the
first SNP data matrix and being coded as 1 and 2 in the sec-
ond SNP data matrix, respectively. For ant i at iteration t ,
once a path S i (t), that is, a set of SNPs or SNP/uncommon
genotypes in two implementations, has been selected, sam-
ples are divided into four classes. Controls and cases that
possess the uncommon genotypes for all SNPs in the set
are true positives (TP) and false positives (FP) respectively,
Other controls and cases are false negatives (FN ) and true

negatives (TN ) accordingly. Hence for each path a contin-
gency table can be constructed, based on which three fitness
functions (f1, f2, f3) were proposed,

f1
(
S i (t)

)
=

2 (TP · TN − FN · FP)
N 2 , (28)

f2
(
S i (t)

)
=

TP2

FN · FP
− 1, (29)

f3
(
S i (t)

)
=

TP
TP+ FN

. (30)

2) CHI-SQUARED TEST
Sapin et al. [35] used achi-squared test based fitness function
to measure relationship between a combination of two SNPs
and the phenotype. First, for each of 9 genotypes in the com-
bination, positive samples are those having such genotype
and others are negative samples. Therefore, the numbers of
positive and negative controls, as well as the numbers of
positive and negative cases, are determined. Second, their
expected values are calculated. Third, a chi-squared score
is then computed with these observed and expected values.
Fourth, the largest one among 9 chi-squared scores is con-
sidered as the final score. In the first step, each combination
genotype is in fact the logical ‘‘AND’’ between genotypes of
involved SNPs. Then, 4 logical operations (‘‘AND’’, ‘‘OR’’,
‘‘AND NOT’’, and ‘‘XOR’’) between two SNPs is
considered [34], [36]. For each combination genotype,
4 logical interactions are tested to discriminate positives and
negatives in the first step. Finally, the largest one among
4 × 9 chi-squared scores is considered as the final score.
Recently, Sapin et al. [37] further modified ACO algorithm
by using the decision tree or the contingency table to obtain
a fitness function score. For the decision tree, each ant at
each iteration selects a set with 4 SNPs, which are used to
create decision trees: the first SNP being the root with its
three branches (homozygous common genotype, heterozy-
gous genotype, and homozygous minor genotype) linking
other three SNPs in turn, so producing 9 leaves which are
associated with a phenotypic variable. Hence, 29 decision
trees are created for each ant at each iteration, each of which
classifies samples into 4 categories, yielding a chi-squared
score. Finally, the largest one among 512 scores is considered
as the fitness function score. For the contingency table, two
SNPs are selected by each ant at each iteration, resulting
in 9 combination genotypes, each of which is assigned a
phenotypic variable. Similarly, the largest one among these
29chi-squared scores is considered as the fitness function
score. In their newly paper [38], these models, including
logical operation, decision tree, and contingency table, were
described in more detail.

3) BAYESIAN NETWORK
Li et al. [30] used a Bayesian network to represent asso-
ciation relationship between a SNP set and the phenotype.
The Bayesian network is a two-layer probabilistic graphical
model, where one layer consists of a set of SNP nodes and
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another of a disease node. Their conditional dependences
are denoted as a set of edges in a directed acyclic graph.
On the basis of previous studies [71], [72], a logarithm form
of K2 score function derived from Bayesian scoring criteria
was chosen as its fitness function,

fK2 log

(
S i (t)

)
=

3K∑
j=1

sj+1∑
d=1

log (d)−
1∑
l=0

sjl∑
e=1

log (e)

, (31)

where K is the number of SNPs in the set S i (t), sj is the num-
ber of samples that have the j − th combinatorial genotype,
sjl is the number of samples that have the l phenotype
(0 denotes control and 1 denotes case) and the j− th combina-
torial genotype. The fK2 log score is a measure of the causative
relationship between the SNP set and the phenotype, and
the smaller the score the stronger the association. Its recip-
rocal form was employed to satisfy the pheromone updat-
ing rule, which also has been adopted by other ACO based
methods, including MACOED [25], [26], IACO [27], and
epiACO(S) [28].

4) MULTIPLE OBJECTIVES
Considering that potential model preference and disease
models complexity, a detection method with only one fitness
function may not always work well. Jing and Shen [25], [26]
hence presented an ACO based method MACOED with
two fitness functions, or evaluation objectives, to detect
2-order epistatic interactions. The first is the logarithm form
of K2 score function and the second is the Akaike Infor-
mation Criterion (AIC) [73] score function of ADDitive
INTeractive logistic regression (ADDINT) [74] model. The
ADDINT model, which represents association relationship
between two SNPs and the phenotype, can be written as

log
c

1− c
= λ0 + λ1X + λ2Y + λ3XY , (32)

where c is the probability of a population with the given
genotype being a case, X and Y are SNPs in S i (t). With this
ADDINTmodel, the AIC score, which deals with the tradeoff
between the goodness of fit and the complexity of the model,
can be computed,

fAIC
(
S i (t)

)
= 2 (µ− log lik) , (33)

where log lik is themaximized log-likelihood of theADDINT
model, and µ denotes the number of free parameters. For the
AIC score function, SNP sets with lower scores are much
more likely to be epistatic interactions. Jing and Shen claimed
that the combination of these two fitness functions are com-
plementary, resulting in better performance than those using
each independently.

The FAACOSE [33] also used two fitness functions to infer
epistatic interactions: one being the AIC score function, and
another being the explain score function, which was defined
as,

fExp
(
S i (t)

)
=

3K∑
j=1

∣∣sj1 − sj0∣∣, (34)

where K is the number of SNPs in the set S i (t), producing
3K combination genotypes, sj1 and sj0 are respective numbers
of cases and controls that have j− th combination genotypes.

Sun et al. [27] proposed IACO for detecting SNP-SNP
interactions based on the fitness function fSvalue, which com-
bined both Bayesian network and mutual information, and
was defined as,

fSvalue
(
S i (t)

)
=
MI

(
S i (t) ;C

)
fK2 log

(
S i (t)

) , (35)

where fK2 log is the Bayesian network score, and
MI

(
S t (t) ;C

)
is the mutual information value between the

SNP set S t (t) and the phenotype C , which can be defined as

MI
(
S i (t) ;C

)
=H

(
S t (t)

)
+ H (C)−H

(
S t (t) ,C

)
, (36)

where H
(
S i (t)

)
and H (C) are the entropies of S t (t) and

C respectively, H
(
S t (t) ,C

)
is the joint entropy between

S t (t) and C , which was defined as,

H
(
S t (t) ,C

)
= −

3K∑
j=1

1∑
l=0

( sjl
N
· log

sjl
N

)
(37)

5) TWO-STAGE DESIGNS
Wang et al. [46] proposed AntEpiSeeker to identify epistatic
interactions, which based on the two-stage design. In the first
stage, the generic ACO algorithm was used, which results in
a highly suspected SNP set determined bychi-squared scores,
and a reduced SNP set determined by their pheromones.
In the second stage, AntEpiSeeker conducted an exhaustive
search of epistatic interactions within the highly suspected
SNP set, as well as the reduced SNP set. Later, They [47]
further extended AntEpiSeeker as AntEpiSeeker2.0 to infer
epistasis associated pathways based on a natural use of ACO
pheromones. Pheromones of pre-determined pathways can
be estimated by the average pheromones of their top 25%
or 50% associated SNPs ranked by SNP pheromones. Here,
associated SNPs of a pathway are those that located between
1kb upstream and downstream of its involved genes. Then
these pathways are ranked according to their descending
pheromones, and top ones are more likely to be associated
with the detected epistatic interactions. As far as we know,
AntEpiSeeker2.0 is the first methods to provide inference of
epistasis associated pathways.

The MACOED [25], [26] is also a two-stage method
for detecting genetic interactions. In the screening stage,
two fitness functions were combined with a memory based
ACO algorithm to search for candidate SNP sets. In the clean-
ing stage, an exhaustive search of epistatic interactions was
conducted within the candidate SNP sets of the last iteration
in the first stage. The Pearson’s chi-squared test p-value after
Bonferroni correction was used to quantify the association
strength between a candidate SNP set and the phenotype.

The FAACOSE [33] in the first stage used the fast adaptive
ACO algorithm, AIC score function, explain score func-
tion, Pareto optimality approach, and memory based strategy
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TABLE 1. Properties overview of aco based methods for detecting epistatic interactions.

to obtain candidate SNPs. In the second stage, a Fisher
exact test was employed to exhaustively identify epistatic
interactions.

IV. DISCUSSION AND CONCLUSIONS
Detection of epistatic interactions is particularly important
to better unravel the genetic basis of complex diseases.
Many methods therefore have been proposed, among which,
ACO based ones are promising due to their controllable
time complexities, heuristic positive feedback search, and
high detection power. Nevertheless, there is no system-
atical review of them so far. In this paper, the generic
ACO algorithm and its application to detect epistatic interac-
tions are firstly described. Then, a full picture of the evolve-
ment and improvement of ACO based methods is provided,
and 25 methods are detailed discussed from 4 aspects, includ-
ing path selection strategies, pheromone updating rules, fit-
ness functions, and two-stage designs. Finally, their strengths
and limitations are analyzed to provide guidelines for apply-
ing them, and to give several clues for future directions of
ACO based epistasis detection methods, even swarm opti-
mization based ones or other machine learning and data
mining ones [7].

In summary, none of them is perfect in all scenarios
and each has its own merits and limitations. For heuris-
tic information methods, heuristic information that applies
on either path selection strategies or pheromone updating
rules indeed increases power, however, getting heuristic infor-
mation sometimes dramatically increases the computational
burden, for instance, the Relief family methods. Besides,
it is hard to properly obtain biological or statistical heuristic
information since no prior knowledge is usually available
while given a specific disease data set. For multiple fitness
functions methods, their fitness functions are always claimed
to be complementary to each other, resulting in better per-
formance than those using each independently. But finding
several fitness functions that are proved to be complemen-
tary from theoretic and practical standpoints is a challenge.
Also, these methods might be criticized for the complexity
of multiple fitness functions computation. For MDR based
methods, thoughMDR is one of themost popular methods for
detecting epistatic interactions, its time complexity is high.
The use of MDR strategy obviously increases the compu-
tational burden. Furthermore, these studies should test their
performance using more epistasis models in simulation data
sets and should be applied to real applications. For two-stage
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methods, though significantly reducing time costs, they are
often problematic for the discovery of epistatic interactions
since during the screening stage SNPs must be filtered, lead-
ing to the exclusion of SNPs with weak or even no marginal
effects, however, some of which are indeed causative ones.

Though providing empirical comparison and independent
evaluation in terms of several criteria based on different test-
ing data sets is necessary and could reinforce the statement
by the authors, this review only focuses on algorithmic and
mathematic details. This is for several reasons. First, most of
these methods did not provide software or even source codes.
Second, though some have software, they are implemented
by different programming languages, for instance, Matlab,
C++, Java, and Python, resulting in comparison of them on
the same running platform and criteria being unfair. Third,
some methods [29], [41], [42] were implemented on GPUs
or a hadoop cluster. It might be inappropriate for them to
compare with others.

There are several directions for further studies. First, how
to set parameters appropriately when handling with a spe-
cific disease data set is a great challenge for ACO based
methods. In order to balance the complexity and accuracy,
recommended settings of these parameters should be given
and their setting rules should be discussed in detail. Sec-
ond, software packages are the bridges between computer
scientists and geneticists. Current methods rarely provides
software packages, even codes (Table 1), hindering their
widely applications in the real world. Third, we should keep
abreast of advances in ACO algorithm. Its improvements
and applications on other fields should pay close attention
to, some of which might be used in the epistasis detection
field. Fourth, future studies should focus on using statistical
and biological heuristic information in methods. For instance,
the Relief family methods should be further studied to present
new members that can efficiently and effectively provide
statistical heuristic information. It is worthwhile to explore
biological heuristic information from numerous databases,
gene-gene interactions, protein-protein interactions,
biochemical pathways, omics networks, as well as their
integrated information. Fifth, with the parallel property of
ACO algorithm, the future methods should be considered
to be implemented on GPUs or a hadoop cluster. Sixth,
the biological interpretations of results from these methods
on real data sets need to be further investigated. Seventh,
their abilities of search triples and higher order epistatic
interactions should be discussed.
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