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ABSTRACT In this paper, we proposed a novel efficient weighted Laguerre polynomial (WLP)-based
finite-difference time-domain (FDTD) method with explicit treating ideology, which is extremely useful
for problems with very fine structures in the body of revolution (BOR) system. By combining the explicit
treating ideology and WLP technology, the limitation of time step1t is effectively eliminated, which results
in greatly improved performance. The performing idea of the proposed method can be roughly divided into
two parts. First, the conventional WLP-based BOR FDTD method is flexibly transformed into a new one
with certain direction explicit calculation by matrix transformation. Second, the initial value calculation
and iteration calculation which are based on the different perturbation term are introduced to improve the
convergence speed, the efficiency and accuracy of the proposed method. Meanwhile, the proofing results
show that the convergence condition of the proposed method is relaxed. The stability analysis shows that
the stability condition is determined by the smaller one of the spatial increments 1ρ and 1z. Finally, two
scattering numerical examples are given to demonstrate the computational accuracy and efficiency of the
proposed method.

INDEX TERMS Body of revolution, explicit treating ideology, finite-difference time-domain, perturbation
term, weighted Laguerre polynomial.

I. INTRODUCTION
Finite-difference time-domain (FDTD) method has been rec-
ognized as a powerful method for computational electromag-
netics. It is a full-wave algorithm and does not need matrix
inversion, which makes it have the advantages of saving oper-
ation and storage space, being suitable for parallel computing
and generalization of computing program. In practical appli-
cation, there are a large number of axisymmetric structures
in electromagnetic field numerical calculation, for example,
coaxial line, circular waveguide, antenna, missile, and aircraft
fuselage [1]–[5]. In order to simulate these problems accu-
rately, three-dimensional (3-D) cylindrical coordinate system
can be used. However, due to the large amount of calculation
caused by 3-D space, many electrically large metallic struc-
tures cannot be processed. Based on some symmetry of the
field distribution around the axisymmetric structure, the body
of revolution finite-difference time-domain (BOR-FDTD)
method can be used to transform original 3-D problems
(ρ, ϕ, z) into two dimensional (2-D) spaces (ρ, z) [6]. Com-
pared with the 3-D FDTD method in cylindrical coordinate
system, the BOR-FDTD method can greatly reduce the CPU
time and memory space.

In recent years, the BOR-FDTD method has been widely
used to model the electromagnetic wave problems. However,
its time step should be limited by the Courant-Friedrich-Lecy
stability condition [7]. To remove the stability limit on the
time step of the BOR-FDTD method, the researchers did a
large amount of studies which can be roughly divided into
two directions. One was applying the alternating-direction
implicit (ADI) FDTD scheme [8]–[10] to the BOR-FDTD
method [11]. The other was applying the uncondition-
ally stable weighted Laguerre polynomial (WLP) FDTD
scheme [12] to the BOR-FDTD method [13]. Both of
them can eliminate the CFL stability condition of original
BOR-FDTDmethod and make the simulation more effective.
However, the ADI scheme would lead a large numerical
dispersion error when the time step is large [14], [15], and
the unconditionally WLP one would lead to a large amount
of memory requirement.

In order to overcome these problems of ADI and
WLP schemes, researchers have done a lot of follow-up
research. Among them, the study on ADI scheme includes
local one-dimensional BOR-FDTD method [16], the weakly
conditionally stable (WCS) BOR-FDTD method [17], [18]
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and so on. These schemes for BOR have successfully
achieved better efficiency. However, the LOD-BOR-FDTD
method shows slight improvement in efficiency compared
with the ADI one at the same accuracy. Although the WCS-
BOR-FDTDmethod shows good accuracy and computational
efficiency, it used four tri-diagonal equations and six explicit
equations in the whole time step iteration process which still
leaded to a certain degree of dispersion error at the high
frequency range.

Recently, a newWLP scheme for BOR-FDTDmethod was
developed by Wang et al. [19]. It used a new perturbation
term and applied the Gauss-Seidel technology. As discussed
in [19], the new perturbation term showed better conver-
gence, especially at the high frequency range. Meanwhile,
this new scheme showed higher accuracy and efficiency than
other schemes [19]. And the problem of memory consump-
tion has also been well addressed.

For some BOR structures, there are only fine structures in
one direction, such as radial or axial direction. In this paper,
to efficiently solve the electromagnetic problem of BOR
structures with fine structure in one direction, we propose a
novel efficient WLP based BOR-FDTD method with explicit
treating ideology. Firstly, a new coefficient matrix is proposed
by the ideology of the WCS-BOR-FDTD method to form
the new matrix equations with certain direction explicit. And
then, different perturbation terms are added to the newmatrix
equation to form the initial value calculation and iteration
calculation schemes, so as to reduce the splitting error and
improve the convergence speed. Secondly, the field compo-
nents on z-axis are amended with special treatment. Finally,
to verify the proposed method, two scattering numerical
examples are given. Numerical results show that the proposed
method is superior to the existing one-stepWCS BOR-FDTD
method and WLP based-BOR-FDTD method at efficiency,
accuracy and memory consumption.

The remaining sections of the paper are organized as
follows. Section II describes the principle of realization
for the proposed explicit calculation scheme at ρ-direction.
Section III introduces the explicit calculation scheme at
z-direction. Section IV shows the convergence analysis and
numerical stability proof. Finally, scattering numerical exam-
ples are simulated and analyzed.

II. PRINCIPLE OF REALIZATION FOR THE
PROPOSED METHOD AT ρ DIRECTION
An isotropic lossless region with permittivity ε and perme-
abilityµ is considered. FIGURE 1 shows the Yee distribution
of the electromagnetic field components of the proposed
method.

A. REALIZING A NEW COEFFICIENT MATRIX
In [13], the equations of the conventional WLP based
BOR-FDTD method can be rewritten as the following matrix
form

(I − A− B)Wq
= Vq−1 (1)

FIGURE 1. The distribution of the electromagnetic field components in
the BOR-Yee grid.

Note that,

Wq
=
[
Wq

E W
q
H

]T
, Vq−1

=

[
Vq−1
E Vq−1

H

]T
,

Wq
E =

[
eqρ e

q
ϕ e

q
z
]T
, Wq

H =
[
hqρ h

q
ϕ h

q
z
]T
,

Vq−1
E =

−2 q−1∑
k=0

ekρ − 2
q−1∑
k=0

ekϕ − 2
q−1∑
k=0

ekz

T ,
Vq−1
H =

−2 q−1∑
k=0

hkρ − 2
q−1∑
k=0

hkϕ − 2
q−1∑
k=0

hkz

T .
where I is a 6× 6 identity matrix,q is the order of the WLP.
Referring to the ideology of the WCS BOR-FDTD

method [17], [18], we can obtain the new coefficient matrix
form.

A =
[

0 χAH
χAE 0

]
, B =

[
0 χBH

χBE 0

]
,

χAH =

 0 0 a(±m/ρ)
0 0 −a(∂/∂ρ)

−a(±m/ρ) 0 0

,
χAE =

 0 0 −b(∓m/ρ)
0 0 b(∂/∂ρ)

b(∓m/ρ) 0 0

,
χBH =

 0 −a(∂/∂z) 0
a(∂/∂z) 0 0

0 a((∂/∂ρ)+ (1/ρ)) 0

,
χBE =

 0 b(∂/∂z) 0
−b(∂/∂z) 0 0

0 −b((∂/∂ρ)+ (1/ρ)) 0

,
a = 2/sε, b = 2/sµ.

where s > 0 is the time-scale factor, m is the mode number,
∂/∂i are the first order central difference operators along
ρ and z, respectively.

Obviously, equation (1) needs to be decomposed that is
similar with the existing WCS BOR-FDTD method or effi-
cient WLP based-BOR-FDTD method to form the equation
for ρ-direction explicit calculation.
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B. REALIZING THE INITIAL VALUE CALCULATION
In [20] and [21], another efficient WLP scheme applied
in rectangular coordinate system was introduced. Theoret-
ical derivations and numerical examples showed that the
perturbation term of this efficient WLP scheme can reduce
the splitting error and get better efficiency and convergence
speed than the conventional one. Applying this perturbation
technique to BOR system and introducing AB(Wq

− Vq−1)
term into equation (1), one can obtain

(I − A)(I − B)Wq
= (I + AB)Vq−1 (2)

By introducing a nonphysical intermediate value vec-
tor W∗q =

[
W∗qE W∗qH

]T
=

[
e∗qρ e∗qϕ e∗qz h∗qρ h∗qϕ h∗qz

]T
,

equation (2) can be divided into two steps.

(I − A)W∗q = (I + B)Vq−1 (3a)
(I − B)Wq

= W∗q − BVq−1 (3b)

Equations (3a) and (3b) are the basic equations for the
initial value calculation of the proposed method.

Substituting matrixes A and B into equations (3a) and (3b),
one can obtain

W∗qE − χAHW
∗q
H = Vq−1

E + χBHV
q−1
H (4a)

W∗qH − χAEW
∗q
E = Vq−1

H + χBEV
q−1
E (4b)

Wq
E − χBHW

q
H = W∗qE − χBHV

q−1
H (4c)

Wq
H − χBEW

q
E = W∗qH − χBEV

q−1
E (4d)

Continuing to merge and tidy up equations (4a)∼ (4d), one
can obtain

(I − χAHχAE )W
∗q
E = (I + χAHχBE )V

q−1
E

+ (χAH + χBH )V
q−1
H (5a)

(I − χBHχBE )W
q
E = (I + χBHχAE )W

∗q
E (5b)

Wq
H = χBEW

q
E + χAEW

∗q
E + V

q−1
H (5c)

Substituting matrixes χAH ,χAE ,χBH ,χBE into
(5a) ∼ (5c), one can obtain the FDTD expanding forms for
the initial value calculation of the proposed method.(

1+ ab(m2/ρ2)
)
e∗qρ

= −2
q−1∑
k=0

ekρ ± 2ab(m/ρ)(∂/∂ρ + 1/ρ)
q−1∑
k=0

ekϕ

+ 2a(∂/∂z)
q−1∑
k=0

hkϕ ∓ 2a(m/ρ)
q−1∑
k=0

hkz (6a)

e∗qϕ = −2
q−1∑
k=0

ekϕ − 2ab(∂/∂ρ)(∂/∂ρ + 1/ρ)
q−1∑
k=0

ekϕ

± ab(∂/∂ρ)(m/ρ)e∗qρ − 2a(∂/∂z)
q−1∑
k=0

hkρ

+ 2a(∂/∂ρ)
q−1∑
k=0

hkz (6b)

(
1+ ab(m2/ρ2)

)
e∗qz

= −2
q−1∑
k=0

ekz ± 2ab(m/ρ)(∂/∂z)
q−1∑
k=0

ekϕ

± 2ab(m/ρ)
q−1∑
k=0

hkρ − 2ab(∂/∂ρ + 1/ρ)
q−1∑
k=0

hkϕ (6c)(
1− ab(∂/∂z)2

)
eqρ

= e∗qρ − ab(∂/∂z)(∂/∂ρ)e
∗q
z (6d)(

1− ab(∂/∂z)2
)
eqϕ

= e∗qϕ ± ab(∂/∂z)(m/ρ)e
∗q
z (6e)

eqz = −ab(∂/∂ρ + 1/ρ)(∂/∂z)eqρ
+ (1+ ab(∂/∂ρ + 1/ρ)(∂/∂ρ)) e∗qz (6f)

hqρ = b(∂/∂z)eqϕ ± b(m/ρ)e
∗q
z − 2

q−1∑
k=0

hkρ (6g)

hqϕ = −b(∂/∂z)e
q
ρ + b(∂/∂ρ)e

∗q
z − 2

q−1∑
k=0

hkϕ (6h)

hqz = −b(∂/∂ρ + 1/ρ)eqϕ ∓ b(m/ρ)e
∗q
ρ − 2

q−1∑
k=0

hkz (6i)

Obviously, equations (6) are calculated based on the explic-
ity at the ρ-direction. Meanwhile, observing equations (6)
and comparing with the initial value calculation of existing
efficient WLP based-BOR-FDTD method [19], it is found
that the former has only two tri-diagonal equations and the
latter has four tri-diagonal equations. Thus, the efficiency
of the initial value calculation in the proposed method is
obviously better than that of the existing one.

C. REALIZING THE ITERATIVE CALCULATION
The introduction way of the perturbation term AB(Wq

p+1 −

Wq
p) in [19] is adopted into the equation (1), directly. One

can obtain.

(I − A)(I − B)Wq
p+1 = ABWq

p + V
q−1 (7)

Note that, Wq
p is the computational result of the initial value

calculation, thus, the equation (7) is the computational result
of the (p+ 1)th iteration. And the coefficient matrixes which
include A,B,χAH ,χAE ,χBH and χBE are same with the
initial value calculation of the proposed method.
Introducing the same nonphysical intermediate value

vector W∗q as the initial value calculation into equa-
tion (7), one can obtain the basic equations of the iteration
calculation.

(I − A)W∗q = BWq
p + V

q−1 (8a)

(I − B)Wq
p+1 = W∗q − BWq

p (8b)
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Substituting the coefficient matrixes A and B into (8a)
and (8b), one can obtain.

W∗qE − χAHW
∗q
H = χBHW

q
H ,p + V

q−1
E (9a)

W∗qH − χAEW
∗q
E = χBEW

q
E,p + V

q−1
H (9b)

Wq
E,p+1 − χBHW

q
H ,p+1 = W∗qE − χBHW

q
H ,p (9c)

Wq
H ,p+1 − χBEW

q
E,p+1 = W∗qH − χBEW

q
E,p (9d)

Continuing to merge and tidy up equations (9a)∼ (9d), one
can obtain

(I − χAHχAE )W
∗q
E

= χAHχBEW
q
E,p + χBHW

q
H ,p + χAHV

q−1
H + Vq−1

E (10a)

(I − χBHχBE )W
q
E,p+1

= (I + χBHχAE )W
∗q
E − χBHW

q
H ,p + χBHV

q−1
H (10b)

Wq
H ,p+1

= χBEW
q
E,p+1 + χAEW

∗q
E + V

q−1
H (10c)

Substituting the corresponding coefficient matrixes into
equations (10a) ∼ (10c), the FDTD expanding forms for the
iteration calculation of the proposed method are obtained.(

1+ ab(m2/ρ2)
)
e∗qρ

= ∓ab(m/ρ)(∂/∂ρ + 1/ρ)eqϕ,p − a(∂/∂z)h
q
ϕ,p

∓ 2a(m/ρ)
q−1∑
k=0

hkz − 2
q−1∑
k=0

ekρ (11a)

e∗qϕ = ab(∂/∂ρ)(∂/∂ρ + 1/ρ)eqϕ,p + a(∂/∂z)h
q
ρ,p

+ 2a(∂/∂ρ)
q−1∑
k=0

hkz−2
q−1∑
k=0

ekϕ ± ab(∂/∂ρ)(m/ρ)e
∗q
ρ

(11b)(
1+ ab(m2/ρ2)

)
e∗qz

= ∓ab(m/ρ)(∂/∂z)eqϕ,p + a(∂/∂ρ + 1/ρ)hqϕ,p

± 2a(m/ρ)
q−1∑
k=0

hkρ − 2
q−1∑
k=0

ekz (11c)

(
1− ab(∂/∂z)2

)
eqρ,p+1

= e∗qρ − ab(∂/∂z)(∂/∂ρ)e
∗q
z + a(∂/∂z)h

q
ϕ,p

+ 2a(∂/∂z)
q−1∑
k=0

hkϕ (11d)

(
1− ab(∂/∂z)2

)
eqϕ,p+1

= e∗qϕ ± ab(∂/∂z)(m/ρ)e
∗q
z − a(∂/∂z)h

q
ρ,p

− 2a(∂/∂z)
q−1∑
k=0

hkρ (11e)

eqz,p+1 = e∗qz + ab(∂/∂ρ + 1/ρ)(∂/∂ρ)e∗qz

−ab(∂/∂ρ + 1/ρ)hqϕ,p − 2a(∂/∂ρ + 1/ρ)
q−1∑
k=0

hkϕ

−ab(∂/∂ρ + 1/ρ)(∂/∂z)eqρ,p+1 (11f)

hqρ,p+1 = b(∂/∂z)eqϕ,p+1 ± b(m/ρ)e
∗q
z − 2

q−1∑
k=0

hkρ (11g)

hqϕ,p+1 = −b(∂/∂z)e
q
ρ,p+1 + b(∂/∂ρ)e

∗q
z − 2

q−1∑
k=0

hkϕ (11h)

hqz,p+1 = −b(∂/∂ρ + 1/ρ)eqϕ,p+1 ∓ b(m/ρ)e
∗q
ρ − 2

q−1∑
k=0

hkz

(11i)

Similar to the initial value calculation process, the iteration
calculation has only two tri-diagonal equations. Thus, the
efficiency of the iterative calculation in the proposed method
is definitely better than the existing one.(
−
(
ab/(1z)2

) (
eqρ(i+ 1/2, j− 1)+ eqρ(i+ 1/2, j+ 1)

)
+
(
1+ 2ab/(1z)2

)
eqρ(i+ 1/2, j)

)

= e∗qρ (i+ 1/2, j)− (ab/(1z1ρ)


e∗qz (i+ 1, j+ 1/2)
−e∗qz (i, j+ 1/2)
−e∗qz (i+ 1, j− 1/2)
+e∗qz (i, j− 1/2)


(12)

Finally, the first order FDTD central difference expan-
sion of the equations (6d) is given. The first order FDTD
central difference expansion way of others is similar with
formula (12).

D. SPECIAL TREATMENT FOR FIELD
COMPONENTS ON Z-AXIS
When the 3-D cylindrical coordinate structure is a purely
symmetric body, it can be transformed into a 2-D space
for calculation. The transformation processing is shown
from (a) to (b) of FIGURE 2.
As shown in the (b) of the FIGURE 2, when ρ = 0, every

electromagnetic field components ez, eϕ and hρ on the axis
have mathematical strangeness, which should be specially
treated. The schemes of discussion in [11] and [13] is that
only ez components need to be specially treated at ρ = 0
for m = 0. However, the above special treating schemes for
field components on the axis are not necessarily applicable
to the proposed method in this paper. Next, we will make a
concrete analysis for the treatment of electromagnetic field
components on the axis in the proposed method.
As shown in (b) of the FIGURE 2, there are electromag-

netic field components ez(0, j + 1/2), eϕ(0, j) and hρ(0, j +
1/2) on the axis. Therefore, we need to determine that
whether e∗qz (0, j + 1/2), eqz (0, j + 1/2), e∗qϕ (0, j), eqϕ(0, j),
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FIGURE 2. The realization principle of transforming 3-D problem into 2-D
space. 3-D problems are projected into 2-D space. (b) Distribution of the
field components around the axis in BOR system.

hqρ(0, j + 1/2) are used in the initial value calculation equa-
tions (6a) ∼(6i) and the iterative calculation (11a) ∼(11i)
of the proposed method. FIGURE 3 is the analysis for the
electromagnetic field components on the axis of the proposed
method. Clearly, the electric field component e∗qz (0, j+ 1/2)
on the axis only needs to be specially treated in the initial
value calculation and the iteration calculation of the proposed
method, respectively.

In [13], the treatment scheme for the field component on
the axis has been discussed. The equation e∗qz (0, j + 1/2) at
ρ = 0 can be directly obtained.

e∗qz (0, j+ 1/2) = (4a/1ρ) hqϕ(1/2, j+ 1/2)

− 2
q−1∑
k=0

ekz (0, j+ 1/2) (13)

Expanding (6h) and (11h) at ρ = 0, one can obtain

hqϕ(1/2, j+ 1/2)+ 2
q−1∑
k=0

hkϕ(1/2, j+ 1/2)

= (b/1ρ)
[
e∗qz (1, j+ 1/2)− e∗qz (0, j+ 1/2)

]
− (b/1z)

[
eqρ(1/2, j+ 1)− eqρ(1/2, j)

]
(14)

FIGURE 3. The analysis for the field components on the axis.

hqϕ,p+1(1/2, j+ 1/2)+ 2
q−1∑
k=0

hkϕ(1/2, j+ 1/2)

= (b/1ρ)
[
e∗qz (1, j+ 1/2)− e∗qz (0, j+ 1/2)

]
− (b/1z)

[
eqρ,p+1(1/2, j+ 1)− eqρ,p+1(1/2, j)

]
(15)

Substituting equations (14) and (15) into equation (13), one
can obtain the treatment equations on the axis for the initial
value calculation and the iteration calculation, respectively.( (

1+ 4ab/(1ρ2)
)
e∗qz (0, j+ 1/2)

−4ab/(1ρ2)e∗qz (1, j+ 1/2)

)
= −4ab/(1ρ1z)

[
eqρ(1/2, j+ 1)− eqρ(1/2, j)

]
− (8a/1ρ)

q−1∑
k=0

hkϕ(1/2, j+ 1/2)− 2
∑

ekz (0, j+ 1/2)

(16)( (
1+ 4ab/(1ρ2)

)
e∗qz (0, j+ 1/2)

−4ab/(1ρ2)e∗qz (1, j+ 1/2)

)
= −4ab/(1ρ1z)

[
eqρ,p+1(1/2, j+ 1)− eqρ,p+1(1/2, j)

]
− (8a/1ρ)

q−1∑
k=0

hkϕ(1/2, j+ 1/2)− 2
∑

ekz (0, j+ 1/2)

(17)

III. THE EXPLICIT CALCULAITON
SCHEME AT Z-DIRECTION
Previously, the principle of the proposed method based on
ρ-direction explicit calculationwas introduced. Here, in order
to reflect the flexibility and variability of the proposed
method in this paper, we provide a z-direction explicit cal-
culation scheme. Their coefficient matrixes are shown as
follows.

A′
=

[
0 χ ′

AH
χ ′

AE 0

]
, B′

=

[
0 χ ′

BH
χ ′

BE 0

]
,
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χ ′
AH =

[
0 −a(∂/∂z) 0
0 0 −a(∂/∂ρ)
0 a(∂/∂ρ + 1/ρ) 0

]
,

χ ′
AE =

[
0 b(∂/∂z) 0
0 0 b(∂/∂ρ)
0 −b(∂/∂ρ + 1/ρ) 0

]
,

χ ′
BH =

[
0 0 a(±m/ρ)

a(∂/∂z) 0 0
−a(±m/ρ) 0 0

]
,

χ ′
BE =

[
0 0 −b(∓m/ρ)

−b(∂/∂z) 0 0
b(∓m/ρ) 0 0

]
,

Note that a and b are same with the ρ-direction one.

FIGURE 4. The whole execution process of the z-direction explicit
calculation scheme.

The principle of realization for z-direction explicit cal-
culation scheme is similar with ρ-direction one, The dif-
ference between the both schemes is that the former one,
e∗qz needs to be firstly explicit calculated and the latter one,
e∗qρ needs to be firstly explicit calculated. The specific dif-
ference between the both schemes is shown in FIGURE 4.
Thus, the FDTD expanding forms of the z-direction explicit
calculation scheme can be directly obtained.

(1− ab(∂/∂ρ + 1/ρ)(∂/∂ρ)) e∗qz

= 2ab(∂/∂ρ + 1/ρ)(∂/∂z)
q−1∑
k=0

ekρ − 2
q−1∑
k=0

ekz

± 2a(m/ρ)
q−1∑
k=0

hkρ − 2a(∂/∂ρ + 1/ρ)
q−1∑
k=0

hkϕ (18a)

e∗qρ = −ab(∂/∂z)(∂/∂ρ)e
∗q
z − 2

q−1∑
k=0

ekρ

− 2ab(∂/∂z)2
q−1∑
k=0

ekρ + 2a(∂/∂z)
q−1∑
k=0

hkϕ

± 2a(m/ρ)
q−1∑
k=0

hkz (18b)

(1− ab(∂/∂ρ)(∂/∂ρ + 1/ρ)) e∗qϕ

= ∓2ab(∂/∂ρ)(m/ρ)
q−1∑
k=0

ekρ − 2
q−1∑
k=0

ekϕ

− 2a(∂/∂z)
q−1∑
k=0

hkρ + 2a(∂/∂ρ)
q−1∑
k=0

hkz (18c)(
1+ ab(m2/ρ2)

)
eqρ

= e∗qρ ± ab(m/ρ)(∂/∂ρ + 1/ρ)e∗qϕ (18d)

eqϕ = ±ab(∂/∂z)(m/ρ)e
q
z +

(
1+ ab(∂/∂z)2

)
e∗qϕ (18e)(

1+ ab(m2/ρ2)
)
eqz

= e∗qz ± ab(m/ρ)(∂/∂z)e
∗q
ϕ (18f)

hqρ = b(∂/∂z)e∗qϕ ± b(m/ρ)e
q
z − 2

q−1∑
k=0

hkρ (18g)

hqϕ = b(∂/∂ρ)e∗qz − b(∂/∂z)e
q
ρ − 2

q−1∑
k=0

hkϕ (18h)

hqz = −b(∂/∂ρ + 1/ρ)e∗qϕ ± b(m/ρ)e
q
ρ − 2

q−1∑
k=0

hkz

(18i)
(1− ab(∂/∂ρ + 1/ρ)(∂/∂ρ)) e∗qz

= −ab(∂/∂ρ + 1/ρ)(∂/∂z)eqρ,p − 2
q−1∑
k=0

ekz

∓ a(m/ρ)hqρ,p − 2a(∂/∂ρ + 1/ρ)
q−1∑
k=0

hkϕ (19a)

e∗qρ = −ab(∂/∂z)(∂/∂ρ)e
∗q
z − 2

q−1∑
k=0

ekρ + ab(∂/∂z)
2eqρ,p

± a(m/ρ)hqz,p + 2a(∂/∂z)
q−1∑
k=0

hkϕ (19b)

(1− ab(∂/∂ρ)(∂/∂ρ + 1/ρ)) e∗qϕ

= ±ab(∂/∂ρ)(m/ρ)eqρ,p − 2
q−1∑
k=0

ekϕ

+ a(∂/∂z)hqρ,p + 2a(∂/∂ρ)
q−1∑
k=0

hkz (19c)(
1+ ab(m2/ρ2)

)
eqρ,p+1

= e∗qρ ∓ ab(m/ρ)(∂/∂ρ + 1/ρ)e∗qϕ

∓ a(m/ρ)hqz,p ∓ 2a(m/ρ)
q−1∑
k=0

hkz (19d)

eqϕ,p+1 = ±ab(∂/∂z)(m/ρ)e
q
z,p+1 +

(
1+ ab(∂/∂z)2

)
e∗qϕ

− a(∂/∂z)hqρ,p − 2a(∂/∂z)
q−1∑
k=0

hkρ (19e)
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(
1+ ab(m2/ρ2)

)
eqz,p+1

= e∗qz ∓ ab(m/ρ)(∂/∂z)e
∗q
ϕ

± a(m/ρ)hqρ,p ± 2a(m/ρ)
q−1∑
k=0

hkρ (19f)

hqρ,p+1 = b(∂/∂z)e∗qϕ ± b(m/ρ)e
q
z,p+1 − 2

q−1∑
k=0

hkρ (19g)

hqϕ,p+1 = b(∂/∂ρ)e∗qz − b(∂/∂z)e
q
ρ,p+1 − 2

q−1∑
k=0

hkϕ (19h)

hqz,p+1 = −b(∂/∂ρ + 1/ρ)e∗qϕ ± b(m/ρ)e
q
ρ,p+1 − 2

q−1∑
k=0

hkz

(19i)

IV. CONVERGENCE ANALYSIS AND STABILITY
PROOF FOR ITERATIVE CALCULATION
The convergence condition of ρ-direction scheme can be
proved by theoretical analysis method and numerical calcu-
lation. By referring to the analysis methods in [18], [20],
and [22], we can directly obtain the convergence conditions
through equation (8).

A. DERIVATION OF CONVERGENCE CONDITION
In the cylindrical coordinate system, six electric- and
magnetic-field components in the spectral domain can always
be expressed as

Eqρ = eqρ f (ρ, ϕ, z) (20a)

Ẽqϕ = ρe
q
ϕ f (ρ, ϕ, z) (20b)

Eqz = eqz f (ρ, ϕ, z) (20c)

Hq
ρ = hqρ f (ρ, ϕ, z) (20d)

H̃q
ϕ = ρh

q
ϕ f (ρ, ϕ, z) (20e)

Hq
z = hqz f (ρ, ϕ, z) (20f)

where f (ρ, ϕ, z) = Bm(ςρρ)e
⇀
j mϕe

⇀
j ςzz,

⇀

j =
√
−1, Bm

is the appropriate Bessel function, ςρ and ςz are the spa-
tial frequencies along the ρ- and z-directions, respectively.
By substituting the earlier expressions into (7) and defining
ẽ∗qϕ = ρe∗qϕ , ẽqϕ,p+1 = ρeqϕ,p+1, h̃

∗q
ϕ = ρh∗qϕ and h̃qϕ,p+1 =

ρhqϕ,p+1. Thus, the coefficient matrixes of equation (8) should
be rewritten as

31 =


0

0 0 Sm/ρ
0 0 −ρSρ

−Sm/ρ 0 0
0 0 Sm/ρ
0 0 ρSρ

−Sm/ρ 0 0
0

,

32 =


0

0 −j(Sz/ρ) 0
j(ρSz) 0 0
0 Sρ/ρ 0

0 j(Sz/ρ) 0
−j(ρSz) 0 0

0 −Sρ/ρ 0
0

.

where Sρ = (2c/s)(Bi+/12m − Bi−1/2m )/(1ρBmi), Sm =

±(2c/s)m, Sz = (4c/s)(sin(ςz1z)/1z). 31 and 32 are the
coefficient matrixes of the left side of the equations (8a)
and (8b) respectively. In fact, 31 and 32 are another forms
of A and B of the equation (7), thus, we can obtain the
growth-share matrix of the iteration equation (7).

3 = (I − B)−1(I − A)−1AB (21)

According to the matrix theory, When all the eigenvalues
|λ| ≤ 1 of 3, the iteration equation (7) is convergent. And
then, the equation (21) can be modified as

3 = (I − B)−1 [f (A)f (B)] (I − B) (22)

where f (A) = (I − A)−1A, f (B) = (I − B)−1B.
Obviously,3 and f (A)f (B) are similar matrices, thus, they

have the same eigenvalue. The eigenvalue λ is satisfied with

‖λ‖ ≤ ‖f (A)f (B)‖ ≤ ‖f (A)‖ ‖f (B)‖ (23)

When the eigenvalue |λA−max | ≤ 1 of ‖f (A)‖ and the
eigenvalue |λB−max | ≤ 1 of ‖f (B)‖, the iterative calculation
of the proposed method is convergent.

For example, according to thematrix theory, one can obtain

‖f (A)‖2 = λ
(
f (A)f (A)H

)
max

(24)

where f (A)H is the associate matrix of f (A), λmax is the
maximum eigenvalue.

Matlab calculation results show that the eigenvalues of
f (A)f (A)H and f (B)f (B)H are

λA−1,2 = 0 (25a)

λA−3,4 =
(
S2ρρ

4
+ S2m

)
/
(
S2m + ρ

2
)

(25b)

λA−5,6 = S2m/
(
S2m + ρ

2
)

(25c)

λB−1,2 = 0 (26a)

λA−3,4 = λA−5,6 =
(
N ±

√
N 2 − 2ρ2S2z (S2ρ + S2z )2M

)
/M

(26b)

where

N = S2ρ + S
2
z + ρ

4S2z + 2ρ2S4z + ρ
2S2ρS

2
z ,

M = 2
(
ρ2S4z + 2ρ2S2z + ρ

2
)
.

Referring to the analysis process in [22], one can obtain
1 ≥ 4cρ/s1ρ and 1 ≥ 4cρ/s1z. Thus, the convergence
condition for the iteration calculation of the proposed method
is s ≥ 4cρ/min(1ρ,1z).
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B. PROOF OF STABILITY
The numerical method is used to prove the stability of the
proposed method [20], [23]. The stability of the iterative
calculation is illustrated by the long time oscillation of the
time domain waveform. Therefore, an example of a resonator
is used. In fact, the base function of WLP technology will
attenuate with the increase of calculation time, therefore,
when WLP technology is used to calculate the example of
resonator, it will be difficult to calculate that is caused by the
long calculation time.

In order to accurately calculate the resonator of the
proposed method, the time-domain segmentation technol-
ogy is adopted [20], [24]. Taking the conventional WLP
BOR-FDTD as an example, the equations of the conventional
WLP BOR-FDTD based on time-domain segmentation tech-
nology are

eqρ + 2
q−1∑
k=0

ekρ = (2/sε)
(
±(m/ρ)hqz−(∂/∂z)h

q
ϕ

)
+(2/s)Ebefρ

(26a)

eqϕ + 2
q−1∑
k=0

ekϕ = (2/sε)
(
(∂/∂z)hqρ − (∂/∂ρ)hqz

)
+ (2/s)Ebefϕ

(26b)

eqz + 2
q−1∑
k=0

ekz = (2/sε)
(
∂(ρhqϕ)/ρ∂ρ ∓ (m/ρ)hqρ

)
+ (2/s)Ebefz (26c)

hqρ + 2
q−1∑
k=0

hkρ = (2/sµ)
(
(∂/∂z)eqϕ ± (m/ρ)eqz

)
+ (2/s)H ref

ρ

(26d)

hqϕ + 2
q−1∑
k=0

hkϕ = (2/sµ)
(
(∂/∂ρ)eqz − (∂/∂z)eqρ

)
+ (2/s)H ref

ϕ

(26e)

hqz + 2
q−1∑
k=0

hkz = (2/sµ)
(
−∂(ρeqϕ)/ρ∂ρ ∓ (m/ρ)eqρ

)
+ (2/s)H ref

z (26f)

where Ebefi , H ref
i , i = ρ, ϕ, z are the electromagnetic field

components at the last time point, which are calculated by
the previous period.

Obviously, the new equations (27) are formed by adding
Ebefi andH ref

i to the right side of the conventionalWLPBOR-
FDTD. In the similar way, we can obtain the new equations
of the proposed method based on time-domain segmentation
technology by adding Ebefi and H ref

i to the right side of
equations (6) and (11), not tired in words here.

In order to verify the stability of the proposed method,
an perfectly electrically conducting (PEC) cavity resonator is
computed. The radius and height of the cavity are both 11cm.
The computational domain is meshed using a uniform grid
with 1ρ = 1z = 1cm, s = 1.0 × 1011, q = 500 and Nt is

the number of iterations. The total calculation time is 260ns
which is divided into 13 periods for calculation and every
20ns is a period of time. On the premise that the convergence
condition is s ≥ 4cρ/min(1ρ,1z), the proposed method
compares with the conventional WLP BOR-FDTD method.
The results are shown in (a) and (b) of FIGURE 5.

FIGURE 5. Computational results of conventional WLP BOR-FDTD method
and the proposed method. (a) 0∼80ns. (b) 180∼260ns.

The (a) and (b) in FIGURE 5 show an excellent agree-
ment between conventional WLP BOR-FDTD method and
the proposed method. Thus, the proposed method is stable
under s ≥ 4cρ/min(1ρ,1z). In fact, s = 2 × 1010 is the
minimum stability condition in this cavity resonator example,
if s < 2× 1010, the numerical result is divergent. Therefore,
we can determine that s ≥ 4cρ/min(1ρ,1z) is not only the
convergence condition but also the stability condition of the
proposed method at ρ-direction explicit calculation.

V. TWO SCATTERING NUMERICAL
RESULTS AND ANALYSES
In order to verify the proposed method, two scattering numer-
ical examples for ρ-direction and z-direction are given.

First example, a single groove scattered model is given for
verifying the ρ-direction calculation of the proposed method.
The depth of the groove is 2cm. The obliquely incident plane
wave is added through Huygen’s surface at ρ = 22.5cm and
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z = ±22.5cm, and the incident angle is θi = 45◦, as shown
in FIGURE 6. The incident electric field is

Ei(t) = E0cos(2π f0t)exp
(
−4π ((t − t0) /τ)2

)
(27)

FIGURE 6. Illustration of the irregular cylinder under oblique incident
wave.

where E0 = 1000V/m, f0 = 10GHz, τ = 1.5/f0, t0 =
1.75/f0. In addition, choose s = 8× 1011, q = 210 for com-
paring with the existing efficient WLP-based BOR-FDTD
method [19], and the range of mis from 0 to 14. The compu-
tational domain is meshed using a uniform grid with 1ρ =
21z = 0.2cm, leading to the total mesh of 100 × 200, and
the first order Mur absorbing boundary condition is used to
truncate the boundary [25].

The simulated electric field are Ez components at point
P1(48, 0) and P2(60,−39). The iterations of the whole com-
putational domain and local area are denoted by Nt and Np1,
respectively. And the size of the local computational area is
101ρ × 901z for nearing the groove.
In addition, to demonstrate the better efficiency of the

proposed algorithm comparing with the existing algorithm,
an error formulation is provided, which is defined as

Ez,error = log
∣∣Ez(t)− Ez,BOR−FDTD(t)∣∣ (28)

where Ez(t) are the simulation data about electric field of
the one-step WCS BOR-FDTD method [18], the existing
efficient WLP-based BOR-FDTD method [19] and the pro-
posed method, Ez,BOR−FDTD(t) is the electric field datum of
the conventional BOR-FDTD method.

By using conventional BOR-FDTD method, the one-step
WCS BOR-FDTD method, the existing efficient WLP-based
BOR-FDTD method and the proposed method, the time-
domain field waveforms at the observation points P1 and P2
are shown in FIGURES 7-8. The numerical results show an
excellent agreement between the proposed method and the
conventional BOR-FDTD method.

FIGURE 7. Computational results EZ at point P1 of the proposed method
and existing BOR-FDTD methods.

FIGURE 8. Computational results EZ at point P2 of the proposed method
and existing BOR-FDTD methods.

FIGURE 9. Errors obtained by EZ at point P1 of the proposed method and
existing BOR-FDTD methods.

FIGURE 9 and FIGURE 10 give the errors which are
obtained by Ez at the observation points P1 and P2 of
the proposed method (Nt = 2,Np1 = 1), the one-step
WCS BOR-FDTD method (cfln = 1 and 4) and the
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FIGURE 10. Errors obtained by EZ at point P2 of the proposed method
and existing BOR-FDTD methods.

existing efficient WLP-based BOR-FDTD method (Nt = 2,
Np1 = 1). The error results show that the accuracies of
the proposed method (Nt = 2,Np1 = 1)and the one-step
WCS BOR-FDTDmethod (cfln = 1) are almost equal. How-
ever, the CPU time are 61s and 418s respectively. Namely,
the proposed method can be raised the efficiency almost 85%
than the one-step WCS BOR-FDTD method (cfln = 1). The
accuracy of the proposed method (Nt = 2,Np1 = 1) can
be raised almost 61% than the one-step WCS BOR-FDTD
method (cfln = 4) and almost 69% than the existing efficient
WLP-based BOR-FDTD method (Nt = 2,Np1 = 1) respec-
tively. Meanwhile, the memory of the proposed method can
be declined almost 45% than the one-step WCS BOR-FDTD
method and almost 5% than the existing efficient WLP-based
BOR-FDTD method, as shown in TABLE 1 which includes
the CUP time and memory of these existing BOR-FDTD
methods.

In a word, the simulation results of the first example
show that the combination of the explicit ideology and WLP
technology can improve the computational efficiency and
accuracy for the BOR system in different degrees by com-
paring the existing BOR -FDTD methods and greatly reduce
the consumption of memory. In other words, this proposed
method not only solves the problem of time step limitation
and large memory consumption, but also greatly improves the
computational efficiency, accuracy andmemory consumption
of calculation.

Second example, the scattered model shown in FIGURE 6
is still used to verify the performance of the z-direction
explicit calculation. The computational domain is meshed
using a uniform grid with 21ρ = 1z = 0.2cm, the local area
is denoted by Np 2. And the size of the local computational
area is 101ρ × 2001z for nearing the axis. The simulated
electric field is P3(5, 48), the other conditions are same with
the first example.

FIGURE 11 shows the results of the proposed method
with axis treating and no axis treating compared with the

FIGURE 11. Computational results EZ at point P3 of the proposed
method with axis treating.

theoretical result at P3. Clearly, the numerical result shows
an excellent agreement between the axis treating of the pro-
posed method and the theoretical result. Namely, the specail
treatment for the field components on axis in part II of this
paper is verified from another perspective.

By using conventional BOR-FDTD method, the one-step
WCS BOR-FDTD method, the existing efficient WLP-based
BOR-FDTD method and the proposed method, the time-
domain field waveforms at the observation point P3 are
shown in FIGURES 12. The numerical results show an excel-
lent agreement between the proposedmethod and the conven-
tional BOR-FDTD method.

FIGURE 12. Computational results EZ at point P3 of the proposed
method and existing BOR-FDTD methods.

FIGURE 13 gives the errors which are obtained by
Ez at the observation point P3 of the proposed method
(Nt = 2,Np2 = 1), the one-step WCS BOR-FDTD method
(cfln = 1 and 3) and the existing efficient WLP-based
BOR-FDTDmethod (Nt = 2,Np2 = 1). The results are sim-
ilar with the first example. The error of the proposed method
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FIGURE 13. Errors obtained by EZ at point P3 of the proposed method
and existing BOR-FDTD methods.

(Nt = 2,Np2 = 1) is almost equal with the one-step WCS
BOR-FDTDmethod (cfln = 1). Comparing with the one-step
WCS BOR-FDTD method (cfln = 3) and the existing effi-
cient WLP-based BOR-FDTD method (Nt = 2,Np2 = 1),
the accuracy can be raised almost 45% and 59%, respectively.
Meanwhile, the computational efficiency and the memory
consumption also can be greatly improved that can refer to
the TABLE 1 for details, not tired in words here.

TABLE 1. CPU time and memory for different methods.

VI. CONCLUSION
In this work, a novel efficient weighted Laguerre polynomial
(WLP)-based finite-difference time-domain (FDTD) method
with explicit treating ideology is proposed. This proposed
method is flexible and variable, explicit scheme at both
ρ-direction and z-direction can be realized for the BOR sys-
tem. By combining the explicit treating ideology and WLP
technology, the limitation of time step 1t can be eliminated
effectively and the original time domain problem can be
converted into another one related to the time-scale factor
s. Meanwhile, the consumption of memory can be greatly
saved. Two scattering examples show that the proposed
method can greatly improve the computational efficiency and

accuracy and weaken the cumbersomeness of Gauss-Seidel
process, compared with the existing efficient WLP-based
BOR-FDTD method and the one-step WCS BOR-FDTD
method.
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