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ABSTRACT A dynamic path planning method based on a gated recurrent unit-recurrent neural network
model is proposed for the problem of path planning of a mobile robot in an unknown space. A deep neural
network with sensor input is used to generate a new control strategy output to the physical model to control
the movement of the robot and thus achieve collision avoidance behavior. Inputs and tags are derived from
sample sets generated by an improved artificial potential field and an improved ant colony optimization
algorithm. In order to make the ant colony algorithm converge quickly, the pheromone trail and the state
transition probability are improved. The field function of the artificial potential field method is modified.
Using the end-to-end network model to learn the mapping between input and output in the sample data,
the direction and speed of themobile robot are obtained. The simulation experiments and realistic simulations
show that the network model can plan a reasonable path in an unknown environment. Compared with other
traditional path planning algorithms, the proposed method is more robust than the traditional path planning
algorithms to differences in the robot structure.

INDEX TERMS Mobile robot, gated recurrent unit-recurrent neural network, dynamic path planning, ant
colony optimization, artificial potential field.

I. INTRODUCTION
Obstacle avoidance is one of the most basic problems faced
by mobile robots. Over the years, various methods for
autonomous mobile robot path planning have been studied,
with focusing on the development of collision-free path plan-
ning algorithms. The problem can be described as follows:
the mobile robot is given a starting point and an ending point
in a known or unknown environment, and environmental
information is detected by the robot’s sensor. Eventually,
autonomously avoiding obstacles, the robot finds amovement
trajectory from the starting point to the target point, in what
constitutes a type of real-time planning. In addition to the
security and smoothness of collision avoidance, the real-
time performance of the system is also an important aspect
of real-time collision avoidance planning. In practical path
planning, the environment (specifically the obstacles that
might be encountered) in which the mobile robot operates
is unknown or partially known. This requires the collision
avoidance program to use collected data so that the mobile
robot is able to make a series of decisions to avoid obstacles
in real time. For this kind of problem, many methods and

algorithms are commonly used, such as visibility graphs, arti-
ficial potential field (APF) and related algorithms, intelligent
optimization algorithms, and fuzzy logic. APF and its variants
are often used in mobile robot navigation [1]–[3], [11]. With
the traditional APF method, it is easy for the mobile robot
to become locally locked, for it to be subject to narrow path
vibration, and for neighboring obstacles to be too close to
allow planning of the path. In order to overcome the above
difficulties, some researchers have made different improve-
ments to the traditional APF method. Weerakoon et al. [4]
solves the deadlock problem by replacing the traditional
function with an exponential function. The APF method is
also combined with other intelligent algorithms to improve
the parameters of the intelligent algorithm [5]. The tradi-
tional ACO method does not deal well with the balance
between premature problems and slow convergence speed.
Chen et al. [6] proposes a combination of ‘‘scent pervasion’’
policy and ‘‘one minus search’’ strategy to pre-process grid
maps to speed up algorithm convergence and quickly com-
plete robot path planning. Cao et al. [7] adopt a novel mul-
tiagent pheromone-based traffic management framework to
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reduce traffic congestion. In order to speed up the algo-
rithm, Cekmez et al. [8] implement parallel ACO algorithm
on CUDA platform to solve the problem of UAV path
planning.

On the other hand, for swarm intelligence techniques such
as genetic algorithms (GA), the real-time performance is
poor, and requires a large data storage space and long com-
puting times. Other authors have proposed hybrid solutions
combining the two approaches. Das et al. [9] improved the
classical gravitational search algorithm (GSA) based on the
communication andmemory characteristics of particle swarm
optimization (PSO). Chaari et al. [10] proposed a new effi-
cient hybrid ACO-GAmethod, using the ACOmethod to find
the suboptimal solution, and then using the GA to search for
the optimal solution in the suboptimal solution, which is used
to solve the global robot path planning in static environment.
These method has been used successfully for navigation of
multiple mobile robots. However, in these study, the environ-
ment and obstacles were taken to be static. Bodhale et al. [11]
successfully implemented dynamic path planning by com-
bining the potential field method with a Monte Carlo posi-
tioning method. It is difficult to determine the force coef-
ficients influencing the velocity and direction of a mobile
in a complex environment. Li et al. [12] have designed
fuzzy controllers for path planning problems in dynamic
environments based on the angles and collision times between
dynamic obstacles and the direction of motion of the robot,
this method is suitable only for simple and small obstacles.
Matveev et al. [13] proposed an integrated guidance con-
trol strategy belonging to the class of sliding mode control
algorithms for autonomous vehicles. This method required
the establishment an accurate environmental model, which
limits the use of this algorithm in complex environments.
The accuracy of the environmental model also has an impact
on the algorithm’s time-consumption. Rapidly-exploring ran-
dom tree (RRT) and other methods rarely pay attention to the
information on obstacle movement [14], [15]. In the case of
difficult motion scenarios such as dense obstacles or frequent
movement of obstacles, a long time is required to find the
optimal solution.

The need for mathematical modeling of the environ-
ment, the limited real-time performance of the algorithms,
the occurrence local locking, and other issues arising with
the above methods, have all encouraged the search for new
approaches. Most previous studies have examined collision
avoidance planning strategies within the reinforcement learn-
ing (RL) framework [16]–[18]. Deep learning algorithms
don’t require the construction of an accurate model- and
after a large amount of training, the network can map an
input to obtain the corresponding output. For a trained net-
work, multiple iterations of the algorithm are necessary.
In the application of deep learning to obstacle avoidance
problems, the construction of an end-to-end model, allows a
network to learn the mapping between input data and output
strategies. Carrio et al. [18] used a combination of convolu-
tional neural networks (CNN), gated recurrent unit (GRU)

networks, and variant Q-learning to solve the problem of
unmanned autonomous vehicle (UAV) control when only
visual images were input. Inoue et al. [19] proposed a novel
method combining the rapidly-exploring tree and a long
short-term memory (LSTM) network, which overcomes the
difficulties involved in the acquisition of a large amount of
training data.

The main subject of the present paper is the develop-
ment of a collision avoidance algorithm for a mobile robot.
A teacher system based on an improved ACO algorithm and
an improved APF method is established. The pheromone
trail and state transition rules of the ACO algorithm are
improved to accelerate the convergence. The potential field
is built around the robot, and the influence of target point
gravitation is removed to avoid local locking. A dynamic
planning model based on a Gated Recurrent Unit-Recurrent
Neural Network (GRU-RNN) is then designed, with a teacher
system based on the above algorithm.

The main contributions of this paper can be summarized as
follows:
• We propose a novel pheromone update and state transi-
tion rule to speed up the convergence of the algorithm,
and we introduce a new potential field to solve the
shortcomings of the traditional APF.

• We design a GRU network model to learn the path
planning strategy produced by the improved ACO and
APF, and we verify the algorithm in both a simulated
environment and an outdoor environment.

II. CONSTRUCTION OF THE ENVIROMENT MODEL
In order to achieve accurate collision avoidance behavior, the
kinematics equation of the robot is established. Obtaining
accurate environmental information is extremely important
for robot control. In order to make the input state informa-
tion more accurate, reasonable coordinate systems must be
established. According to the conversion between the coordi-
nate systems, the information of the robot and surrounding
obstacles in the global coordinate system can be obtained.
The environmental model uses the grid method. Choosing
the reasonable grid size can reduce optimization time and
improve the quality of the solution.

A. COORDINATE MODEL
To ensure sufficient accuracy of the state information,
an appropriate coordinate system must be established, com-
prising a global coordinate system and two local coordinate
systems (Fig. 1): the global coordinate system XGOGYG,
the robot-centered local coordinate system XRORYR, and the
local coordinate system centered on the laser XLOLYL . The
global coordinates of an obstacle are obtained from the fol-
lowing coordinate transformation:[
xg
yg

]
=

[
ρ cos |θ − π/2| + xe 0

0 ρ cos |θ − π/2| + xe

]
·

[
cosϕ
sinϕ

]
+

[
x
y

]
(1)
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FIGURE 1. Mobile robot coordinate system.

here (xg, yg) are the coordinates of the obstacle in the system
XGOGYG; (x, y) are the coordinates of the robot in the system
XLOLYL ; xe is the distance between the coordinate originsOL
andOR; ρ and θ are respectively the polar distances and polar
angle of the obstacle measured by the laser sensor. ϕ is the
angle between the current direction of motion of the robot and
the XG axis. In the outdoor simulation environment, counter-
clock-wise is positive, based on true north.

B. ROBOT MODEL
We make the following assumptions about robot and the
environment:
• The working environment of the robot is X × Y .
• The wheels do not slide.

At time t , we denote by (xt , yt ) the position of the mobile
robot in the coordinate system XGOGYG, and by ϕ the angle
between the direction of movement and the global coordinate
system XG axis. After a certain sampling time T , the robot
reaches a new position. Assuming that the robot moves with
constant speed v within this sampling time, we find that the
new position coordinate (x, y) at the next instant is given by:[

x
y

]
= vT ·

[
1 0
0 1

]
·

 cos(
π

2
− ϕ)

sin(
π

2
− ϕ)

+ [ xt
yt

]
(2)

C. ENVIROMENT MODEL
The environment model is constructed as a grid model, with
the robot’s initial position (x0, y0) as its origin point.
We make the following assumptions:
• The robot works in a two-dimensional environment and
the number of grids in space is m× n.

• In order to ensure the safety of the robot, the boundary of
the obstacle is expanded, by half the length of the robot.

• A black grid indicates that the area is not accessible.
Obstacles in the mobile robot’s motion space can be divided
into two types: known and unknown. For obstacles in an
unknown environment, because there is no positional infor-
mation about obstacles in advance, they can be detected only
by sensors carried by the robot itself, and new effective track
points (including deterministic points and uncertain point),
must be added to the program as the motion progresses.

If an obstacle is small, then it is easy to determine the
visibility of vertices and other points. Such vertices are

termed deterministic vertices, examples of which are shown
in Fig. 2 by points B andC . If an obstacle is particularly large,
the sensor can detect only part of it, as shown in Fig. 3, where
points F and G are termed uncertain vertices.

FIGURE 2. Deterministic vertices.

Vertices have the following characteristics:
• A vertex is exactly at the detection edge of the sensor.
• There is an obstacle on one side of the vertex and not on
the other side.

• This vertex is visible from any other vertex.
In Fig. 2, there are no obstacles between points B and D,

so point D is visible from point B. An obstacle lies between
points B and E , so these two points are invisible to each
other. In Fig. 3, the two points are uncertain vertices, and it
is impossible to judge the specific distribution of obstacles
around these vertices. Since the set of visible points allowF of
the current point F cannot be determined, the path cannot be
planned when the improved ACO algorithm is applied. If the
point F is regarded as a visible point, when moving to the
point F , the robot finds a new uncertain vertex, and the set
of visible points allowk of the point K still does not satisfy
the condition. So when we have no determinate vertices,
we apply an improved APF to avoid collisions until the robot
is completely at the determined vertices.

FIGURE 3. Uncertain vertices.

III. AUTONOMOUS COLLISION AVOIDANCE
ALGORITHM FOR TEACHER SYSTEM
When the sensor detects new obstacles, the robot is required
to respond quickly. This requires that the collision avoid-
ance algorithm has a rapid planning ability. In this paper,
an improved ACO and an improved APF method are com-
bined to give the mobile robot the capacity for autonomous
collision avoidance. When an obstacle is far from the robot,
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the ACO algorithm is used as the collision avoidance algo-
rithm. This algorithm uses known environmental informa-
tion and local information detected by the sensor to perform
operations, and provides a long-term, optimized motion path.
When the distance between the obstacle and the robot is less
than 2/m, an improved APF method is used for emergency
collision avoidance. The APF algorithm ignores the influence
of the global environment and responds directly to the risk of
collision by using the sensor information in a short period of
time. To accelerate the convergence of the ACO algorithm,
the pheromone trail and state transition rules are improved.
An APF is established around the robot, and the gravitational
effect of the target point is removed to prevent the occurrence
of local extreme points. The pseudo code of the autonomous
collision avoidance algorithm of the teacher system can be
found in the appendix.

A. PATH PLANNING BASED ON IMPROVED ANT
COLONY ALGORITHM
1) PHEROMONE UPDATES
There are given by:

τij(t + 1) = (1− ρ)τij(t)+
m∑
k=1

1τ kij (3)

1τ kij =


Q
Lk

if k pass eij

0 else
(4)

where, i, j are status point number. τ is the pheromone con-
centration trails; m is the total number of ants, ρ is the
pheromone evaporation rate (0 < ρ < 1); The path length of
ant k is Lk ,andQ is a constant. The parameter ρ is introduced
to avoid an infinite accumulation of pheromones and make
the program ignore previous bad decisions.

To speed up convergence, pheromone enhancement is per-
formed for the path taken by the first quarter of ants in each
generation of ants:

τij(t + 1) = λ× τij(t + 1) (5)

λ = 1+ 0.5×
D
Lk

(6)

where, D is the Euclidean distance from the start to the end.
To ensure that the algorithm retains its ability to explore in

the later stages of the search, after completion the pheromone
update and reinforcement, processing of the pheromone trail
limit is performed:

τij(t + 1) =


τmin if τij(t + 1) < τmin

τmax if τij(t + 1) > τmax

τij(t + 1) otherwise

(7)

where, τmin, τmax are the artificially set upper and lower limits
of pheromone trail.

2) STATE TRASITION RULES
The state transition rule is the selection rule for the next
state when the ant moves to that state from the current state.

In path planning is the selection of the visible points of
the current location, because normally, multiple points are
visible from any one location, and the next step is to select
which of these visible points leads to progress of the planning
process toward the optimal solution. This paper implements
probability transfer in the form of probability selection. The
state transition probability is formulated as follows:

pkij =


(τij)α(ηj)β∑

r∈allowi
(τir )α(ηr )β

, if r ∈ Allowi

0 otherwise

(8)

pkij = γ p
k
ij + (1− γ )

Lij
N − 1

(9)

according to this formula, if ant k currently at point i and
probability of its next transfer to visible point j is pkij. allowi
is the set of visible points to which ant k can perform state
transition. η is a heuristic function, taken as the reciprocal
of the distance from the current point to the target point.
α is the importance of the pheromone. β is the importance
of the heuristic function. N is the number of visible points in
the range measured by the current point i. Lij is the distance
between points i and j. γ is a weight. (in this experiment,
γ takes the value 0.95).

B. IMPROVEMENT OF ARTIFICIAL POTENTIAL FIELD
In the traditional APF method, only distance information
about an obstacle is considered, and directional information
is ignored. When the obstacle is in the emergency collision
avoidance zone of the robot, the APF is used only for emer-
gency collision avoidance, and it is not necessary to consider
the influence of the target point. Therefore, in the improved
APF, the gravitational effect of the target point is removed to
prevent the creation of local extreme points. The improved
potential field takes the form:

V (xf , xr , xp, yxp) (10)

with its shape being determined by the parameters xf , xr ,
xp, yxp. In the simulation, the detection range of the sensor
is taken as 12/m, xf = 10.5/m, xr = 4/m, yxp = 6.8/m,
xp = 4/m. The parameter definition is shown in Fig. 4.

FIGURE 4. Parameter definition of improved APF.
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In this method, the smaller the potential, the closer is the
obstacle to the robot. The value of potential vp is given by

vp = (y2 + (ay+ c)x2)/(py+ q) (11)

where, p = xf −xr , q = xf ·xr , a = (−2yxp+p)/x2f , c = (q+
y2xp)/x

2
f , and py+ q 6= 0. The potential value vp is positively

related to |y|.
When there is an obstacle in the emergency collision avoid-

ance area of the robot, the linear velocity and angular velocity
of the robot are given by:

vl = (vpre + vmax) · e−(α·λ)
2
− vmax (12)

ωr = (ωpre + ωmax) · e(β·λ)
2
− ωmax (13)

λ = max(1− vp, 0) (14)

where, vl, ωr represent the linear velocity and angular veloc-
ity obtained after planning, respectively; Current cornering
speed ωmax and maximum cornering speed ωpre. α, β are
intensity factors, with values of 1 and 2, respectively. If vp
approaches 0, this means that the robot is about to touch the
obstacle. At such a time, vl takes its minimum value and ωr
takes its maximum value.

IV. DESIGN OF GRU-RNN NETWORK MODEL
GRU, as a variant of LSTM, combines a forgotten gate and
input gate into a single update gate. In addition, there are some
other changes to the mixed cell state and the hidden state.
The final model is simpler than the standard LSTM model
and is a very popular variant. Given a set of observations,
the learned model can provide the corresponding control
output vector. The learning process terminates when the dif-
ferences between the actual and model output converges to
a very small value. Once the GRU-RNN network has been
trained, it can be used as a path planning model for mobile
robots, enabling them to move in an autonomous manner
while avoiding collision.

A. GRU-RNN DYNAMIC PATH PLANNING MODEL
The GRU-RNN model designed in this paper is shown
in Fig. 5. The input layer has a total of 61 dimensions,
of which the first 60 comprise the distance information
detected by the laser rangefinder. The final one-dimensional
piece of data is ϕ. There are two hidden layers in the model:
hidden layer 1 consists of 40GRUmodules and hidden layer 2
consists of 30 neurons. These hidden layers are fully con-
nected. There are two neurons in the output layer, the velocity
and angle of the mobile robot.

The most important structure in the GRU-RNN network
model is the GRU module unit, which receives the data in
chronological order: input data from time t − 9 to t , and the
output at time t . The output at the final instant constitutes
the true output of the module. The structure of the module is
shown in Fig. 6, where x t is the input at the current instant,
yt is the output layer, ht is the output of the module at the
current instant, and ht−1 is the output of the module at the
final instant.

FIGURE 5. GRU-RNN model for dynamic path planning.

FIGURE 6. GRU unit structure.

the update gate is given by

zt = σ
(
Whzht−1 +Wxzx t + bz

)
(15)

the reset gate by

r t = σ
(
Whrht−1 +Wxrx t + br

)
(16)

and the output layer by

ht = zt · ht−1 + (1− zt ) · h̃t (17)

and the output layer by

yt = σ (net ty) (18)

E =
T∑
t=1

Et =
T∑
t=1

1
2
(ydt − yt )2 (19)

here h̃t = tanh(r tWhhht−1 + Wxhx t + bh); zt , r t and ht are
the output of the update gate, reset gate and memory module,
respectively, at time t; x t is the input vector of the memory
module at time t; ht−1 is the output vector of the memory
module at time t − 1; Wxz,Wxr ,Wxh are the weight matrices
between the module input and the update gate, reset gate, and
h̃t respectively;Whz,Whr are the weight matrices between the
output of the memory module and the update gates and reset
gates, respectively, at time t − 1; bz, br , bh are the biases of
the update gate, reset gate, and h̃t , respectively.
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The gradient of the parameter matrix is calculated using the
chain rule for derivatives, and the weight updates are given
by the following expressions: the weight update between the
output of the module and the output layer is

∂E
∂W y = ht

∂E
∂yt

∂yt

∂net ty
(20)

that between the input and the update gate z is

∂E
∂W z = (x t )T

∂E
∂ht

∂ht

∂zt
∂zt

∂net tz
(21)

that from the module output to the update gate z at the
previous instant is

∂E
∂U z = (ht−1)T

∂E
∂ht

∂ht

∂zt
∂zt

∂net tz
(22)

that from the input to h̃t :

∂E
∂W
= (x t )T · δth · z

t
· g′(net th̃) (23)

that from the module output to the update gate z at the
previous instant is

∂E
∂U
= (r t · ht−1)T · δth · z

t
· g′(net th̃) (24)

that from the input to the reset gate r is

∂E
∂W r = (x t )T · ht−1 · [(δth · z

t
· g′(net th̃))U

T ] · f ′(net tr )

(25)

and that from the module output to the update gate r at the
previous instant is:

∂E
∂U r = (ht−1)T · ht−1 · [(δth · z

t
· g′(net th̃))U

T ] · f ′(net tr )

(26)

where, δth = δtyW
yT
+ δt+1z U zT

+ δt+1UT r t+1 +
δt+1r U rT

+ δt+1h (1 − zt+1), net tz = x tW z
+ ht−1U z, net tr =

x tW r
+ ht−1U r , net ty = htW y. For the GRU-RNN network

defined by these expressions, the weights are denoted by
Whc,Wxz,Whr ,Wxr ,Whh,Wxh,W z,W r ,W y etc.

B. COLLECTING SAMPLES AND PREPROCESSING
Before the start of training, the first thing to do is to collect
and preprocess the sample data. In the simulation training
phase, the mobile robot performs dynamic collision avoid-
ance and path planning under the improved ACO algo-
rithm and the APF algorithm, and collects sample data.
Each set of sample data has a total of 184 dimensions. The
first 181-dimensions of data are obtained by the laser sen-
sor collecting surrounding environmental information, ϕ is
the 182th dimension of data, and the final two dimensions
of data comprise the robot’s angle and velocity. The first
182 dimensions of data are used as the input value of the
network, and the final two dimensions of data are used as the

training label. The network input laser data are measured in
real time. The output labels are taken as the angle and speed
of the robot obtained from the improved ACO algorithm and
APF. In order to speed up the training of the model and
enhance the robustness of the model (small fluctuations in the
input cause dramatic fluctuations in the output), the data must
be processed before entering the input layer. First, regularize
the input data and merge the first 181 data dimensions. The
182th dimension data remains unchanged, and after process-
ing, there are 61 dimensions of input data in total.

For an accurate training result of the network model,
the input data are normalized to give a pure value.

c∗ij =
cij −min(cj)

max(cj)−min(cj)
(27)

The training data here are stored in the form of row vectors:
cij denotes the data before normalized while max(cj) and
min(cj) are the maximum and minimum values of column j.

V. SIMULATION RESULTS AND ANALYSIS
In this section, the network model is trained by samples
generated by the teacher system, which is implemented using
the improvedACO algorithm andAPF. In the test experiment,
the planning capabilities of the two methods are compared,
and the ability of the GRU network to avoid obstacles is
verified.

The improved ACO algorithm and APF are applied, and
the mobile robot performs collision avoidance training in the
simulation training field. The generated training set contains
60312 sets of data, which are used for network model train-
ing. The test set contains 1000 sets of data for testing the
trained network model. Using the data in the training set,
the network is trained 8 million times, with each training
procedure being performed 2,000 times. A certain amount of
data is selected from the test set, and the error is tested using
the final network weight. To eliminate correlation from the
sample, the position and shape of the obstacles, their density
are randomly generated. In our example, the training set is
used as GRU-RNN network input to learn weights in a given
observation sequence that will reproduce the corresponding
control output ϕ.
The input of the GRU-RNN network at time step t is a

61-dimensional vector consisting of a 60-dimensional input
distance vector xt =

[
x0t , x

1
t , · · · , x

60
t
]
and ϕt . In order to

improve the generalize ability of the model, Gaussian noise
N (µ, σ 2) is added to xt and ϕt , with µ = 0.2, σ = 0.3 in this
experiment.

A total of 50 datasets of obstacle size and position are ran-
domly selected within a certain range. At each time, the initial
heading angle is randomly chosen from a uniform distribution
{−

π
2 ,

π
2 }. Of these datasets, 45 are used for training the

model, and the remaining five datasets are used for testing.
Stochastic Gradient Descent (SGD) is used for parameter
optimization. To examine the robustness of the model, it is
necessary to test the final model on a different workspace
that is unlike the training phase. The results show that the
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FIGURE 7. GRUs loss function convergence curve.

FIGURE 8. GRUs loss function curve between updates 32600-32850.

GRU-RNN model gives good output values even in test envi-
ronments. Hence, the learned model can provide very good
path planning capabilities in an unknown environment. For
a particular test case, a comparison it with the path of the
teacher system, can be seen in Fig. 11 and Fig. 14 below.

In the verification environment, the learning model can
be used to predict the control output angle at the next
instant. The average value of the loss function is calculated
and represents the generalization ability of the network:
the smaller this value, the greater is the generalize ability.
Fig. 7 shows the convergence curve of the loss function for
different GRU-RNN network models. The largest value of
the loss function at the beginning of training is 3.8. After
35, 000 iterations, the value is close to zero, indicating that
convergence has been achieved. The horizontal axis repre-
sents the number of trainings, and the vertical axis is the
Mean Squared Error. Fig. 8 shows the loss function curves
for each model after learning is complete. From Table. 1, it is

TABLE 1. Performance of different numbers of GRUs during training.

FIGURE 9. Compare the planned routes of different GRU units.

concluded that GRU30 achieves the smallest iteration error,
and GRU10 has the fastest convergence rate. Evaluate the
planning path capabilities (such as path length, planning time)
of different models in the same environment. Fig. 9 shows
the planned route for different GRU models. It shows that
GRU10 has the shortest planning time and GRU40 has the
shortest path length in Table. 2. The path length and planning
time are the average of 50 experiments.

TABLE 2. Performance of different GRUs in statistical experiments.

The success rate is given by:

Success rate =

∑
N 1(s, g)
N

(28)

where, 1(s, g) is equal to 1 if the robot can safely reach the
goal point from the starting point on the test dataset(100 dif-
ferent environments). Fig. 10 curve shows the success rate
achieved by the learned GRU-RNN network model for differ-
ent test environments. It can be seen that the learned model
can provide very good predictions of the robot head-ing angle
in unknown dynamic environments from Fig. 12, 15. Thus,
the GRU-RNN model can be used as an efficient method for
offline path planning.

From the above comparison, it can be concluded that
GRU40 has little difference between the convergence speed
and the minimum iteration error and the optimal value. How-
ever, it is clearly dominant in the length of the planned path
and the ability to successfully avoid obstacles. So we choose
GRU40 to compare with the algorithm of the teacher system.

Fig. 12 shows the direction of movement of the mobile
robot, and it can be seen that the trend of the orientation
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FIGURE 10. Success rate achieved by the learned model for different test
environments.

FIGURE 11. Comparison of planning routes in an unknown environment
with simple obstacles.

FIGURE 12. Curves of the heading process.

angle of the robot is generally the same for the two plan-
ning methods. It can also be seen that the direction given
by the improved ACO algorithm changes very steeply at
times 12-22, 27-30, 73-78, 104-112, and 121-131. The direc-
tion angle of the GRU-RNN network also changes frequently,
but, in the same time range, it changes slowly, which is
beneficial for the robot’s motor when executing instructions
in real-world applications.

Fig. 13 shows the variation of the heading change angle
at each instant for the mobile robot according to the two
planning algorithms. It can be seen that the results of the
two methods are very different. The improved ACO algo-
rithm leads to much sharper cornering by the robot with the
greatest change in direction angle beingmore than 36◦. Under
GRU-RNN planning, the rotation angle of the robot changes
more frequently, but the maximum variation is only 15◦.
Frequent changes occur because the network model must
maintain a certain degree of generalization so that it is
valid for all input data. For a given location, the GRU-RNN

FIGURE 13. Curve of the heading change process.

FIGURE 14. Comparison of algorithm planning routes with more
complicate obstacles.

network is unable to reduce the cornering to zero as in con-
trast to the ACO algorithm, but it can reduce the cornering
changing by continuous training. In the final curve of Fig. 13,
there is no obstacle within the detection range of the mobile
robot, so the change in rotation angle given by both methods
is close to zero.

The situation shown in Fig. 15, the GRU-RNN algorithm
gives a smoother curve. It can be seen that the emergency
collision avoidance algorithm is called from obstacle number
3 to 6, and from number 8 to 9. The path planned using the
improved APF is clear close to the obstacle, and the path of
the GRU-RNN is safer.

FIGURE 15. Curves of the heading process.
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FIGURE 16. Curves of the heading change process.

Fig. 15 shows the improved ACO algorithm and APF with
multiple stages maintains the same direction angle, while
the GRU-RNN has few, but when the rotation is needed,
the former is more intense and the latter is smoother. It can be
seen from Fig. 16 that according to the GRU-RNN algorithm
the change in rotation angle is within 10◦, although there
are frequent changes between steps 50-65 because the robot
will then encounter obstacles 1,2 and will continually be
adjusting its direction. However, when the heading angle
is adjusted according to the improved ACO and APF algo-
rithm, the change can reach 34◦, and in practical application,
it would then be difficult for the implementing agency to
complete the action within the specified time.

From the comparison of the simulation results of the two
algorithms, it can be seen that the GRU-RNN network model
proposed in this paper has a strong learning ability. The
results show that the learned GRU-RNN network model
almost replicates the teacher system trajectory in test cases.
After training, the network model can output the appropriate
velocity and direction of movement. To test the robustness of
the algorithm, a network trained in a complex environment
is applied to a simple environment. It can be seen from
Fig. 17 that the proposed algorithm in this paper can also
implement path planning ability in a simple environment. Its
dynamic programming effect is better than that obtained with
the improved ACO and APF algorithm.

FIGURE 17. Comparison of the algorithm planning routes in a simple
environment.

Figure 18 shows the planning routes for all algorithm.
The data in Table. 3 shows that the planned path of GRU40 is
the shortest. The time required for each step is almost half of

FIGURE 18. Comparison of all algorithm planning routes.

TABLE 3. Performance of different algorithm.

the improved ACO and APF algorithm. The planning time of
all GRUmodels is less than the time required to improveACO
and APF, indicating that the GRU models has high real-time
performance. The path length of GRU40 is also smaller than
the improved ACO and APF algorithm.

FIGURE 19. Comparison of planning time and number of obstacles
between the two algorithms.

Fig.19 provides statistics on the relationship between plan-
ning time and the number of obstacles for the two algorithms.
It can be seen that with an increase number of obstacles,
the planning time advantage of the GRU-RNN algorithm also
gradually increases. In terms of computational time required,
the GRU-RNN network model is superior to the improved
ACO algorithm. This is because traditional intelligent algo-
rithms must iterate multiple times, which increases the run-
time of the algorithm. After the data is input, the trained
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network can output the result after a series of mathematical
operations, which undoubtedly shortens the running time
of the program. For the GRU-RNN network model, if the
training set can be increased in size, the network model will
give a more stable and better performance.

FIGURE 20. Path map for outdoor collision avoidance planning.

FIGURE 21. Curves of the heading process.

Fig. 20 shows the application of the best network model
for final training to real case of robot collision avoidance
planning. The outdoor collision avoidance planning experi-
ment is performed and the results are compared with those of
the improved ACO and APF algorithm. It can be seen from
Fig. 21 that the network model proposed in this paper makes
the robot angle smoother and also significantly reduces the
changes in angle, especially at the corner at steps 150-200.
The angle is based on true North.

VI. CONCLUSION
This paper introduces the development of a mobile robot col-
lision avoidance algorithm based on improved ACO and APF
and designs a new GRU-RNN network model for dynamic
path planning of mobile robots in an unknown environment.
From the results of simulation, it can be concluded that the
GRU-RNN network has learned the planning policy of the
teacher system and that there is an overall performance due
to the use of the improved ACO and APF algorithm. The
network model can learn the input data, learn the correspond-
ing input-output mapping relationship, estimate the output
and make the correct decision. Strengths: The algorithm in

this paper has a good performance in terms of real-time and
smoothness of the planning path. The time required for each
step of planning is much smaller than that of the teacher
system. The training of the completed network is directly
transplanted to the real robot, and the results are also sat-
isfactory to show that the algorithm is robust. In addition,
the algorithm can be applied to the new environment without
the need to change parameters, and can also achieve collision
avoidance planning. Weakness: The disadvantage is that the
training network needs samples generated by the teacher
system, sometimes it is impossible to reach the target point
accurately, although the probability is less than 2%.

In the future, we will focus on the use of deep reinforce-
ment learning methods (such as deep Q-learning (DQN),
deterministic policy gradient algorithm (DDPG), policy
search, asynchronous advantage actor-critic(A3C) ) to deal
with robot navigation tasks by learning from its own suc-
cess or failure experience. This approach eliminates the need
for additional teacher systems to generate training samples.

APPENDIX

Algorithm Teacher System Collision Avoidance Algorithm
Initialize the environment, and parameters.
if there is no effective visible point or robot is located in the
emergency collision avoidance zone, the improved APF
method is used to avoid collision.
else: #Using improved ACO for collision avoidance.
Step 1: each visible point i is defined with a

correspond-ing set of visual points allowi.
Step 2: give pheromone trails τij a smaller positive

number, historically optimal retained algebraic counter
count = 0, evolution algebraic counter Gcount = 0
set historical optimal maximum retained algebra Max and
maximum evolution algebra Generation, set the initial his-
torical optimal ant path cost historybest = ∞,for each ant
population m = 30.
Step 3: k = 1
Step 4: if k > m, go to Step7; otherwise, place the ant k

in the starting position gs and go to Step 5.
Step 5: set current position of the ant k is gi, if the visible

point list allowi of ant k is empty, then the ant k die, and
go to Step 4.
Step 6: if the target point ge ∈ allowi, the ant k finds the

complete path, k = k + 1 and goes to Step 4; otherwise,
according to formula (9), the probability is selected that the
ant k selects any point gj ∈ allowi from the allowi of the
current position gi, and delete gi from allowi, set gj is the
current position of ant k , and go to Step 5.
Step 7: Gcount+ = 1, if the path of the ant k in

this iteration is the best, update historybest and count =
0,otherwise count+ = 1.
Step 8: if count > Max or Gcount ≥ Generation, end.

Otherwise, the pheromone trail is processed according to
the formulas (3) (5) (7), then go to Step 3.
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