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ABSTRACT The Web of Things (WoT) extends the concept of ‘‘Internet of Things (IoT)’’ in that smart
devices in the physical world can be interacted with or integrated via popular web technologies (e.g.,
HTML, HTTP, and Web API). With the WoT, smart devices can use Web APIs to make their data or
functionalities accessible by software. With the popularization of Web 2.0 Mashup applications, creating
Mashup applications for the IoT (orWoT) via combining different APIs, also has aroused increasing interests.
This paper proposes an approach to mining collaboration patterns between APIs to aid mashup creation for
the WoT. The goal of the approach is to disclose what kinds of Web APIs are frequently combined together
in mashup creation and what kinds of API combination are popular. Based on a real-world mashup and Web
API repository, PragrammableWeb.com, we exploit the text description and tags of Web APIs and employ
an FP-growth-based association mining algorithm to discover popular collaboration patterns between APIs.
To overcome the deficiency caused by tag sparsity, the approach also develops a method based on TF/IDF to
expand the tags of Web APIs. The experimental results validated the performance of the proposed approach.

INDEX TERMS Web API, collaboration patterns, association rule mining, web of things, mashup, tag
expansion.

I. INTRODUCTION
Internet of Things (IoT) involves extending Internet connec-
tivity beyond standard devices, such as desktops, laptops,
smartphones and tablets, to any range of traditionally dumb or
non-internet-enabled physical devices and everyday objects.
With the IoT, a brand new world of possible applications is
unveiled. However, due to the lack of standards, even devel-
opment of a simple application involving the heterogeneous
devices of the IoT is a non-trivial task and still requires
extensive skills and time [1]. It becomes highly desirable that
developers should be able to quickly build IoT applications
only by recombining ready-made building blocks, just like
using APIs on personal computers or Internet.

To make the smart devices or objects in the IoT more
accessible and integrable, the concept ‘‘Web of Things’’
(WoT) is developed [2]. Similar to what the Web (Appli-
cation Layer) is to the Internet (Network Layer), WoT
provides an Application Layer that simplifies the creation
of IoT applications. With the WoT, smart devices in the

physical world can be easily interacted with or integrated
via popular Web technologies, such as HTML(Hyper Text
Mark-up Language), HTTP(HyperText Transfer Protocol)
and REST(Representational State Transfer), and thus all
devices can be integrated into the existing Web. According
to the WoT architecture [3]–[5], all smart things should be
exposing their data or services through RESTful APIs. REST-
ful APIs refers to Web APIs or Web services that conform to
the REST architectural style, in which data and functionality
are considered Web resources and are accessed using Uni-
form Resource Identifiers (URIs). With WoT, it is expected
that applications can be quickly developed via combining the
APIs of different smart things.

With the prevalence of Web 2.0 mashup applications,
creating mashup applications for IoT(or WoT) via com-
bining different APIs, also has aroused great and increas-
ing interests. A number of WoT mashup applications and
tools have been created and are being actively developed
such as [6] and [7]. For example, the Japan Geigermap
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FIGURE 1. Relationships among Web APIs, mashups and tags.

(http://japan.failedrobot.com), which is aWoTmashup appli-
cation developed by integrating Google Map APIs and geiger
counter readings, can visualize the crowd-sourced radiation
geiger counter readings across Japan on a Google map.
Another representative example is the bike sharing applica-
tions (such as Ofo and Mobike), which integrate the shared
bikes to the Internet and Web via combining GPS, map
APIs and payment APIs. With the advance of IoT and WoT,
it is expected that the development of the APIs and mashup
applications for IoT and WoT would be greatly accelerated.

Though mashuping Web APIs makes the application cre-
ation easier to developers, how to identify suitable API com-
binations is still a challenge issue for the huge number of
APIs on the Web. To aid mashup creation and API combi-
nation discovery for WoT, this paper proposes an approach
to mining popular collaboration patterns between APIs. The
collaboration patterns are mined to reveal what kinds of
Web APIs are frequently combined in mashup creation and
what functionalities of Web APIs are popular in mashup
creation. Based on the observation that most Web APIs and
their mashup applications have user-added tags for annotating
their functionalities and application scenarios, the proposed
approach exploits the tags of Web APIs and mashups to
mining API collaboration patterns. FIGURE 1 shows the
associations among Web APIs, mashups and tags. As we can
see, a mashup is likely to comprise multiple Web APIs, e.g.,
the mashup ‘‘Sky Map’’ is composed of ‘‘Google maps’’ and
‘‘Youtube’’. And a mashup or a Web API is likely to have
a few user-annotated tags, e.g., ‘‘Youtube’’ is tagged with
‘‘video’’ and ‘‘media’’, which means that the functions of
‘‘Youtube’’ API are related to ‘‘video’’ and ‘‘media’’. If two
tags frequently co-occur in API combinations in mashup cre-
ation, we suppose that there is a strong association between
the functionalities represented by them, and view them as an
API collaboration pattern. To summarize, in this paper we
make the following contributions.

1) We propose a Web API tag association mining algo-
rithm based on FP-growth, to obtain the co-occurrence
relationships among tags in API combinations.

2) We employ a set of text processing techniques (such as
the Stanford CoreNLP, WordNet and TF-IDF) to tackle
the inconsistency and sparsity of tags, so as to improve
the quality of the API collaboration pattern mining.

3) We conduct a set of extensive experiments using
a real-world mashup and Web API repository, Pra-
grammableWeb.com. The experimental results show
the proposed approach achieves a significant improve-
ment in terms of precision and F-Measure, compared
with the other comparative approaches.

The rest of this paper is organized as follows: Section 2 sur-
veys related work on Web API association mining.
Section 3 presents the approach to mining Web API collab-
oration patterns based on API tag association rule mining,
namely WACP. Section 4 discusses the experimental settings
and results. Finally, Section 5 concludes this paper and
outlines future work.

II. RELATED WORK
Web APIs or Web services have been widely used for devel-
oping applications in various application scenarios such as
business process management [8], scientific workflow man-
agement [9], [10], and wireless sensor networks [11], [12].
With the prevalence of Web 2.0, there is a great need for
common users without much programming skills to create
their personal applications. Against this background, various
mashup tools emerge, and mashuping up different Web APIs
to create applications has become very popular. However,
with the huge number of APIs on the Web, it is still a
non-trivial work to find appropriate APIs for mashup cre-
ation. A number of research studies have exploited the histor-
ical usage information of Web APIs to help mashup creation,
and they are surveyed as follows.
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Some studies focus on mining the collaboration relations
between APIs and incorporate them into API recommen-
dation for mashup creation. For example, [13] explores the
co-invocation history betweenWeb APIs and propose a latent
model to capture the underlying relations of APIs in mashup
creation. Reference [14] recommends APIs for mashups by
integrating functional and social relations between APIs,
mashups and users by a coupled matrix factorization model.
Reference [15] takes the categories of APIs into consid-
erations to recommend APIs for mashup creation by first
categorizing APIs by functionality and ranking APIs within
each category. However, all of above methods aim at exploit-
ing API collaboration relationships to recommend APIs
for mashup creation. This paper focuses on mining API
collaboration patterns, instead of particular collaboration
relationships.

A few studies have been conducted to mine collaboration
ormashup patterns ofWebAPIs. Goarany et al. [16] proposed
an approach based on the tags of mashups and Web APIs
to predict mashup patterns of APIs. However, it can only
generate 2-item association rules and did not address the
shortcomings of user annotated tags such as inconsistencies,
typos and proliferation of synonyms. Ni et al. [17] proposed a
rule-based decision tree algorithm to mine both positive and
negative tag collaboration rules from the annotated tags of
Web services, and then applied them to service recommen-
dation. Again, the inconsistencies, typos and proliferation of
synonyms of tags were not taken into account and only 2-item
association rules were generated. Gao et al. [18] proposed a
Service Co-occurrence LDA (SeCo-LDA) model that mines
latent topicmodels over service co-occurrence patterns. How-
ever, it’s not easy to use a few words to describe the topic of a
service co-occurrence pattern, and thus making the service
co-occurrence patterns hard to understand. Reference [19]
investigated the evolution of service composition patterns
based on SeCo-LDA.

There are also several studies which employed a
network-based approach to mining collaboration or mashup
patterns between Web APIs. Han et al. [20] mined
the integration patterns of Web APIs or mashups in
the Programmable ecosystem via using the tag-tag net-
work, which was built from the tag co-occurrence of
Web APIs in mashups. Tang et al. [21] also developed
a tag pair network, which is built from the annotated
tags of Web services and the Web service collabora-
tion network. Popular tag pairs were identified in their
work.

Different from previous work, this work fixes the defects
of user annotated tags such as inconsistencies, typos and
proliferation of synonyms, and can generate association rules
other than 2-itemsets. We unify the different forms of every
tag and consolidate all synonyms of tags. We also extract
keywords from theWebAPI description documents to expand
the tag sets of Web APIs, so that the data sparsity issue
of tags is relieved. Finally, we employ a FP-growth-based
algorithm to mine tag associations between Web APIs and

use the strongest tag association rules to disclose Web API
collaboration patterns.

III. THE APPROACH
In this section, we firstly overview the proposed approach
WACP. The overall process and components of WACP are
briefly introduced. Then every procedure of WACP, such
as tag expansion, tag cleaning and processing, association
rule mining and API collaboration pattern discovering, are
described in detail.

A. OVERVIEW
FIGURE 2 presents the overall process of the proposed
approachWACP. As it shows, WACP has the following major
procedures:

1) Data collection: WACP depends on the tags of Web
APIs and the historical collaboration information of
Web APIs in mashup creation. Therefore, it is impor-
tant to obtain such data. Fortunately, these data can
be found through popular Web API portals or search
engines such as ProgrammableWeb.com.

2) Tag expansion: Since an API usually has only a few
tags in the original dataset, which may be insufficient
to depict the functionalities of the API, we use this
procedure to generate more tags for APIs. To do this,
we extract keywords from the Web API description
documents and use TF-IDF to identify important key-
words. The top-ranked keyworks are used to expand the
tag set for each API.

3) Tag processing: In this procedure, we perform word
lemmatization and synonym consolidation for the tags
of Web APIs, to ensure the unambiguity and accuracy
of tag expressions. We also generate a tag set for each
mashup, which is treated as a transaction in this work.
The tag set is the union of the tags of all APIs that
co-occurred in the mashup.

4) Tag association mining: In this procedure we employ
a FP-growth-based algorithm to analyze the tag set of
Web APIs, mine all association rules among the tags
and calculate their support and confidence degrees. The
strong association rules with support and confidence
greater than given thresholds are identified.

5) API collaboration pattern generation: In this procedure
we filter the tag association rules mined in the above
step to remove meaningless association rules and the
remained strong association rules are selected and used
asWebAPI collaboration patterns, which disclose what
functionalities or characteristics of Web APIs make
more sense in mashup creation.

B. TAG EXPANSION
We employed a TF-IDF-based method to mine the descrip-
tion documents of APIs to expand the tag sets of APIs.
Term frequency-inverse document frequency (TF-IDF) [22]
is a numerical statistic method that is used to evaluate how
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FIGURE 2. The overall process of WACP.

important a word is to a document. The related definitions
about TF-IDF are listed as follows:
Definition 1: TF (Term Frequency), which refers to the

frequency at which a givenword appears in a given document.
Its calculation formula is:

TFx,y =
nx,y∑
k nk,y

(1)

where nx,y is the number of times that term x occurs in
document y,

∑
k nk,y is the total number of terms (k) included

by the document y.
Definition 2: IDF (Inverse Document Frequency), is a mea-

sure of how much information a word or term provides, that
is, whether the term is common or rare across all documents.
It is calculated using the following formula:

IDFx = log
N

nx + 1
(2)

where N represents the number of all documents, and nx rep-
resents the number of documents where the term x appears.
The denominator nx + 1 in Eq. (2) is used to avoid division-
by-zero when the term is not in the corpus of all documents.
The logarithm is used to narrow the range of IDF, since the
number of documents may be very high. The smaller is the
number of documents that contains term x, the larger is the
IDF value of the term x.
To determine whether a term should be treated as a key-

word, we should not only take into account the IDF value,
but also consider the TF value, that is the complete TF-IDF.

The TF-IDF is calculated as:

TF − IDFx,y = TFx,y × IDFx (3)

This work employs TF-IDF to extract important keywords
from the description document of a Web API, and then use
them as new tags annotating the API. Before extracting API
keywords, we first perform a pre-processing procedure to all
Web APIs’ description text, via the following two steps:

• Step 1. Remove special characters such as stop words
and punctuation symbols, such as ‘‘a’’, ‘‘the’’, ‘‘+’’, ‘‘,’’,
etc.

• Step 2. Word segmentation. Split the compound words
into simple words. For example, the word ‘‘voicemes-
sages’’, will be split into two words ‘‘voice’’ and
‘‘messages’’.

After all the description documents of Web APIs are
preprocessed, we calculate the TF-IDF value of each word
appeared in the Web API description documents, and then
sort the words in a descending order according to their values
of TF-IDF. Finally. For each Web API, we select the top K
(K = 1, 2, 3, . . .) keywords with the largest TF-IDF values
as new tags to expand the original tag sets of Web APIs.

C. TAG CLEANING AND CONSOLIDATION
After Web API tag expansion, the Web API tags need to be
further cleaned and consolidated to handle their expression
issues such as inconsistencies and proliferation of synonyms.
The steps are as follows:

VOLUME 7, 2019 14209



M. Tang et al.: Mining Collaboration Patterns Between APIs for Mashup Creation in WoT

• Step 1. Word Lemmatization. The Stanford CoreNLP
is used to do lemmatization, due to that there are
some Web API tags with different forms are originated
from the same word, such as messaging and message.
This inconsistency may generate different tag associ-
ation rules with identical meanings, such as the rule
‘‘messaging→phone’’ and ‘‘message→phone’’. Actu-
ally, the two association rules should be merged as a
single rule. In order to make the Web API collaboration
pattern mining more accurate, all the tags need to be
lemmatized to their original form.

• Step 2. Synonyms Consolidation. The WordNet dic-
tionary is used to consolidate the synonyms of Web
API tags. Due to the different description habits of
different developers, different words may be used to
express the same meaning when defining the tags of
Web APIs. This leads to many tags with the same mean-
ing, e.g., bicycle and bike, telephone and phone, picture
and photo, etc. This proliferation of synonyms may
lead to a number of similar API tag association rules,
e.g., ‘‘telephone→webhook’’ and ‘‘phone→webhook’’,
‘‘place→bicycle’’ and ‘‘place→bike’’, etc. It is unnec-
essary to treat these similar association rules as differ-
ent rules. Instead, the different synonyms of every tag
should be consolidated to improve the effectiveness of
Web API composition pattern mining.

D. WEB API TAG ASSOCIATION MINING
Through tag expansion, lemmatization and synonyms con-
solidation, a set of informative and cleaned tags are obtained
for each Web API. In this section, we describe how to mine
association rules among tags of Web APIs.

Association rule mining [23] is a rule-basedmachine learn-
ingmethod for discovering interesting relations between vari-
ables in large databases. The related definitions are listed as
follows:
Definition 3: Let I = {i1, i2, · · · , in} be the set of all items,

and D = {t1, t2, · · · , tm} be the set of all transactions, and
each transaction in I has a unique transaction ID and contains
a subset of the items in I . A rule is defined as an implication
of the form X → Y , and X ⊆ I , Y ⊆ I , X 6= ∅, Y 6= ∅,
X ∩ Y 6= ∅.
Definition 4: Let X be an itemset, Y be another item-

set. Support is an indication of how frequently the itemset
appears. The support of a rule X → Y is defined as the
proportion of the transactions in the dataset which contains
the itemset X and Y . It is calculated as:

support(X → Y ) =
|t ∈ D; (X ∪ Y ⊆ t)|

|D|
(4)

Definition 5: Let X be an itemset, Y be another itemset, and
X → Y be an associate rule. Confidence is an indication of
how often the rule has been found to be true. The confidence
of a rule X → Y is defined as the proportion of the transac-
tions that contains X which also contains Y . It is calculated

as:

confidence(X → Y ) =
support(X ∪ Y )
support(X )

(5)

The problem of mining association rules is to find all
rules whose support and confidence are higher than given
minimum support and confidence thresholds.

This work exploits the historical API collaboration data in
mashup applications to mine tag association rules. That is,
we view every mashup as a transaction, and the tags of a
transaction (mashup) is the union of the tag sets of the APIs
co-occurred in the mashup.

We employ a FP-growth-based algorithm [24] to mineWeb
API tag associate rules, such as [tagi1, tagi2, · · · , tagin] →
tagj. The details of the algorithm are presented in
Algorithm 1. It mainly has three phases. The first phase is
the FP-tree construction. The second phase is the frequent
item mining based on the FP-tree. The third phase is the tag
association rule mining.

E. API COLLABORATION PATTERN DISCOVERY
The above algorithm can generate a set of strong tag asso-
ciation rules with support and confidence greater than given
thresholds. Among all mined tag association rules, however,
some of them may be improper to act as collaboration pat-
terns of Web APIs. For example, for an association rule
[tagi1, tagi2, · · · , tagin]→ tagj, if tagi1, tagi2, · · · , tagin and
tagj all have been used to annotate the same API, this rule
should not be taken into account for collaboration pattern
mining. This is because that these tags belonging to the same
API are just used to describe the same API resource, and
cannot not reflect the functional association between different
Web APIs. Hence, the complete process of mining Web API
collaboration patterns has the following three steps:

1) Generate Web API tag association rules based on the
FP-growth algorithm, as we present in Algorithm 1.

2) Filter the generated tag association rules to obtain a
subset of tag association rules with support and con-
fidence greater than given thresholds.

3) For each rule in the subset of Web API tag association
rules generated above, identify whether all tags in it are
belonging to the same Web API. If so, remove it from
the subset of tag association rules. The remainder tag
association rules can be treated as Web API collabora-
tion patterns.

IV. EXPERIMENTS
In this section we firstly describe the dataset for the exper-
imental evaluation of the proposed approach WACP. Then,
we present the experimental results for further illustrating
the proposed approach. Finally, we evaluate the proposed
approach and compare its performance with two baselines.

A. DATASET
The dataset used in this work is crawled from Pro-
grammableWeb.com, which is the most popular Web API
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Algorithm 1 Web API Tag Association Rule Mining Based
on FP-Growth
Input:WebAPI tags, API collaboration databaseD, minimal
support min_sup, minimal confidence min_conf.
Output: Web API tag association rules.
1. Phase 1. FP-tree Construction

1) Scan D, obtain tag frequent itemset B, then sorted by
the support value to get a frequent item list Lfreq.

2) Create the FP-tree root node ‘‘Null’’, sort all the trans-
actions in D according to Lfreq.

3) All items in D are added to FP-tree in turn, and node
in the tree contains item and the occurrences of the
item. If the added item already exists, the occurrence
is incremented by 1. Otherwise, a new node is created,
and its occurrence is set to 1, and it is linked to its parent
node.

4) Recursively call this method until all items have been
added.

2. Phase 2. Mining FP-tree to get frequent items. This step
is realized through calling FP-growth(FP-tree, Null):

3. Procedure FP-growth(Tree, α):
4. if Tree contains only single path then
5. for each composition (denoted as β) in path do
6. generate item β ∪α, the support value is the min_sup

of node in β
7. end for
8. else
9. for each tag ai in the head of Tree do
10. generate item β = ai ∪ α, the support value is equal

to the support value of ai
11. construct conditional items and conditional FP-tree

(denoted as Treeβ ) for β
12. if Treeβ 6= ∅ then
13. call FP-growth(Treeβ , β)
14. end if
15. end for
16. end if
17. Phase 3. Mining Web API tag association rules

1) Define the tag association rule as ‘‘condition →
result’’.

2) For all the frequent items in B that satisfy min_sup,
generate tag association rule, as follows:

18. Function List<Rule> TagRuleMining(B):
19. fprules← ∅, i← 0
20. if B is not null then
21. while i < B.size do
22. result ← B.get(i)
23. condition← condition ∪ B.subList(0, i)
24. condition← condition ∪ B.subList(i+ 1,B.size)
25. generate a rule ‘‘condition→ result’’and put it into

the fprules
26. i++
27. end while
28. end if

Algorithm 1 (Continued.) Web API Tag Association Rule
Mining Based on FP-Growth
29: return fprules (tag association rules generated by

frequent itemset B).
30. 1) Obtain all Web API tag association rules in the

form of ‘‘condition→ result’’ from fprules.
2) Obtain all strong Web API tag association rules by

filtering using a defined min_conf threshold.

TABLE 1. Statistical properties of the dataset.

TABLE 2. Examples of API tags after tag expansion.

and mashup repository on the Web. The dataset is com-
posed of the description information of 9135 Web APIs and
6875 mashups. The description information of each Web
API includes its name, tag set and description text, and the
description information of each mashup includes its name,
tag set and theWeb APIs occurred in it. The tags ofWeb APIs
are used for API collaboration pattern mining, while the tags
of mashups are used as test data in the experiments.

Table 1 summarizes the statistics of the dataset. As we can
see, the total number of tags used by all Web APIs is 1727,
and the average number of tags for each API is only about
1727/9135=3.275. This indicates that the tags for annotating
Web APIs is very sparse in the dataset. Hence, it is a necessity
to expand the tags of APIs via mining more tags from their
description text.

B. RESULTS
This section presents some experimental results for the pur-
pose of illustrating the proposed approach WACP.

1) WEB API TAG EXPANSION
Aswe stated before, we use TF-IDF to extract keywords from
the Web API description documents and generate new tags to
expand the original tag set for each Web API. Table 2 shows
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some examples of Web APIs after tag expansion, where the
bold words represent new tags. For example, the Web API
websnapr has only two tags ‘‘image’’ and ‘‘security’’ before
tag expansion, we use TF-IDF to identify an important key-
word ‘‘perform’’ in its description text and adopt it as a new
tag for the Web API.

2) WEB API TAG PROCESSING
After tag expansion, the expanded tag set are then cleaned and
processed through lemmatization, synonyms consolidation,
etc. Table 3 shows some examples of API tags after tag clean-
ing and processing. For example, the Web API Shiny ads has
two tags ‘‘advertising’’ and ‘‘developers’’ after tag expansion,
as shown in Table 3. After tag cleaning and processing, its two
tags are changed to ‘‘advertise’’ and ‘‘developer’’.

TABLE 3. Examples of API tags after tag processing.

3) ASSOCIATION RULE MINING OF WEB API TAGS
As described in Section III, we have used a FP-growth-
based association rulemining algorithm to obtain the frequent
itemsets of Web API tags based on their co-occurrence in
API collaborations. Table 4 shows some examples of frequent
itemsets ofWeb API tags and their frequency occurred in API
collaborations.

TABLE 4. Some Examples of web API tag frequent itemsets.

In the experiments, we set the threshold of support degree
to 0.007 (50/6875) and the threshold of confidence degree
to 0.5, to obtain strong Web API tag association rules.
Table 5 shows the top 10 Web API tag association rules for
2-itemsets.

TABLE 5. Top 10 web API tag association rules (only 2-itemsets).

4) COLLABORATION PATTERN DISCOVERING FOR WEB APIS
As we have mentioned before, the rules in which tags belong
to the same Web API will be removed since they may be
improper to express the association between APIs, and the
remainder strong API association rules can be adopted as
API collaboration patterns. Table 6 shows the top 15 Web
API collaboration patterns discovered from tag association
rules. In the following, we take the 3rd and 10th collaboration
patterns in Table 6 as examples to explain their meanings.

TABLE 6. Top 5 web API tag association rules (including 2,3 and
4-itemsets).

The pattern ‘‘[weather]→viewer’’ indicates that the Web
APIs with ‘‘weather forecast’’ functionality and the Web
APIs with ‘‘viewer’’ functionality are frequently combined
to create applications. This indicates that the combination
of functionalities ‘‘weather forecast’’ and ‘‘viewer’’ is very
popular in mashup creation. In a similar manner, the pattern
‘‘[viewer, search]→display’’ indicates that the combination
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of functionalities ‘‘viewer’’, ‘‘search’’ and ‘‘display’’ is pop-
ular in mashup creation.

Being aware of Web API collaboration patterns can help
developers refine their requirements and build mashup appli-
cations more efficiently. For example, when a developer
wants to develop a weather-forecast related mashup appli-
cation, according to the mined API collaboration patterns,
she/he can easily find out what combinations of function-
alities are popular in mashup creation. For example, she/he
may find that the ‘‘[weather]→viewer’’ API collaboration
pattern is interesting and satisfies her/his requirement. Hence,
she/he realizes that besides the weather forecast function,
it’s better to incorporate another functionality ‘‘viewer’’ into
her/his mashup application. Finally, she/he search the Web
API repository for the most appropriate Web APIs with tags
‘‘weather’’ and ‘‘viewer’’, and combine them to create the
mashup application.

C. EVALUATION
In order to evaluate the proposed WACP approach, we com-
pare it with the following two baseline approaches.

• Baseline1: WACP without tag expansion (WACP∗).
This approach is a reduced version ofWACP, and is used
to find how much effect the tag expansion has on the
performance of WACP.

• Baseline2. This baseline, which was proposed in [16],
used an Apriori-based approach to mine 2-itemset tag
association rules between Web APIs. However, it did
not take inconsistencies, typos and proliferation of syn-
onyms with tags into consideration.

For the convenience of comparison, we use only the
2-itemset tag association rules with confidence above 0.5 in
the experiments for evaluation. We use three evaluation met-
rics to evaluate the performance of Web API collaboration
pattern mining: precision, recall, and F-measure, which are
defined as follows:

Precision =
Ftrue

Ftrue + Ffalse
(6)

Recall =
Ftrue

Ftrue + UFtrue
(7)

F − measure =
2× Precision× Recall
Precision+ Recall

(8)

where Ftrue is the number of realistic ones of the mined Web
API collaboration patterns, Ffalse is the number of unrealis-
tic ones of the mined Web API collaboration patterns, and
UFtrue is the number of undiscovered but realistic Web API
collaboration patterns. We use the tag association rules mined
from the tags of mashups as benchmarks to test whether a
tag association rule mined from the tags of Web APIs is a
realistic API collaboration pattern or not. This is because that
a mashup application is usually consisted of two or moreWeb
APIs, and thus its tags can reflect the combination of different
functionalities of Web APIs. If a tag association rule mined
from Web APIs belonging to the mashups’ tag association

rule, it can be viewed as a realistic API collaboration pattern,
otherwise it is an unrealistic pattern.

FIGURE 3, FIGURE 4 and FIGURE 5 show the precision,
recall and F-measure performance of WACP and the baseline
approaches. As we can see, the precision of the WACP is
significantly higher than the other two approaches. The recall
of the three approaches are very similar, and it is significantly
affected by the support threshold. The F-measure, which
is an aggregate of precision and recall, also indicates that
WACP outperforms the other two approaches significantly.
The baseline approach WACP∗ (WACP without tag expan-
sion) slightly outperforms the other one proposed in [16],
indicating that tag cleaning and synonyms consolidation do
have positive effects on tag association mining. And the
observation that WACP significantly outperforms WACP∗

indicates that, tag expansion is a crucial step to improve tag
association mining and collaboration pattern discovering for
Web APIs.

FIGURE 3. Precision comparison.

FIGURE 4. Recall comparison.
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FIGURE 5. F-measure comparison.

FIGURE 6. The influence of the number of API tags expanded on
F-measure.

Furthermore, we also conducted an experiment to evaluate
how the number of tags expanded for each Web API influ-
ences the performance of API collaboration pattern mining.
FIGURE 6 shows the results of this experiment. As we can
observe, the F-measure performance of one tag expansion is
higher than that of two tag expansion and three tag expansion.
This observation indicates that the proposed Web API col-
laboration pattern mining approach has the best performance
when expanding one tag for each Web API. When more
tags are extracted from the description text of Web APIs,
according to TF-IDF, the less important tags (keywords) may
cause noises to tag association rule mining and thus degrade
the performance.

V. CONCLUSION
Based on the Web API collaboration history in mashup cre-
ation, this paper proposed an approach to mining the asso-
ciation rules between API tags which are used for annotating
the functionalities ofWebAPIs. A strong association between
API tags indicates that the corresponding tags have frequently

co-occurred in API combinations for mashup creation and
thus their association can be deemed as a typical API collabo-
ration pattern. To overcome the data sparsity of API tags, the
TF-IDF method was used to extract the keywords in the Web
API description documents as new tags to enrich the tag sets
of Web APIs. And to improve the quality of API tags, word
lemmatization and synonyms consolidation were performed.
Finally, a FP-growth-based algorithm was developed to mine
the strong association rules among Web API tags. A set of
experiments was conducted on a real-world Web API dataset
and the experimental results validated the proposed approach.

In the future work, we plan to apply the mined API col-
laboration patterns to Web API recommendation for efficient
mashup creation in Web of Things.
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