
SPECIAL SECTION ON EMERGING TRENDS, ISSUES AND CHALLENGES FOR
ARRAY SIGNAL PROCESSING AND ITS APPLICATIONS IN SMART CITY

Received December 30, 2018, accepted January 19, 2019, date of publication January 24, 2019, date of current version February 12, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2894624

Three-Parallel Co-Prime Polarization Sensitive
Array for 2-D DOA and Polarization Estimation
via Sparse Representation
WEIJIAN SI, YAN WANG , AND CHUNJIE ZHANG
College of Information and Communication Engineering, Harbin Engineering University, Harbin 150001, China

Corresponding author: Chunjie Zhang (zhangchunjie@hrbeu.edu.cn)

This work was supported by in part by the National Natural Science Foundation of China under Grant 61671168 and Grant 61801143,
in part by the Natural Science Foundation of Heilongjiang Province under Grant QC2016085, and in part by the Fundamental Research
Funds for the Central Universities under Grant HEUCFJ180801 and Grant HEUCF180801.

ABSTRACT Co-prime array configurations are considered attractive due to the extension of degrees of
freedom (DOFs) and the sparse placement of array elements. In this paper, a 2-D direction-of-arrival (DOA)
and polarization estimation algorithm are proposed with the three-parallel co-prime polarization sensitive
array which consists of the co-centered orthogonal loop and dipole. A novel cross-covariance matrix, that not
contains the polarization parameters, is constructed to decouple the joint estimation problem of 2-D DOA
angles and polarization parameters. Then, by using the vectorization operation and linear transformation,
a virtual uniform linear array with larger DOFs is achieved. Meanwhile, a sparse representation-based
algorithm is presented to estimate 2-D DOA angles with the only 1-D dictionary. To avoid the selection
of regularization parameter in the sparse recovery process, we derive the constraint form of the optimization
problem based on the upper bound of the data fitting error, which can reduce the effect of improper selection
on regularization parameter. Finally, the polarization parameters are estimated via a least squares method.
Since the proposed algorithm constructs the data vector with cross-covariance matrices between subarrays,
the influence of noise is suppressed, and the estimation accuracy with low signal-to-noise ratio is enhanced.
In the end, the simulation results demonstrate the effectiveness of the proposed algorithm.

INDEX TERMS Co-prime array configurations, direction-of-arrival estimation, polarization parameter
estimation, polarization sensitive array, signal processing, sparse representation.

I. INTRODUCTION
The direction-of-arrival (DOA) estimation is a vital prob-
lem in the field of array signal processing [1]–[3], espe-
cially the estimation of two-dimensional (2-D) DOA and
polarization parameters based on the polarization sensitive
array (PSA) [4]–[6]. The PSA composed of vector sensors
can measure the direction and polarization information of
the electromagnetic wave signals, which offers better estima-
tion accuracy, target classification, recognition performance,
and anti-jamming capability [7]–[9]. Over the past few
decades, by using the PSAs, various DOA and polarization
parameter estimation algorithms have been proposed. Refer-
ences [10], [11] constructed the long-vector (LV) received
data model of the electromagnetic wave signal, and pro-
posed polarized MUSIC algorithm with multi-dimensional

spectrum peak searching of DOA and polarization param-
eters. By using the spatial-, temporal-, and polarization-
invariance, respectively, a series of polarized ESPRIT-based
algorithms [12]–[14] was presented with low computational
cost. The vector cross-product based algorithm [15]–[17] can
estimate the parameters without ambiguity, where only a
single six-component vector sensor is used. In general, the
algorithms using PSA can make use of the vector structure of
electromagnetic signal, achieving the improvement of estima-
tion performance.

However, all aforementioned algorithms need compact
placement of the array elements, and cannot handle the
parameter estimation problem under the condition that the
signal number is larger than the sensor number. The inter-
element spacing limit of less than or equal to half a
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wavelength restricts the estimation performance, whereas the
sparse array has much more potential advantages [18], [19].
In recent years, a new type of array configuration called co-
prime array (CPA) [20]–[23] which consists of two subarrays
has been proposed for increasing the degrees of freedom
(DOFs). By vectorizing the covariance matrix of the array
received data, the CPA can obtain O(MN ) DOFs with only
O(M + N ) physical sensors where M and N are co-prime
numbers. As for the 2-D DOA estimation, the parallel co-
prime array (PCPA) [24]–[26], three-parallel co-prime array
(TPCPA) [27], and co-prime planar array (CPPA) [28]–[30]
are constructed by vectorizing the cross-covariance matrix
of multiple subarrays. The DOF extension deeply promotes
the study of DOA estimation by using CPAs. The spatial
smoothing technique based-MUSIC [31]–[33] algorithm is
used to solve the correlation during the vectorization oper-
ation. Subsequently, the sparse representation (SR) frame-
work based algorithms [34]–[37] with CPAs are developed to
fully exploit the extended DOFs. In summary, by placing the
sensors in co-prime configuration, the CPA notably increases
the DOFs, thereby more signals can be detected. Meanwhile,
the array aperture is expanded due to the sparse placement of
array elements in CPAs, which would improve the estimation
performance.

In this paper, we construct the three-parallel co-prime
polarization sensitive array (TPCP-PSA), and propose a novel
cross-covariance matrix based algorithm to estimate 2-D
DOA angles and polarization parameters. By utilizing the
received data of electric filed vector and magnetic field
vector, we represent a new reconstructed cross-covariance
matrix that not contains the polarization parameters. With
the vectorization operation, a virtual uniform linear array
(ULA) with 2M (N + 1) − 1 DOFs was constructed. Then,
the 2-D DOA angles are estimated by SR based method with
only one-dimensional (1-D) overcomplete dictionary. Finally,
the polarization parameters are obtained via least squares
method. Compared with the current estimation algorithm
based on PSA, the proposed algorithm increases the DOFs
dramatically since the co-prime configuration is applied,
which improves the estimation performance, and the under-
determined estimation case can be handled. Since it is hard
to select a proper regularization parameter for the sparse
recover method based on `1-norm minimization, we deduce
the constraint form of the optimization problem with the
upper bound of the data fitting error to avoid the selec-
tion of regularization parameter. The simulation results indi-
cate that the proposed algorithm has superior estimation
performance.

The remainder of this paper is organized as follows. The
problem is formulated in Section 2. The 2-D DOA and
polarization parameter estimation of the proposed algorithm
are explicitly described in Section 3, and the advantages
and innovations of the proposed algorithm are discussed in
Section 4. The numerical simulations are conducted to vali-
date the effectiveness of the proposed algorithm in Section 5.
Finally, Section 6 concludes this paper.

FIGURE 1. The planform of the three-parallel co-prime polarization
sensitive array.

FIGURE 2. The structure of COLD sensor and the 2-D DOA angles of
incident signal.

II. PROBLEM FORMULATION
A. THE THREE-PARALLEL CO-PRIME POLARIZATION
SENSITIVE ARRAY
Consider a three-parallel co-prime polarization sensitive
array consists of three uniform linear subarrays in the xoy-
plane, as shown in Figure 1. The element herein is the co-
centered orthogonal loop and dipole (COLD) and the dipole
and loop both parallel to z-axis, as shown in Figure 2. The sub-
array 1 has 2M sensors with spacingNd1, both subarray 2 and
3 have N sensors with spacing Md1, and the displacement
spacing between the subarrays is d2. The numbers M and N
are co-prime, without loss of generality, assume thatM < N ,
and d1 = d2 ≤ λ/2 is a fundamental spacing.

B. THE ARRAY RECEIVED SIGNAL MODEL
Assume that K far-field and narrowband signals, which have
travelled through a homogeneous isotropic medium, impinge
on the array. Since the COLD sensor can only receive the
z-component of electric field vector and magnetic field vec-
tor, the received part of the electromagnetic signal can be
expressed in Cartesian coordinates as[

ez,k
hz,k

]
=

[
− sinφk sin γkejηk
− sinφk cos γk

]
(1)

where the φk denotes the elevation angle measured from the
vertical z-axis, as shown in the Figure 2. γk ∈ [0, π/2] and
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ηk ∈ [−π, π] denote the auxiliary polarization angle and the
polarization phase difference, respectively. Then the received
data model of the three subarrays can be expressed as

x1(t) =
[
x1,e(t)
x1,h(t)

]
=

[
A1(β)Es(t)+ n1,e(t)
A1(β)Hs(t)+ n1,h(t)

]
, (2)

x2(t) =
[
x2,e(t)
x2,h(t)

]
=

[
A2(β)82(α)Es(t)+ n2,e(t)
A2(β)82(α)Hs(t)+ n2,h(t)

]
, (3)

x3(t) =
[
x3,e(t)
x3,h(t)

]
=

[
A3(β)83(α)Es(t)+ n3,e(t)
A3(β)83(α)Hs(t)+ n3,h(t)

]
(4)

where (α, β) are the two-dimensional DOA angles, which
denote the spatial angles measured from the positive x-axis
and positive y-axis, respectively, as shown in the Figure 2.
s(t) is the signal vector and ni,ς (t)(i = 1, 2, 3, ς = e, h) is the
complex noise vector. A1(β) ∈ C2M×K and A2(β),A3(β) ∈
CN×K are the spatial steering matrices of subarray 1, 2, and
3, the k-th columns are

a1(βk ) =
[
1, ej2πNd1 cosβk/λ, · · · , ej2π (2M−1)Nd1 cosβk/λ

]T
,

(5)

a2(βk ) = a3(βk )

=

[
1, ej2πMd1 cosβk/λ, · · · , ej2π (N−1)Md1 cosβk/λ

]T
(6)

where (·)T denotes transpose operation. 82(α) and 83(α) are
diagonal matrices and have the equation as

82(α)=8∗3(α)=diag
(
ej2πd2 cosα1/λ, · · · , ej2πd2 cosαK /λ

)
.

(7)

E and H are electric field and magnetic field matrices as

E = diag
(
ez,1, · · · , ez,K

)
, (8)

H = diag
(
hz,1, · · · , hz,K

)
. (9)

In addition, we make some assumptions as follows.

1) The received signal data is statistically independent
among the sensors, dipoles and snapshots.

2) The complex noise is supposed to be temporally and
spatially white Gaussian and uncorrelated with the
sources.

3) There is no mutual coupling effect among the sensors
and dipoles.

III. 2-D DOA ANGLE AND POLARIZATION PARAMETER
ESTIMATION BASED ON SPARSE REPRESENTATION
A. TWO-DIMESIONAL DOA ESTIAMTION
In this subsection, the data vector of a virtual ULA is con-
structed to estimate the 2-D DOA angles by using the charac-
teristic of co-prime numbers.

The cross-covariance matrix of ς (ς = e, h)-component of
subarray 1 and 2 is

R12,ς = E
[
x1,ς (t)xH2,ς (t)

]
= A1(β)Sς8∗2(α)A

H
2 (β) (10)

where Se = ERsEH, Sh = HRsHH, Rs = diag(σ 2
1 , · · · , σ

2
K )

is the covariance matrix of signal data, and σ 2
k is the power

of the k-th signal. The superscript (·)H denotes the complex
conjugate transpose operation. The operator E[·] denotes the
expectation operation. Then, define a new cross-covariance
matrix as

R12 = R12,e + R12,h = A1(β)S8∗2(α)A
H
2 (β) (11)

where

S = Se + Sh = diag
(
σ 2
1 sin2 φ1, · · · , σ 2

K sin2 φK
)

(12)

is a diagonal matrix. It is obviously that R12 only involves
2-D DOA angles but not the polarization parameters.

By using the vectorization operator, R12 can be trans-
formed into a vector form as

r12 = vec(R12) = B12(β) · p (13)

where (·)∗ denotes conjugate operation, and

B12(β) = A∗2(β)� A1(β), (14)

p = d
(
S8∗2(α)

)
=

[
σ 2
1 sin2 φ1e−j2πd2 cosα1/λ, · · · ,

σ 2
K sin2 φK e−j2πd2 cosαK /λ

]T
(15)

in which � denotes the Khatri-Rao product, and d(·) is the
operator that forms a column vector with the diagonal ele-
ments of the diagonal array.

If r12 is regarded as a single snapshot data vector of a
virtual line array (VLA),B12(β) is the corresponding steering
vector matrix, p is the single snapshot signal vector, and the
virtual array elements are located at

L12 =
{
(x1,i − x2,j)d1 |0 ≤ i ≤ 2M − 1, 0 ≤ j ≤ N

}
(16)

where x1,i is the location of the i-th physical sensor in the
subarray 1, x2,j is the location of the j-th physical sensor in
the subarray 2. It is easy to known that the locations of virtual
array elements are not continuous and uniform. Benefiting
from the characteristic of the co-prime numbers M and N ,
a virtual uniform linear array (VULA) consists of M (N +
1) virtual elements can be constructed, and the virtual array
elements are located at

L̃12 = {ld1 |0 ≤ l ≤ M (N + 1)− 1 }. (17)

Extract the entries of r12 and B12(β) corresponding to the
locations in L̃12, and the single snapshot data vector of VULA
can be obtained as

z12 = P12r12 = B̃12(β) · p (18)

where

B̃12(β) = P12B12(β) =
[
b̃12(β1), · · · , b̃12(βK )

]
(19)

is the steering vector matrix, and the k-th column is

b̃12(βk )=
[
1, ej2πd1 cosβk/λ, · · · , ej2π (M (N+1)−1)d1 cosβk/λ

]T
.

(20)
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P12 is the selection matrix to extract and sort the entries of
r12 to construct z12. Once the co-prime numbers M ,N are
determined, the selection matrix P12 is determined and can
be known.

Follow the above ideas, the cross-covariance matrix of
ς (ς = e, h)-component of subarray 3 and 1 can be obtained
as

R31,ς = E
[
x3,ς (t)xH1,ς (t)

]
= A3(α)83(β)SςAH

1 (α). (21)

The defined new cross-covariance matrix is

R31 = R31,e + R31,h = A3(β)83(α)SAH
1 (β), (22)

and the vector form is

r31 = vec(R31) = B31(β) · p31 (23)

where

B12(β) =
(
A∗2(β)� A1(β)

)
, (24)

p31 = d (83(α)S). (25)

Since subarray 2 and 3 are symmetric about the x-axis, the
equations 83(α) = 8∗2(α) and p31 = p are established.
Similarly, if r31 is regarded as a single snapshot data vector

of a VLA,B31(β) is the corresponding steering vector matrix,
p is the single snapshot signal vector, and the virtual array
elements are located at

L31 =
{
(x3,j − x1,i)d1 |0 ≤ i ≤ 2M − 1, 0 ≤ j ≤ N

}
. (26)

Then, the VULA consists ofM (N+1)−1 virtual elements
can be constructed, and the virtual array elements are located
at

L̃31 = {ld1 |−(M (N + 1)− 1) ≤ l ≤ −1 }. (27)

Extract the entries of r31 and B31(β) corresponding to the
locations in L̃12, and we can obtain the single snapshot data
vector of VULA as

z31 = P31r31 = B̃31(β) · p (28)

where

B̃31(β) = P31B31(β) =
[
b̃31(β1), · · · , b̃31(βK )

]
(29)

is steering vector matrix, and the k-th column is

b̃31(βk )=
[
e−j2π (M (N+1)−1)d1 cosβk/λ, · · · , e−j2πd1 cosβk/λ

]T
.

(30)

P31 is the selection matrix to extract and sort the entries of
r31 to construct z31. Once the co-prime numbers M ,N are
determined, the selection matrix P31 is determined and can
be known.

Further, combine the single snapshot data vectors r31 and
r12, a VULA that contains 2M (N + 1) − 1 virtual elements
can be obtained, and the virtual array elements are located at

L̃ = L̃31 ∪ L̃12

= {ld1 |−(M (N + 1)− 1) ≤ l ≤ (M (N + 1)− 1) }. (31)

The corresponding signal snapshot data vector is

z =
[
z31
z12

]
=

[
B̃31(β)
B̃12(β)

]
· p = B̃(β)p. (32)

However, the vectorization operation in (13) and (23)
would induce correlation between the incident signals, hence,
the signal model (32) can be considered as a ULA receiv-
ing K correlated incident signals. Note that the DOFs are
extended from the physical sensor number of the TPCP-
PSA 2(M + N ) to the virtual element number of the VULA
2M (N + 1) − 1, so that the parameter estimation problem
on the underdetermined condition can be solved. Moreover,
the cross-covariance matrices of the physical subarrays are
used in the process of constructing the VULA, thus the data
vector contains no noise terms, and the effect of the noise are
suppressed.

Due to the correlation of signals and only single available
snapshot, the subspace-based DOA estimation algorithm can-
not be applied. The sparse representation based DOA estima-
tion algorithms can handle the correlated problem naturally,
and can work properly even if the snapshot is insufficient.
From (32), it can be seen that the steering vector matrix only
contains one DOA angle β, hence, one-dimensional spatial
grid in the β angle domain is needed. By discretizing the β
angle domain, a sampling grid (β̄1, β̄2, · · · , β̄Q) withQ� K
is formed. Assume that the grid is dense enough so that
the actual DOA angles {βk}Kk=1 only lie within the grids.
To obtain denser grids with less computation complexity, the
multiresolution grid refinement [38] can be applied. Then the
data vector z can be sparsely represented as

z = 8(β̄) · u (33)

where 8 = [b̃(β̄1), b̃(β̄2), · · · , b̃(β̄Q)] is an overcomplete
dictionary, and u is a K sparse coefficient vector with uq 6= 0
if ∃β̄q = βk and uq = 0 otherwise. Obviously, 8(β̄) depends
on the DOA angle β, whereas u depends on the other DOA
angle α and the signal power. Hence, the 2-DDOA angles can
be obtained by solving the following `1-norm minimization
problem

min
û

∥∥z−8(β̄) · û
∥∥
2 + µ

∥∥û∥∥1 (34)

where ‖·‖2 and ‖·‖1 denote the `2- and `1-norm, representing
the residual error of z and the sparsity of estimated û. µ is
the regularization parameter that balance these two norms.
A small regularization parameter corresponds to good fits to
the data and smaller residuals. However, this would lead to
pseudo peaks in the spectrum. A large regularization parame-
ter makes the estimation results over simplistic and fails to fit
the data well. Due to the importance of µ and the difficulty
of selecting an appropriate µ, we derive another form of (34)
to avoid such a problem.

In practice, since the cross-covariance matrices in (10) and
(21) are unavailable, they are usually replaced by the sample
cross-covariance matrices within finite snapshots, i.e.

R̂12,ς =
1
L

∑L
t=1 x1,ς (t)x

H
2,ς (t), (35)
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R̂31,ς =
1
L

∑L
t=1 x3,ς (t)x

H
1,ς (t) (36)

where ς (ς = e, h) denotes the components of electric field
vector or magnetic field vector, and L denotes the snapshot
number.

Define an augmented cross-covariance matrix of
ς -component as

R̂ς =
[
R̂31,ς R̂12,ς

]
(37)

and the vector form is

r̂ς = vec
(
R̂ς
)
=

[
r̂31,ς
r̂12,ς

]
(38)

where r̂31,ς and r̂12,ς are the vector forms of R̂31,ς and R̂12,ς ,
respectively.

In accordance with [25], the estimation error 1r31,ζ and
1r12,ς satisfy the asymptotic complex Gaussian distribution,
i.e.

1r12,ς = r̂12,ς − r12,ς ∼ AsN
(
0, 1L

(
RT
2,ς ⊗ R1,ς

))
, (39)

1r31,ς = r̂31,ς − r31,ς ∼ AsN
(
0, 1L

(
RT
1,ς ⊗ R3,ς

))
. (40)

Therefore, the estimation error 1rζ of the vector form
of the augmented cross-covariance matrix also satisfies the
asymptotic complex Gaussian distribution, i.e.

1rς = r̂ς − rς ∼ AsN
(
0,Cς

)
(41)

with

Cς =
1
L

[
RT
1,ς ⊗ R3,ς RT

21,ς ⊗ R31,ς

RT
13,ς ⊗ R12,ς RT

2,ς ⊗ R1,ς

]
(42)

whereRmn,ς is the cross-covariance matrix of subarraym and
n at ς -component, and Rm,ς is the auto-covariance matrix
of subarray m at ς -component (See ‘‘Appendix’’ for the
calculations of mean and variance of 1rς ).

Further, according to the property of asymptotic complex
Gaussian distribution, the estimation error of r̂ = r̂e+Orh still
satisfies the asymptotic complex Gaussian distribution, i.e.

1r = r̂− r ∼ AsN (0,C) (43)

where C = Ce + Ch.
From (32), the signal snapshot data vector can also be

written as

z =
[
z31
z12

]
=

[
P31

P12

]
·

[
r31
r12

]
= P · r. (44)

On the basis of [39], the estimation error of z satisfies

1z ∼ AsN
(
0,PTCP

)
. (45)

Define the weight matrix

W = PTCP, (46)

and normalize 1z, then (45) can be derived as

W−
1
21z ∼ AsN

(
0, I2M (N+1)−1

)
(47)

where W−
1
2 is the Hermitian square root of W−1. Then,

we can get that∥∥∥∥W− 1
21z

∥∥∥∥2
2
∼ Asχ2 (2M (N + 1)− 1) (48)

where Asχ2 (2M (N + 1)− 1) denotes the asymptotic chi-
square distribution with the DOF of 2M (N + 1) − 1. From
the analysis above, now the optimization problem in (34) is
transformed to a constraint form as

min
∥∥û∥∥1

s.t.

∥∥∥∥∥Ŵ− 1
2
(
ẑ−8(β̄)û

)∥∥∥∥∥
2

≤
√
ξ (49)

where Ŵ = PTĈP is the approximate weight matrix within
finite snapshots. ξ is the acceptable upper bound of the fitting
error, and it can be obtained with

ξ = chi2inv (1− p, 2M (N + 1)− 1) (50)

where chi2inv(·) is the inverse cumulative distribution func-
tion (in Matlab software) that makes the inequality in
(49)holds with probability of 1 − p. Generally, it is enough
to set p = 0.001 to make it nearly a sure event. The opti-
mization problem is actually a second-order cone program
(SOCP) [40] problem, and can be efficiently solved by off-
the-shelf optimization software package such as CVX and
SeDuMi. Therefore, the DOA estimation problem turns out
to be that of recovering the K sparse vector u. The locations
of nonzero entries in u gives the estimations of DOA angle
{β̂k}

K
k=1, and estimations of another DOA angle {α̂k}Kk=1 can

be obtained from the values of nonzero entries via

αk = arccos(−λ arg(ûk )/2πd2) (51)

where ûk is the k-th nonzero entries of the sparse vector û.
It can be seen from (51) that the α̂k and β̂k are estimated
corresponding to the same entry in ûk , thus 2-D DOA are
automatically paired.

B. POLARIZATION PARAMETER ESTIMATION
In this subsection, the polarization parameter estimated based
on the estimation result of the DOA angles. According to
subsection III-A, we can construct the data vectors as

ze =
[
zT31,e z

T
12,e

]T
= B̃(β)pe, (52)

zh =
[
zT31,h z

T
12,h

]T
= B̃(β)ph, (53)

zeh =
[
zT31,eh z

T
12,eh

]T
= B̃(β)peh, (54)

zhe =
[
zT31,he z

T
12,he

]T
= B̃(β)phe (55)

where zeh and zhe are constructed by using the cross-
covariance matrices between the electric field and mag-
netic field vector components of subarray 1 and that of
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TABLE 1. The array information of the algorithms.

subarray 2 and 3. pe, ph, peh, phe are all column vectors and
the k-th entries are

pe,k = σ
2
k sin

2 φk sin2 γke−j2πd2 cosαk/λ, (56)

ph,k = σ
2
k sin

2 φk cos2 γke−j2πd2 cosαk/λ, (57)

peh,k = σ
2
k sin

2 φk sin γk cos γkejηe−j2πd2 cosαk/λ, (58)

phe,k = σ
2
k sin

2 φk sin γk cos γke−jηe−j2πd2 cosαk/λ. (59)

By utilizing the estimations of the DOA angle {β̂k}Kk=1,
they can be estimated via least squares method as

p̂e =
(
B̃(β)

)†
ze, (60)

p̂h =
(
B̃(β)

)†
zh, (61)

p̂eh =
(
B̃(β)

)†
zeh, (62)

p̂he =
(
B̃(β)

)†
zhe (63)

where (·)† denotes the pseudo-inverse of matrix. Then,
the polarization parameter estimation results can be obtained
via

γ̂k = arctan

(√
p̂e,k
p̂h,k

)
, (64)

η̂k =
1
2
angle

(
p̂eh,k
p̂he,k

)
. (65)

Obviously, the polarization parameter estimations {γ̂k}Kk=1
and {η̂k}Kk=1 are automatically paired with the 2-D DOA
angles {α̂k}Kk=1 and {β̂k}

K
k=1.

C. ALGORITHM SUMMARY
So far, the two-dimensional DOA angles and polarization
parameters are estimated based on the sparse representation
of the cross-covariance matrices by using the three-parallel
co-prime polarization sensitive array, and no parameter pair
matching process is required. Themajor steps of the proposed
algorithm are summarized as follows.

1) Compute the cross-covariancematricesR12 andR31 via
(11) and (22) by using the electric and magnetic field
vector components of subarray 1, 2 and 3, and get the
vector forms through vectorization operation.

FIGURE 3. The spatial spectrums of (a) the proposed algorithm, (b) the
TPCPA algorithm, and (c) the PCPA algorithm with SNR=0dB and
300 snapshots.

2) Obtain the selection matrices P12 and P31 according to
the property of co-prime numbersM , N . Construct two
virtual ULA, and get the data vectors z12 and z31 via
(18) and (28). Then, combine these two data vectors via

VOLUME 7, 2019 15409



W. Si et al.: TPCP-PSA for 2-D DOA and Polarization Estimation via SR

FIGURE 4. The RMSEs of (a) 2-D DOA angles and (b) polarization parameters versus SNR with 300 snapshots.

(32) and get the data vector z of the final virtual ULA
which contains 2M (N + 1)− 1 elements.

3) Discretizing the β angle domain to get the sampling
grid, calculate the overcomplete dictionary 8(β̄) and
represent z as the sparse representation as (33).

4) Compute the weight matrix Ŵ and the upper bound of
estimation error ξ via (46) and (50), respectively, and
solve the optimization problem in (49), hence the 2-D
DOA estimation results can be obtained.

5) Construct data vectors in (52) to (55), estimate coeffi-
cient vectors in (60) to (63) by using the least squares
method, and calculate the polarization parameters via
(64) and (65).

IV. DISCUSSIONS
The proposed algorithm introduces the co-prime array con-
figuration into the polarization sensitive array, and presents
the three-parallel co-prime polarization sensitive array to
estimate the 2-D DOA and polarization parameters. This
allows the proposed algorithm to estimate parameters on the
underdetermined condition when the signals more than the
array elements relative to the compact PSAs. On the other
hand, compared with scalar co-prime array, the TPCP-PSA
can measure the incident signals with vector structure, which
achieves polarization parameter estimation and has better
estimation performance.

By utilizing the characteristic of the co-prime number
M and N , a virtual uniform linear array containing more
array elements is constructed based on the cross-covariance
matrices, and the observation data vector z can be obtained.
According to (32), 2-D DOA angles are separated into two
parts of the data vector, and the dictionary 8(β̄) in (33)
can be easily constructed by sampling only 1-D DOA angle.
Comparedwith the traditional SR-based 2-DDOA estimation
algorithms, the dimension of the dictionary used in the sparse
recover process is reduced from two to one, and the com-
putation amount is decreased from O((Q1Q2)3) to O(Q1)3,
where Q1 and Q2 are the grid number in each angle domain.

In addition, due to the utilization of the cross-covariance
matrices, there are no noise terms in the date vector, and the
estimation accuracy with low SNR is improved.
Moreover, when estimating DOA angles, the constrained

form of the optimization problem is derived. The acceptable
upper bound of the data fitting error can be calculated with
a large probability, then, the 2-D DOA can be obtained via
sparse recover method. This eliminates the necessity of the
regularization parameter selection and reduces the estimation
performance loss due to the improper selection.

V. SIMULATIONS
In this section, a series of numerical simulations under dif-
ferent conditions are conducted to investigate the estimation
performance of the proposed algorithm. The results are com-
pared with PCPA algorithm [22], TPCPA algorithm [27], and
LV-MUSIC algorithm [10]. The sensor number is set to be
14. The information of physical array used in the simulation
is shown in the Table 1.
In the first simulation, we compare the spatial spectrums

of the DOA angle β under the underdetermined condition.
Assume there are K = 16 far-field narrowband signals
impinging on the array. The DOA angle β are distributed
within 15◦ to 165◦ with step of 10◦, the DOA angle α are
distributed within 80◦ to 10◦ and 170◦ to 100◦ with step of
−10◦, the auxiliary polarization angle γ and the polarization
phase difference η are randomly distributed within the ranges
of (−90◦, 90◦) and (−180◦,180◦), respectively. The uniform
spatial grid in β angle domain is formed with interval of 0.1◦.
The regularization parameters are 1.3 and 0.3 for TPCPA
algorithm and PCPA algorithm, respectively. The snapshot
number is 300 and the SNR is 0dB. As it can be seen in Fig-
ure 3, all these algorithms can obtain the correct estimation
results of DOA angle β under the condition that the incident
signals are more than array sensors. However, the PCPA
algorithm and the TPCPA algorithm have larger estimation
bias than the proposed algorithm, and there are more visi-
ble pseudo-peaks in the spatial spectrum. This certifies the
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FIGURE 5. The RMSEs of (a) 2-D DOA angles and (b) polarization parameters versus snapshot number with SNR=0dB.

effectiveness of the proposed algorithm on the underdeter-
mined condition.

In the second simulation, we discuss the parameter
estimation accuracy versus SNR. Consider K = 4 far-field
narrowband signals, and the DOA angels and polarization
parameters (α, β, γ, η) are (115◦, 35◦, 27◦, 52◦), (50◦, 65◦,
42◦, −49◦), (70◦, 130◦, −43◦, −86◦), and (100◦, 150◦, 41◦,
73◦), respectively. The regularization parameter µ is set as 1
for the TPCPA algorithm and PCPA algorithm. The searching
step of LV-MUSIC algorithm in 2-D spatial domain and the
interval of uniform spatial grid in β angle domain for other
algorithms are both 0.1◦. The SNR varies from −10dB to
20dBwith the step size 5dB, and the snapshot number is fixed
to 300. The RMSEs are obtained by performing 300 inde-
pendent trials. As it can be seen in the Figure 4, the RMSEs
of estimated parameters all decrease with the increase of
SNR. Since the new cross-covariance matrix without the
polarization parameters is constructed, the proposed algo-
rithm outperforms than the other algorithms. The extended
DOF would also intensity the trend. When the SNR is low,
the orthogonality of the signal- and noise-subspace in the
LV-MUSIC algorithm is affected, leading to an increase of
the RMSE than SR-based algorithms.

Moreover, it can be seen that although the proposed algo-
rithm has better DOA estimation accuracy than LV-MUSIC
algorithm, the RMSE of the polarization parameters is better.
The main reason is that the proposed algorithm estimates the
polarization parameters based on the DOA estimation results.
The DOA estimation deviation would cause more estimation
bias in the process of polarization parameter estimation. This
would not appear in the LV-MUSIC algorithm.

Then, we evaluate the estimation accuracy of the parame-
ters versus snapshot number, as shown in the Figure 5. The
snapshot number varies from 50 to 500 with the step size 50,
and the SNR is fixed to 0dB. The other conditions are same
with that in the second simulation. Similar to the RMSE
curves versus SNR, the RMSEs of parameters decreases
with the increase of snapshots, and the proposed algorithm

outperforms than the other algorithms. In addition, it can
be seen that the subspace-based algorithm i.e., LV-MUSIC
algorithm ismore affected by the snapshots than the SR-based
algorithms.

VI. CONCLUSIONS
In this paper, a novel 2-D DOA and polarization param-
eter estimation algorithm based on three-parallel co-prime
polarization sensitive array has been proposed. The recon-
structed cross-covariance matrix not containing polariza-
tion information is used, so that the estimation of 2-D
DOA angles and polarization parameters can be decoupled.
Through vectorization operation and linear transformation,
a virtual ULA containing more elements is constructed. In so
doing, the DOFs of the array increase and more targets can
be detected with limited number of physical sensors. The
sparse representation based estimation method is presented
to estimate 2-D DOAwith only 1-D overcomplete dictionary,
which reduces the computational complexity dramatically.
Meanwhile, the constraint form of the optimization problem
based on the upper bound of the data fitting error is derived
to avoid the selection of the regularization parameter. Finally,
the data vectors are constructed by using the cross-covariance
matrix between different components of the received array
data, and the polarization parameters are estimated via least
squares method. Since the co-prime structure is applied to
PSA, the DOFs of the array are extended, and due to the
sparse placement of sensors, the array aperture is increased
and the mutual coupling is weakened. From the simulation
results, it can be seen that these advantagesmake the proposed
algorithm can solve the underdetermined estimation problem
and have better estimation accuracy.

APPENDIX
In the appendix, we discuss the calculations of mean and
variance of 1rς . For convenience, the component symbol ς
is omitted here in the equations. But please remember that the
following derivations are only for one component.
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First compute the mean of 1r. Since

E
{
R̂
}
= E

{
[R̂31 R̂12]

}
=

[
E
{
R̂31

}
E
{
R̂12

}]
= [R31 R12] = R, (66)

the mean of 1r is 0.
Then compute the variance of 1r. The variance of 1r can

be expressed as

C = E
[
1r1rH

]
= E

[
1r311rH31 1r311r

H
12

1r121rH31 1r121r
H
12

]
. (67)

In accordance with [25], the variance of 1r31 and 1r12 are

E
[
1r121rH12

]
=

1
L
RT
2 ⊗ R1, (68)

E
[
1r311rH31

]
=

1
L
RT
1 ⊗ R3. (69)

Following the ideas, we drive the expressions of
E[1r121rH31] andE[1r121r

H
31]. The i-th column of the cross-

covariance matrix between subarray 1 and 2 and that between
subarray 3 and 1 are

r̂12,i =
1
L

L∑
t=1

x1(t)
(
x2,i(t)

)∗
, (70)

r̂31,i =
1
L

L∑
t=1

x3(t)
(
x1,i(t)

)∗ (71)

where x2,i(t) and x1,i(t) are the i-th entry of x2(t) and x1(t),
respectively. Then we can get

E
[
r̂12,ir̂

H
31,j

]
=

1
L2

L∑
t=1

L∑
p=1

E
[
x1(t)

(
x2,i(t)

)∗
(x3(p))H x1,j(p)

]

=
1
L2

L∑
t=1

E
[
x1(t)

(
x2,i(t)

)∗] L∑
p=1,p 6=t

E
[
(x3(p))H x1,j(p)

]

+
1
L2

L∑
t=1

E
[
x1(t)

(
x2,i(t)

)∗
(x3(t))H x1,j(t)

]
= r12,irH31,j +

1
L
R12,jiR13. (72)

According to (66) we have E[r̂12] = r12 and E[r̂31] = r31,
then the cross-covariance matrix of 1r12 and 1r31 is

E
[
1r121rH31

]
= E

[
(r̂12 − r12)(r̂31 − r31)H

]
= E[r̂12r̂

H
31]− r12r

H
31

=
1
L

 R12,11R13 · · · R12,1NR13
...

. . .
...

R12,N1R13 · · · R12,NNR13


=

1
L
RT
12 ⊗ R13. (73)

Similarly, it can be derived that

E
[
r̂31,ir̂

H
12,j

]
= r31,irH12,j +

1
L
R21,jiR31, (74)

and

E
[
1r311rH12

]
=

1
L
RT
21 ⊗ R31. (75)

Therefore, the variance of the estimation error of 1r is

C = E
[
1r1rH

]
= E

[
1r311rH31 1r311rH12
1r121rH31 1r121rH12

]
=

1
L

[
RT
1 ⊗ R3 RT

21 ⊗ R31

RT
12 ⊗ R13 RT

2 ⊗ R1

]
. (76)
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