
SPECIAL SECTION ON THEORY, ALGORITHMS, AND APPLICATIONS OF SPARSE RECOVERY

Received December 29, 2018, accepted January 13, 2019, date of publication January 24, 2019, date of current version February 14, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2894874

An Energy-Efficient and Fast Convergent
Resource Allocation Algorithm in Distributed
Wireless Ad Hoc Networks
WEI FENG1, YONGXIN XU 1, XIAORONG XU 1, MINGXIONG ZHAO2, AND YINGBIAO YAO1
1School of Communication Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
2School of Software, Yunnan University, Kunming, 650091, China

Corresponding author: Yingbiao Yao (e-mail: yaoyb@hdu.edu.cn).

This work was supported in part by the National Natural Science Foundation of China under Grant 61671192, in part by the Public Welfare
Plan Project of Zhejiang Province under Grant LGG19F020014, in part by the Natural Science Foundation of Zhejiang Province under
Grants LY19F010011, and in part by the General Science Foundation of Zhejiang Educational Committee under Grant Y201533647.

ABSTRACT Since the initial publication of Kelly et al.’s seminal paper on resource allocation in wired
networks, many studies based on the cross-layer design philosophy have been conducted in both wired
and wireless networks. The Lagrangian duality technique has been widely adopted to solve the cross-layer
optimization problem, but it is slowly convergent and sensitive to the iterative step size, especially for large
networks. In this paper, a joint congestion control and power allocation second-order algorithm (JCCPA) is
proposed, in which the joint optimization problem is modeled as a network utility maximization (NUM)
framework, and the primal-dual interior-point method is used to solve the NUM problem. The JCCPA
updates the primal variables and dual variables simultaneously according to their Newton directions; as a
result,resulting in a faster convergence speed is reached. Moreover, the matrix-splitting technology is utilized
to decompose the computation of the Hessian matrix and its inverse into different nodes and links so that the
distributed update of source rate and node power can be implemented. The simulation results demonstrate
that the JCCPA not only significantly improves energy efficiency but also has a faster convergence speed
and is insensitive to step size.

INDEX TERMS Congestion control, energy efficiency, fast convergence, power allocation, wireless multi-
hop ad hoc networks.

I. INTRODUCTION
With the advantages of self-organization, low cost, and easy
deployment, wireless multihop ad hoc networks are widely
applied to expand network coverage and increase network
capacity. To improve the network performance of wireless
multihop ad hoc networks, cross-layer optimization schemes
for resource allocation have received a great deal of atten-
tion. In order to allocate network resources appropriately,
cross-layer optimization schemes break down the traditional
layering architecture and capture the dependencies and inter-
actions among five layers [1].

In recent decades, great achievements have been made
in cross-layer optimization algorithms for wireless multihop
ad hoc networks [2]–[11]. Among these methods, the cross-
layer optimization problem is usually modeled as a net-
work utility maximization (NUM) framework and solved by
the Lagrangian dual decomposition or subgradient methods

[4]–[6]. For example, Eryilmaz and Srikant [4] investigated
the joint scheduling, routing, and congestion control problem,
adopted the primal-dual method to achieve fair resource allo-
cation, and further used Lyapunov stability theory to prove
the stability of the queue buffer. Zhang et al. [5] consid-
ered the joint congestion control and power control problem
in wireless multihop networks. A power consumption cost
function was introduced in the objective function, and the
Lagrangian dual decomposition method was used to solve
the optimization problem. Based on the physical interfer-
ence model, Huang et al. [6] investigated the complex scene
of multichannel and multiradio networks, and applied both
Lagrangian dual decomposition and subgradient methods to
achieve the optimization of joint congestion control, power,
and channel allocation in wireless networks. These first-order
approaches generally use ‘‘price’’, which is a dual multiplier,
to form a feedback mechanism between the sources and
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the links, so that the algorithms can operate distributedly
with the local information. However, this kind of solution
has inherent defects, such as a slow convergence rate and
the difficulty of selecting an appropriate iterative step size.
Therefore, the second-order algorithm based on the interior-
point method has emerged as an alternative approach to
these problems in recent years [7]–[11]. Zymnis et al. [7]
considered the flow control problem based on the premise
that the flow route is predefined. The primal-dual interior-
point method was utilized to achieve the iterative formulas
of primal and dual variables, and the iterative directions of
primal and dual variables were computed using Newton’s
method. The algorithm has a faster convergence rate; how-
ever, it is centralized, and the signaling overhead is disas-
trous, especially for large, dense networks. The difficulties
associated with the distributed implementation of second-
order algorithms lie in taking the inverse of the Hessian
matrix and other matrices in the iterative direction, which
contain a wealth of global information and usually cannot
be turned into solvable diagonal structures. To solve this
problem, a distributed Newton method was proposed in [9],
which obtains approximate iterative directions of primal and
dual variables and realizes the distributed variable updates.
Unfortunately, the control strategy of iterative step size in [9]
is rather complex in its implementation. Liu and Sherali [10]
further considered themultipath routing problem based on [9]
and designed a new distributed Newton method, which used
the matrix-splitting approach to decompose the computa-
tion of the Hessian matrix and its inverse into source nodes
and links. However, the results are approximate. In a recent
work [11], the authors developed an efficient second-order
distributed algorithm based on the primal-dual interior-point
method for joint congestion control and routing optimization.
This algorithm considers the scenario in which each network
node maintains an independent queue backlog, and it uses
the Sherman-Morrison-Woodbury matrix inversion formula
to decompose the Hessian matrix and its inverse. The true
solutions of the matrix inversion can be obtained through less
information interaction, and a faster convergence speed is
reached by updating the primal and dual Newton directions
simultaneously. The algorithm in [11] goes a step further
than the previous second-order algorithms, in which only the
primal variable is updated in Newton direction.

As the above discussion indicates, the second-order
resource allocation methods have been improved in some
respects, but they are still largely an open problem. All exist-
ing second-order resource allocation methods for congestion
control in wireless multihop ad hoc networks are based on
the premise that the capacity domain is known and fixed
and that even the optimization problem itself is a linear
convex optimization problem. In fact, the capacity domain
is usually dynamic due to the network resource allocation,
channel variation, nodemobility, and so on. The second-order
algorithm presented here is designed to escape the bottleneck
link in the network rather than allocate more power to the
bottleneck link in order to establish a larger transmission link

and transmit packets faster through the bottleneck link. Based
on these problems, an excellent power control method should
devote itself to allocating appropriate power to requisite
links in order to increase the capacity of the bottleneck link,
improve energy efficiency, and achieve a faster convergence
rate. There are two critical hindrances to realizing this idea:
identifying a way to find the bottleneck link and a way to
stabilize the flow rate fluctuation in the network as a whole,
which is caused by allocating the power to one link.

This paper considers wireless ad hoc networks with node
power constrained, such as wireless sensor networks, and
examines the problems of joint congestion control and
power allocation. An energy-efficient and fast convergent
second-order algorithm based on the primal-dual interior-
point method is proposed, and the completely distributed
updating of the flow rate and link power is realized with the
matrix-splitting method. The main differences between the
proposed algorithm and the current state of the art and the
most relevant contributions of this paper are as follows:

1) We propose a distributed joint congestion control
and power allocation second-order algorithm (JCCPA)
in wireless multihop ad hoc networks for the first
time, and demonstrate its convergence. This algorithm
not only overcomes the slow convergence drawbacks
of conventional first-order algorithm but also greatly
improves the energy efficiency of the existing second-
order algorithms.

2) According to the optimization model with the dynamic
channel capacity constraint, we propose a modi-
fied nonlinear system comprised of perturbed KKT
(Karush-Kuhn-Tucher) conditions. Compared with the
common nonlinear system in the existing second-order
algorithm, the modified nonlinear system introduces a
modifiedmatrix defined by the dynamic channel capac-
ity constraint, which is adaptive to different channel
capacity models, and provides a pointcut for the studies
on the second-order algorithm under the interference-
limited or multichannel networks.

3) We evaluate the proposed JCCPA through extensive
simulations. Simulation results demonstrate that the
convergence speed of JCCPA is more than 30 times
faster than that of the traditional first-order algorithm
and JCCPA can improve the energy efficiency by
37.5% compared to the newest second-order algorithm.

The rest of the paper is organized as follows. In Section II,
we describe the systemmodel and formulate the optimization
problem. The corresponding congestion control and power
allocation policies are presented in Section III. The simula-
tion results are discussed in Section IV, and a conclusion is
provided in Section V.

II. SYSTEM MODEL AND PROBLEM FORMULATION
A. SYSTEM MODEL
Consider a wireless ad hoc network with N nodes and N
logical links. Let a graph G = {N ,L} denote it, where
|N | = N is the set of nodes, and |L| = L is the set of
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links, respectively. Tx (l) and Rx (l) are the transmitting and
receiving nodes of link l, respectively. Let S denote the end-
to-end flow number and F = {f1, . . . , fs, . . . , fS} denote the
set of flow rates and the cardinality of the sets F is |F | = F .
For each flow s, a sequence of connected links l ∈ L (s) forms
a route originating at the source node Src(s) and destined for
the destination node Dst(s). Let D denote the nodes without
output link. For convenience, we define a routing matrix
R ∈ RL×S and a node-link matrix T ∈ R(N−D)×L after
removing the nodes without output link. The entries (R)ls and

(T)nl are defined as follows: (R)ls =
{
1, if l ∈ L (s) ,
0, otherwise.

and

(T)nl =
{
1, if n = Tx (l) ,
0, otherwise.

B. PROBLEM FORMULATION
All the channels are modeled by large-scale fading with path
loss exponent α along with small-scale Rayleigh fading. The
instantaneous received signal-to-noise ratio (SNR) at link l
can be given as SNRl =

pl |hl |2

dαl
, where pl denotes the transmit

power of link l, and dl and hl represent the distance and
channel coefficient of link l, respectively. We assume that
|hl |2 follows exponential distributions with mean equal to
one [16]. For convenience, the noise power is normalized
here. Therefore, the effective capacity of the logical link l can
be modeled as Cl(pl) = Blog(1+ pl |hl |2

dαl
),where B is the chan-

nel bandwidth. As a result, in contrast to the aforementioned
studies, data rates attainable on wireless links are not a fixed
numberC ; instead, they are a nonlinear, nonconcave function
of the transmit power and channel conditions.

In any timeslot, the total network flow traversing a link l
cannot exceed its link capacity; that is, the channel capacity
constraint

∑
s:l∈L(s)

fs ≤ Cl(pl) exists. Because the node power is

limited,
∑

l∈O(n)
pl ≤ pmax

n must hold, where pmax
n denotes the

maximal nodal power, andO(n) denotes the output link set of
node n.

C. OPTIMIZATION PROBLEM
As in the general NUM problem, we use the utility U (fs) =
log(fs) [14], which is proved twice continuously differen-
tiable, nondecreasing, and strictly concave, to achieve con-
gestion control and proportional fairness among the flows.
By associating the objective and the constraints together,
we have the following formulations:

Maximize
S∑
s=1

U (fs)

Subject to
∑

s:l∈L(s)

fs ≤ Cl (pl) , ∀l, (1)

∑
l∈O(n)

pl ≤ pmax
n , ∀n, (2)

fs > 0, ∀s, pl > 0, ∀l, (3)

Cl (pl) = Blog

(
1+

pl |hl |2

dαl

)
. (4)

Note that the above optimization problem contains real
variables F and a nonlinear, nonconcave function of variables
P, so it is a complex, nonlinear programming problem. The
constraint (4) induces the nonconvex property, and the log-
transformation [9] is adopted to transform the constraint into
a linear one so that the centralized algorithm can be applied
to achieve the global optimality of the proposed algorithm.
However, in the centralizedmethod, each node needs to notify
the central node of all its state information, and the central
node then needs to send the allocated results to all other
nodes. This will lead to an immense communication over-
head, which is expensive in terms of time and resources, so it
is impractical, especially for a large network. To solve this
problem, a completely distributed second-order algorithm is
described in detail in the next section.

III. JOINT CONGESTION CONTROL AND POWER
ALLOCATION ALGORITHM
Define y = [f1, . . . , fS , p1, . . . , pL]> to group all the

flow rate and link power variables, M =

[
R 0
0 T

]
to group all network topology information, and e =

[C1, . . . ,CL , pmax
1 , . . . , pmax

N ]> ∈ R(L+N−D)×1 to group all
the link-capacity and node-power (removing the nodes with-
out output link) variables; 0 represents an all-zero matrix,
whose dimension is determined based on the context; >
denotes the transpose of matrix. Therefore, constraints (1)
and (2) can be compactly written as:

My ≤ e. (5)

In order to solve the original problem, we first use the
barrier method to transform the optimization problem into an
unconstrained one. The reformulated problem can be written
as:

Minimize f̂µ(y). (6)

The barrier objective function f̂µ(y) is as follows:

f̂µ (y) =



−µ
S∑
s=1

U (fs)−
S∑
s=1

log (fs)−
S∑
s=1

log (pl)

−

L∑
l=1

log

(
Cl (pl)−

∑
s:l∈L(s)

fs

)

−
∑

n6=Dst(s),∀s
log

(
pmax
n −

∑
l∈O(n)

pl

)


=


f̂µ (y)−

L∑
l=1

log

(
Cl (pl)−

∑
s:l∈L(s)

fs

)

−
∑

n 6=Dst(s),∀s
log

(
pmax
n −

∑
l∈O(n)

pl

)
 , (7)

where

f̂µ (y) = −µ
S∑
s=1

U (fs)−
S∑
s=1

log (fs)−
L∑
l=1

log (pl) , (8)

and the barrier parameter µ > 0 is used to adjust the degree
of approximation with the original optimization problem.
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The largerµ is, the closer the solution is to that of the original
problem.

Next, take the first derivative of f̂µ(y) with respect to fs and
pl respectively, and then set the results equal to zero. We thus
obtain

∂ f̂µ (y)
∂fs

= −µU ′ (fs)−
1
fs

+

L∑
l=1

1s (l)(
Cl (pl)−

∑
s:l∈L(s)

fs

) = 0, (9)

∂ f̂µ (y)
∂pl

= −
Cl ′ (pl)(

Cl (pl)−
∑

s:l∈L(s)
fs

)

−
1
pl
+

1(
pmax
Tx(l) −

∑
j∈O(Tx(l))

pj

) = 0, (10)

where (1s)l =
{
1, if l ∈ L (s) ,
0, otherwise.

According to the primal-dual interior-point method,

we define dual variables wl =

(
Cl(pl)−

∑
s:l∈L(s)

fs

)−1
and

ϕn =

(
pmax
n −

∑
l∈O(n)

pl

)−1
based on (9) and (10), respec-

tively.

(
Cl(pl)−

∑
s:l∈L(s)

fs

)
denotes the remaining capac-

ity on link l, which reflects the use-cost of link l, and(
pmax
n −

∑
l∈O(n)

pl

)
indicates the remaining power of node

n, which implies the power cost of node n. Thus, wl and ϕn
are regarded as link-congestion price and node-power price,
respectively. Without loss of generality, w = [wl,∀l]> ∈
RL×1, ϕ = [ϕn,∀n]> ∈ R(N−D)×1 and λ = [w>,ϕ>]>

are defined to group all link-congestion prices, node-power
prices and dual variables, respectively. Therefore, we obtain
the following perturbed KKT system of reformulated opti-
mization problem, which contains stationarity (ST), primal
feasibility (PF), dual feasibility (DF) and perturbed comple-
mentary slackness (CS) conditions:

(ST): ∇fµ(y)+ (M> −∇e)λ = 0, (11)

(PF): y > 0,My− e < 0, (12)

(DF): λ > 0, (13)

(CS): − Diag{My− e}λ = 1, (14)

where 1 represents an all-one matrix, whose dimension is
determined from the context.

By using Newton’s method to solve the nonlinear system
composed of the perturbed KKT conditions, we have[
H[t] −∇

2e[t]M> −∇e[t]
−3[t]

(
M−∇e>[t]

)
−Q[t]

][
1y[t]
1λ[t]

]
= −

[
g[t] +

(
M> −∇e[t]

)
λ[t]

−
(
λ[t]Q[t] + I

)
1

]
, (15)

where g[t] = ∇fµ(y[t]) and H[t] = ∇
2fµ(y[t]) denote the

gradient vector and Hessian matrix of fµ(y[t]), respectively,
∇e[t] =

∂e[t]
∂y[t]

, ∇2e[t] =
∂(∇e[t])λ[t]
∂y[t]

, λ[t] = Diag{λ[t]},

and Q[t] = Diag{My[t] − e[t]}, Diag{∗} indicate diagonal-
ization, and I represents the unit matrix, whose dimension
is determined from the context. We define this system a
modified KKT system, where ∇e[t], ∇2e[t] are modified
matrices decided by the dynamic channel capacity constraint,
so the system is adaptive to different channel capacitymodels.
When the static channel capacity model (i.e. channel capacity
is a constant) is adopted, the modified matrices ∇e[t] and
∇

2e[t] become full zero matrices, and the modified KKT
system is reduced to the general KKT system (such as the
KKT system in [11]). The modified KKT system is more
inclusive.

According to (15), the primal Newton direction 1y[t] and
the dual Newton direction 1λ[t] can be calculated easily:

1y[t] = −F
−1
[t]

[
g[t] −

(
M> −∇e[t]

)
Q−1[t] 1

]
, (16)

1λ[t] =

−G−1[t] ł


(
M−∇e>[t]

) (
H[t] −∇

2e[t]
)−1

×
(
g[t] +

(
M> −∇e[t]

)
λ[t]

)
−

(
Q[t] +3

−1
[t]

)
1


 ,
(17)

where

F[t] =

[
H[t] −∇

2e[t] −
(
M> −∇e[t]

)
×Q−1[t] 3[t]

(
M−∇e>[t]

) ]
, (18)

G[t] =

[(
M−∇e>[t]

) (
H[t] −∇

2e
)−1

×
(
M> −∇e[t]

)
−3−1[t] Q[t]

]
. (19)

Then, with 1y[t] and 1λ[t], the primal variable y and dual
variable λ can be iteratively updated according to the follow-
ing equations:[

y[t+1]
λ[t+1]

]
=

[
y[t]
λ[t]

]
+ π[t]

[
1y[t]
1λ[t]

]
, (20)

where π[t] is a step size.
Thus far, we have obtained the update method for the

primal variable y and the dual variable λ. But note that the
inverse operations of matrices F[t] and G[t] in (16) and (17),
respectively, need to collect global information such as flow
rate, link power, and channel state information for the entire
network; thus, only a centralized computation can be applied
here. Unfortunately, the signaling overhead grows with the
network size in a centralized computation pattern. Therefore,
we need to further decouple these parameters so that we can
update them distributedly.
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A. DISTRIBUTED SOLUTION PROCEDURE
We first consider dual-variable updating with a full Newton
step, that is, λ̃[t+1] = λ[t] + 1λ[t]. By substituting (17) into
the aforementioned equation and simplifying it, we have

λ̃[t+1] = G−1[t]

[
−

(
M−∇e>[t]

)
×

(
H[t] −∇

2e[t]
)−1

g[t] +3−1[t] 1
]
. (21)

According to (15), we can then obtain(
H[t] −∇

2e[t]
)
1y[t] +

(
M> −∇e[t]

)
1λ[t]

= −

[
g[t] +

(
M> −∇e[t]

)
λ[t]

]
.

By combining the above equation with (21), the primal and
dual Newton directions in (16) and (17) can be alternatively
computed as follows:

1y[t] = −
(
H[t] −∇

2e[t]
)−1

×

[
g[t] +

(
M> −∇e[t]

)
λ̃[t+1]

]
, (22)

1λ[t] = λ̃[t+1] − λ[t]. (23)

1) DISTRIBUTED COMPUTATION OF THE
PRIMAL NEWTON DIRECTION
In order to decouple the variables in (22),

(
H[t] −∇

2e[t]
)−1
=(

∇
2fµ(y[t])−∇2e[t]

)−1
first needs to be solved in a dis-

tributed manner. According to (8) and (4), we have the fol-
lowing (for simplicity, we omit time-slot indexes ‘‘t’’ in the
next part):

∂fµ(y)
∂fs

= −µU ′(fs)−
1
fs
,

∂2fµ(y)
∂f 2s

= −µU ′′(fs)+
1
f 2s
,

∂fµ(y)
∂pl

= −
1
pl
,

∂2fµ(y)

∂p2l
=

1

p2l
,

where U ′(fs) and U ′′(fs) are the first and second derivatives
of the utility function, respectively, and

∇e =
∂e
∂y
=

[
0 0
C′ 0

]
, ∇e ∈ R(S+L)×(L+N−D),

∇
2e =

∂(∇e)λ
∂y

=

[
0 0
0 C′′3

]
, ∇2e ∈ R(S+L)×(S+L),

C′ = Diag
{
C ′l =

∂Cl
∂pl

,∀l
}
,

C′′ = Diag

{
C ′′l =

∂2Cl
∂p2l

,∀l

}
,

C′′3 = Diag
{
wlC ′′l ,∀l

}
,

where C ′l and C ′′l represent the first and second derivatives
of the channel capacity function with respect to power pl ,

respectively. Therefore, g[t] = [−µU ′(f1,[t]) − 1
f1,[t]

,..., −

µU ′(fS,[t])− 1
fS,[t]

,− 1
p1,[t]

,...,− 1
pL,[t]

]> ∈ R(S+L)×1.

Furthermore, (H[t]−∇
2e[t]) can be expressed as the follow-

ing diagonal structure: (H[t] − ∇
2e[t]) =

[
S[t] 0
0 P[t]

]
, where

S[t] = Diag{−µU ′′(fs,[t]) + 1
f 2s,[t]

,∀s}, P[t] = Diag{ 1
p2l,[t]
−

wl ,[t]C
′′
l,[t],∀l}. S[t] and P[t] are both diagonal matrices, so it

is easy to compute their own inverse matrices:

S−1[t] = Diag


(
−µU ′′

(
fs,[t]

)
+

1

f 2s,[t]

)−1
,∀s

 ,
P−1[t] = Diag


(

1

p2l,[t]
− wl,[t]C ′′l,[t]

)−1
,∀l

 .
Finally, the inverse matrix of (H[t]−∇

2e[t]) can be written as(
H[t] −∇

2e[t]
)−1
=

[
S−1[t] 0
0 P−1[t]

]
.

By substituting the above result into (22), we can obtain
distributed update formulas for the Newton directions of the
flow rate and link power, respectively:

1fs,[t] = −

(
−µU ′′

(
fs,[t]

)
+

1

f 2s,[t]

)−1

×

−µU ′ (fs,[t])− 1
fs,[t]
+

∑
l∈L(s)

w̃l,[t+1]

 , (24)

1pl,[t] = −

(
1

p2l,[t]
− wl,[t]C ′′l,[t]

)−1
×

[
−

1
pl
− C ′l,[t]w̃l,[t+1] + ϕ̃Tx(l),[t+1]

]
. (25)

2) DISTRIBUTED COMPUTATION OF THE
DUAL NEWTON DIRECTION
The limitation of distributed computing of the dual variables
in (21) is that G−1[t] requires global information. To solve
this problem, we first transform (21) into the following lin-
ear equation, which can be solved with the matrix-splitting
method [15]:

G[t+1]λ̃[t+1] = −
(
M−∇e>[t]

)
×

(
H[t] −∇

2e[t]
)−1

g[t] +3−1[t] 1. (26)

Matrix splitting is a common way to solve linear equations
in an iterative method, so we use it to decompose G[t].
As a result, we only need to invert a diagonal matrix in the
calculation process of λ̃[t+1].
The matrix-splitting method can be simply summarized as

follows. Consider a consistent linear equation systemFz = d,
where F ∈ Rn×n is a nonsingular matrix and z,d ∈ Rn.
Suppose that F is split into a nonsingular matrix F1 and
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another matrix F2 according to F = F1 − F2. Let z0 be
an arbitrary starting vector. Then, a sequence of approxi-
mate solutions can be generated using the following iterative
scheme:

zk+1=(F−11 F2)zk + F−11 d, k ≥ 0. (27)

Generally, F1 should be an easily invertible matrix (e.g.,
a diagonal matrix). It can be shown that this iterative method
is convergent to the unique solution z = F−1dwith k→∞ if
and only if the spectral radius ρ(F−11 F2) of the matrix F−11 F2

satisfies ρ(F−11 F2) < 1.
Based on the above description, we can obtain the iterative

calculation formula of λ̃[t+1]. The specific details are given
in Theorem 1 below. After Theorem 1 is given, we prove that
it satisfies the convergence condition that the spectral radius
ρ(F−11 F2) < 1 in the splitting process.
Theorem 1: Split G[t] as

G[t] =
(
8[t] + β�̄[t]

)
−
(
β�̄[t] −�[t]

)
,

where 8[t] = Diag{G[t]} is a diagonal matrix having the
same main diagonal of G[t], �[t] = G[t] − 8[t] denotes
the matrix containing entries after subtracting8[t] fromG[t],
�̄[t] is a diagonal matrix with the diagonal entries defined
by (�̄[t])ii =

∑
j

∣∣∣(�[t])ij

∣∣∣, and β > 1
2 is a parameter used

to coordinate convergence performance. Then, λ̃[t+1] can be
solved by the following iterative formula:

λ̃
k+1
[t+1] =

(
8[t] + β�̄[t]

)−1 (
β�̄[t] −�[t]

)
λ̃
k
[t]

+
(
8[t] + β�̄[t]

)−1
×

[
−

(
M−∇e>[t]

) (
H[t]−∇

2e[t]
)−1

g[t]+3−1[t] 1
]
.

(28)

And λ̃
k+1
[t+1] converges to the solution

λ̃[t+1]=G−1[t]

[
−

(
M−∇e>[t]

) (
H[t]−∇

2e[t]
)
g[t]+3−1[t] 1

]
as k→∞.

To prove Theorem 1 holds, we need to prove that
ρ((8[t] + β�̄[t])

−1
(β�̄[t] − �[t])) < 1 holds. To do so,

we first introduce the two following lemmas, which will be
used in the proof:

Lemma 1: Suppose that F is a real symmetric matrix.
If both matrices F1 − F2 and F1 + F2 are positive definite,
then ρ(F−11 F2) < 1.
Lemma 2: If a symmetric matrix Q is strictly diagonally

dominant, that is,
∣∣Qii

∣∣ >∑
i 6=j

∣∣Qij
∣∣, and if Qii > 0 for all i,

then Q is positive definite.
Convergence proof for Theorem 1:
Step (1): To prove that G[t] is a real symmetric matrix.

Expanding G[t] according to (19), we have

G[t] =

(
M−∇e>[t]

) (
H[t] −∇

2e[t]
)−1

×

(
M> −∇e[t]

)
− λ−1[t] Q[t]

=

[
R −C′[t]
0 T

][
S−1[t] 0
0 P−1[t]

][
R> 0

−

(
C′[t]

)>
T>

]
−Diag

{
λ−1[t]

}
× Diag

{
My[t] − e[t]

}
=

RS−1[t] R
>
+ C′[t]P

−1
(
C′[t]

)>
−C′[t]P

−1
[t] T

>

−TP−1[t]

(
C′[t]

)>
TP−1[t] T

>


+Diag

{(
λ−1[t]

)> (
e[t] −My[t]

)}
.

The second item in the above formula:(
Diag

{(
λ−1[t]

)> (
e[t] −My[t]

)})
ii

=

{
w−1i (Crest)i, i ≤ L
ϕ−1i (Prest)i, L + 1 ≤ i ≤ L + N − D

where thematrices Crest ∈ RL×1 and Prest ∈ R(N−D)×1 are the
1st to Lth item and the (L + 1) th item to the (L + N − D) th
item of (e[t]−My[t]), respectively, Crest denotes the remaining
capacity of each link, and Prest denotes the remaining power
of each node. Obviously, G[t] is a real symmetric matrix.
Step (2): To prove that G[t] is positive definite.
Because the diagonal elements of the diagonal matrix

H[t] are positive, so it is a positive definite matrix. Simi-
larly, the diagonal elements of the diagonal matrix −∇2e[t]
are nonnegative (because the second-order derivative of the
channel capacity function (4) with respect to power is nega-
tive), so H[t] − ∇

2e[t] is strictly diagonally dominant. From
Lemma 2, we can derive that H[t] − ∇

2e[t] is a posi-
tive definite. According to the nature of the positive defi-
nite matrix, (H[t] −∇

2e[t])
−1

is also positive definite, and
all the eigenvalues are greater than zero. Regarding (M −
∇e>[t])(H[t] −∇

2e[t])
−1

(M> −∇e[t]), because it is an invert-
ible matrix, we have(

M−∇e>[t]
) (

H[t] −∇
2e[t]

)−1 (
M> −∇e[t]

)
z 6= 0.

Therefore, we can find that

z>
(
M−∇e>[t]

) (
H[t] −∇

2e[t]
)−1 (

M> −∇e[t]
)
z

=

[(
M> −∇e[t]

)
z
]> (

H[t] −∇
2e[t]

)−1 [(
M> −∇e[t]

)
z
]

≥
1

λmin
{(
H[t] −∇2e[t]

)} ∥∥∥(M> −∇e[t]) z∥∥∥2
> 0.

Hence,
(
M−∇e>[t]

) (
H[t] −∇

2e[t]
)−1 (M> −∇e[t]) is

positive definite. Simultaneously, the diagonal matrix(
−λ−1[t] Q[t]

)
is strictly diagonally dominant. From Lemma 2,

it is a positive definite matrix. As a conclusion,

G[t] =

(
M−∇e>[t]

) (
H[t] −∇

2e[t]
)−1

×

(
M> −∇e[t]

)
−3−1[t] Q[t]

is also positive definite.
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Step (3): To prove that

ρ
((
8[t] + β�̄[t]

)−1 (
β�̄[t] −�[t]

))
< 1

holds. First, G[t] is positive definite. Hence,

(8[t] + β�̄[t])− (β�̄[t] −�[t]) = 8[t] +�[t]

is positive definite. Next, we take

(8[t] + β�̄[t])+ (β�̄[t] −�[t]) = 8[t] + 2β�̄[t] −�[t]

into consideration. All diagonal entries in 8[t] are positive,
so 8[t] is positive definite. On the other hand, the definitions
of �̄[t] and �[t] indicate that the entries of each row in
2β�̄[t] −�[t] satisfy

(2β�̄[t] −�[t])ii −
∑
j 6=i

∣∣∣(2β�̄[t] −�[t])ij

∣∣∣
= (2β − 1)

∑
j 6=i

∣∣∣(�[t])ij

∣∣∣ > 0,

for β > 1
2 . Similarly, it is clear that 2β�̄[t] − �[t] is strictly

diagonally dominant and hence positive definite. In conclu-
sion, 8[t] + 2β�̄[t] − �[t] is also positive definite. Because
8[t] + β�̄[t] and β�̄[t] − �[t]) are both positive definite,
according to Lemma 1, ρ((8[t] + β�̄[t])

−1
(β�̄[t]−�[t])) <

1 holds, and the proof of Theorem 1 is completed. Associating
Theorem 1 with the expanded structure of matrixG[t], we can
obtain the distributed calculation formula of link-congestion
price w̃ and node-power price ϕ̃ at a time slot as follows
(for convenience, the time-slot indexes are omitted; for each
equation, the variables on the left of the equals sign represent
the values at the (t + 1) th time-slot and the variables on the
right are those at the t th time-slot):

w̃k+1
l

=

{∑
s

RlsS−1s +
(
C ′l
)2 P−1l + w−1l (Crest)l

+β

∑
s

RlsS−1s
∑
i 6=l

Ris

−∑
n

(
TnlP−1l C ′l

)}−1

×

{
β

∑
s

RlsS−1s
∑
i 6=l

Ris

+∑
n

(
TnlP−1l C ′l

) w̃k
l

−

∑
i 6=l

∑
s

(
RlsS−1s Risw̃k

i

)
−

∑
n

(
TnlP−1l C ′l ϕ̃

k
n

)}

+

{∑
s

RlsS−1s +
(
C ′l
)2 P−1l + w−1l (Crest)l

+β

∑
s

RlsS−1s
∑
i 6=l

Ris

−∑
n

(
TnlP−1l C ′l

)}−1

×

[
−

∑
s

(
RlsS−1s gl

)
+ C ′lP

−1
l gs+l + w−1l

]
, (29)

ϕ̃k+1n

=

{∑
l

TnlP−1l + ϕ
−1
n (Prest)n

+β

∑
l

TnlP−1l
∑
m 6=n

Tml

−∑
l

(
TnlP−1l C ′l

)}−1

×

{
β

∑
l

TnlP−1l
∑
m 6=n

Tml

−∑
l

(
TnlP−1l C ′l

) ϕ̃kn
−

−∑
l

(
TnlP−1l C ′l w̃

k
l

)
+

∑
m 6=n

∑
l

(
TnlP−1l Tml ϕ̃km

)}

+

{∑
l

TnlP−1l + ϕ
−1
n (Prest)n

+β

∑
l

TnlP−1l
∑
m 6=n

Tml

−∑
l

(
TnlP−1l C ′l

)}−1

×

[
−

∑
l

(
TnlP−1l gS+l

)
+ ϕ−1n

]
. (30)

As (29) and (30) indicate, all the information needed during
the update process comes from the node itself and its one-hop
neighbors. Finally, according to (23) and (30), the Newton
directions of link-congestion price and node-power price are
updated as follows:

1wl,[t] = w̃l,[t+1] − wl,[t], ∀l, (31)

1ϕn,[t] = ϕ̃n,[t+1] − ϕn,[t], ∀n. (32)

B. THE IMPLEMENTATION STEP OF JCCPA
It is worth noting that JCCPA does not require strict feasibil-
ity of initial values. For cases in which the iteration result
exceeds the network resource limit, according to (12) and
(13) in the perturbed KKT conditions, we first obtain the
following feasible set of original and dual variables: SMε ={
(y,λ)

∣∣∣∣ε1 ≤ y ≤ M1,λ ≥ ε1
My ≤ e− ε1

}
, where the constant ε > 0

can be made arbitrarily close to zero and the constantM > 0
is used to restrain the bursty. We then use the set projection
[13] to adjust the results. The main idea of set projection is
that when the iterative point exceeds the defined convex set
during the iterative process, a point within the set nearest to
that point is found to replace the current iteration point, that
is, Minimize

x∈S
1
2‖y− x‖2. In the defined convex set S, a point

x, which minimizes the 2-norm value (i.e., distance) of the
difference between the original iteration value and the current
iteration value, is chosen to be the new iteration point. The
following is a simple description of the projection process:[

y[t+1]
λ[t+1]

]
=

([
y[t]
λ[t]

]
+ π

[
1y[t]
1λ[t]

])
SMε

, (33)

where (∗)SMε represents the projection result of (y,λ) on the
set SMε .
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Thus far, the distributed implementation of JCCPA can be
described as follows:

1) Initialization phase: Initialize all flow source rates fs,[0]
and link power pl,[0], as well as link congestion price
wl,[0] and node power price ϕn,[0], and select the update
step size π ∈ (0, 1].

2) Distributed update of link-congestion price and node-
power price: At time-slot t , each node updates the link-
congestion price w̃[t+1] and node-power price ϕ̃[t+1] in
full Newton step size according to (29) and (30).

3) Distributed update of primal Newton direction: Each
node updates the Newton directions of flow rate and
link power through (24) and (25).

4) Distributed update of dual Newton direction: Each
node updates the Newton directions of link-congestion
price and node-power price through (31) and (32).

5) Each node completes the update of the flow rate, link
power, link-congestion price, and node-power price
through (34)-(37):

fs,[t+1] = fs,[t] + π1fs,[t], (34)

pl,[t+1] = pl,[t] + π1pl,[t], (35)

wl,[t+1] = wl,[t] + π1wl,[t], (36)

ϕn,[t+1] = ϕn,[t] + π1ϕn,[t]. (37)

6) If the update result in step 5 exceeds the feasible set,
use the projection result obtained through (33) as the
actual allocation result.

7) If |y[t+1] − y[t]| ≤ ε1, stop the iteration; otherwise,
repeat the above steps until the algorithm converges.

C. CONVERGENCE ANALYSIS
In this subsection, we discuss the convergence property of
JCCPA. Consider the Lyapunov drift function V

(
y[t],λ[t]

)
=

1
2π

∥∥y[t] − y∗
∥∥2 + 1

2µ3π

∥∥λ[t] − λ∗∥∥2, which denotes the dis-
tance between the primal dual variable pair(y[t],λ[t])and the
perturbed KKT point(y∗,λ∗). According to the update equa-
tions for the primal and dual variables and perturbed KKT
conditions and combiningwith the derivation in [11], the Lya-
punov drift rate in one time slot can be derived as

1V
(
y[t],λ[t]

)
= V

(
y[t+1],λ[t+1]

)
− V

(
y[t],λ[t]

)
≤ −B1

∥∥y[t] − y∗
∥∥2 + πB2 +

1
µ
B3 +

1
µ
B4,

where B1 =
λmin{H}
λmin{F}

and λmin {F}=inft
{
λmin

{
F[t]

}}
are all positive numbers independent of µ. The detailed proof
is provided in Appendix A.

When π = O(1/µ),

1V
(
y[t],λ[t]

)
= V

(
y[t+1],λ[t+1]

)
− V

(
y[t],λ[t]

)
≤ −B1

∥∥y[t] − y∗
∥∥2 + 1

µ
B̂,

where ˆB =υB2 + B3 + B4 and υ is a positive constant.
Omitting the Lyapunov drift results from time slot 0 to T −1,

we can obtain

V (y[T ],λ[T ])− V (y[0],λ[0])

≤ −B1

∑T−1

t=0

∥∥y[t] − y∗
∥∥2 + T

µ
B̂.

Dividing both sides by TB1 and letting T → ∞, we then
have

1
T

∑T−1

t=0

∥∥y[t] − y∗
∥∥2 ≤ B̂

µB1
=

B̃
2

µ
,

where B̃2
=

B̂
B1
. Finally, according to the norm trian-

gle inequality, taking the relationship between 1-norm and
2-norm into consideration, we can obtain∣∣∣∣ 1T∑T−1

t=0

(
y[t] − y∗

)∣∣∣∣≤( 1
T

∑T−1

t=0

∥∥y[t]−y∗∥∥2) 1
2

≤
B̃
√
µ
.

Thus far, we have shown that the primal variable will con-
verge to within a very small neighborhood of the optimal
value when µ→∞.

IV. SIMULATION RESULTS

In this section, we present the simulation results to illustrate
the performance of JCCPA.We also compare JCCPAwith the
first-order algorithm and other second-order algorithms.

FIGURE 1. Network topology with flow rate allocation results.

In our simulation, we consider a wireless multihop net-
work as shown in Figure 1. In this network, 15 nodes are
randomly generated in a 700m × 700m region. The node
n1 is a gateway node, and the remaining nodes are source
nodes. There are 14 flows in the network, and they converge
to the gateway node and leave the network eventually. Under
the same network resource configuration, the convergence
rate of the proposed second-order algorithm is first com-
pared with that of the first-order Lagrange dual decomposi-
tion algorithm [6], which optimizes the same problem and
achieves almost the same utility as JCCPA. The network util-
ity and energy efficiency of JCCPA are further compared with
those of the newest second-order algorithms in [9] and [11].
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FIGURE 2. Comparison of convergence performance.

FIGURE 3. Convergence performance of JCCPA under different step sizes.

Network utility and energy utility are defined as
∑

s logfs

and
∑

s fs∑
l pl

, respectively.

Simulation parameter settings are as follows. The primal
and dual variables’ iteration step size π = 0.5. The initialized
flow rates are all 0.5Mbps, and the initialized normalized
transmit power of each link is 1.8. The maximal node power
is 3. The logical topology is shown in Figure 1. The allocated
flow rates after optimization are labeled beside each source
node.

Figure 2 compares the convergence performance among
the Lagrangian dual decomposition algorithm under different
iterative step sizes (s1 = 0.001, s2 = 0.005, s3 = 0.01,

and s4 = 0.03), the proposed centralized and distributed
algorithms. As Figure 2 shows, the convergence rate of the
Lagrangian algorithm becomes increasingly fast with the
increase of iterative step size, and it finally converges to the
optimum at the 1500th iteration. The proposed second-order
algorithm achieves the same effects at about the 18th itera-
tion. Figure 3 further shows the convergence performance of
JCCPA under different iterative step sizes (s1= 0.1, s2= 0.2,
s3= 0.3, s4= 0.5, s5= 0.7, and s6= 0.9). The convergence
speed of JCCPA becomes slower when the step size becomes
smaller. However, the slowest convergence speed is guaran-
teed in 30th iteration. JCCPA is fast convergent as long as the
step size is within the defined interval. As for the Lagrangian
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FIGURE 4. Comparison of network utility.

FIGURE 5. Comparison of energy efficiency.

algorithm, iteration step size is generally ambiguous, and not
in a range interval, so that this selection is opportunistic and
hard to find a best step size just once. It is therefore clear
that although the two algorithms can converge to the same
optimum, JCCPA is insensitive to the selection of step size
and its convergence speed is more than 30 times faster than
that of the Lagrangian algorithm.

Figure 4 compares the network utility of JCCPA with the
second-order algorithm without consideration of power allo-
cation in [9] and [11]. Figure 5 plots the energy utility curves.
In the simulation, the node-power constraint for JCCPA is
pn = 3. JCCPA adjusts the flow rate allocation according
to the congestion condition. Link flow rate further influences

the transmit power allocation, and transmit power determines
the link capacity and congestion condition. Notably, in the
link-capacity model, the received SNR definitely depends on
the transmit power on the link itself, regardless of the inter-
link interference. Because the node power in [9] and [11] is
always the maximum, each link capacity is keeping the max-
imum free in the context of interference. Under the constraint
of a bottleneck link in the uplink transmission, as shown
in Figure 4, the two algorithms arrive at the same network
utility. However, a fixed power distribution strategy induces
large power waste, and conversely, an adaptive power distri-
bution strategy adjusts the node power on demand, reduces
not only power consumption but also interlink interference,
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and tailors the capacity to the need. As the above discussion
suggests, we can see from Figure 5 that the energy efficiency
of JCCPA is 37.5% higher than the algorithm without consid-
eration of power allocation.

V. CONCLUSION
The first-order algorithms for cross-layer resource optimiza-
tion allocation in wireless multihop ad hoc networks have
been the subject of a great deal of research. In order to
improve the convergence rate of the first-order algorithms,
a centralized second-order optimization algorithm for joint
congestion control, rate allocation, and power allocation
based on the primal-dual interior-point method is designed in
the case that the network node power is limited and the rout-
ing is known. Based on this, matrix-splitting technology is
further used to achieve the distributed implementation of the
algorithm. The simulation results show that the convergence
speed of the algorithm is several tens of times faster than the
first-order Lagrangian algorithm. Simultaneously, compared
to the newest second-order algorithm, the algorithm improves
energy efficiency by 37.5%.

APPENDIX A
LYAPUNOV DRIFT RATE IN ONE TIME SLOT
In order to facilitate the derivation of one-slot Lyapunov drift
rate, we first prove the following lemma.
Theorem 1: In the proposed algorithm, for a given µ,

if
∥∥λ[0]∥∥ <∞, then ∥∥λ[t]∥∥ <∞ for all t.

Proof: Use mathematical induction to prove Theorem 1.
�

For t = 0,
∥∥λ[0]∥∥ < ∞ is obviously true according to

the assumption in Lemma 2. Suppose that we have
∥∥λ[t]∥∥ <

B0 <∞ at time slot t . Then, we need to prove that
∥∥λ[t+1]∥∥ <

∞ at time slot t + 1. First, we let λ̃[t+1] = λ[t] +1λ[t] (i.e.,
taking a full Newton step π = 1). According to the updating
formula (21), we have

λ̃[t+1] =
[ (

M−∇e>[t]
) (

H[t] −∇
2e[t]

)−1 (
M> −∇e[t]

)
−λ−1[t] Q[t]

]−1
×

[
−

(
M−∇e>[t]

)
×

(
H[t] −∇

2e[t]
)−1

g[t] + λ−1[t] 1
]
,

then, we get∥∥∥λ̃[t+1]∥∥∥
=

∥∥∥[ (M−∇e>[t]) (H[t] −∇
2e[t]

)−1
×

(
M> −∇e[t]

)
− λ−1[t] Q[t]

]−1
×

[
−

(
M−∇e>[t]

) (
H[t] −∇

2e[t]
)−1

g[t] + λ−1[t] 1
] ∥∥∥

≤

∥∥∥ [(M−∇e>[t]) (H[t] −∇
2e[t]

)−1 (
M> −∇e[t]

)]−1

×

[
−

(
M−∇e>[t]

) (
H[t] −∇

2e[t]
)−1

g[t] + λ−1[t] 1
] ∥∥∥

≤ λ−1min

{[ (
M−∇e>[t]

) (
H[t] −∇

2e[t]
)−1

×

(
M> −∇e[t]

) ]}
×

(∥∥∥[− (M−∇e>[t])
×

(
H[t] −∇

2e[t]
)−1

g[t]
]∥∥∥+ ∥∥∥λ−1[t] 1

∥∥∥)
≤ λ−1min

{[ (
M−∇e>[t]

) (
H[t] −∇

2e[t]
)−1

×

(
M> −∇e[t]

) ]}
×

(
λ−1min

{(
H[t] −∇

2e[t]
)}

×

∥∥∥(M−∇e>[t]) g[t]∥∥∥+ ∥∥∥λ−1[t] 1
∥∥∥ ),

where λmin

{[(
M−∇e>[t]

)(
H[t]−∇

2e[t]
)−1(

M>−∇e[t]
)]}

denotes the smallest eigenvalue of
[(

M − ∇e>[t]
)(

H[t] −

∇
2e[t]

)−1(
M>−∇e[t]

)]
, and λmin

{(
H[t]−∇

2e[t]
)}

denotes

the smallest eigenvalue of
(
H[t] −∇

2e[t]
)
. The first inequal-

ity holds because −λ−1[t] Q[t] is a positive definite diago-
nal matrix (as a result of the strict feasibility of y[t] and
λ[t]) and because its eigenvalues are all positive, which will

increase the eigenvalues of
(
M − ∇e>[t]

)(
H[t] − ∇

2e[t]
)−1(

M> − ∇e[t]
)
. According to the norm triangle inequality,

the second and third inequalities also hold.
Because g[t] is continuous, the spectral radius ρ

(
H[t]

)
is bounded. Similarly, because the elements in y[t] are
all positive numbers and bounded, the elements in ∇e[t]
and diagonal matrix −∇2e[t] are all bounded nonnegative
numbers. Matrix M is a constant matrix representing net-

work topology information. Hence, λ−1min

{[(
M−∇e>[t]

)
(
H[t] −∇

2e[t]

)−1(
M> −∇e[t]

)]}
must be finite. At the

same time, due to the projection on a set, y[t] and λ[t] are
strictly bounded away from zero, so

∥∥g[t]∥∥ and
∥∥∥λ−1[t] 1

∥∥∥
are bounded. Hence,

∥∥∥λ̃[t+1]∥∥∥ < ∞ holds. Finally, note

that, according to the norm triangle inequality,
∥∥λ[t+1]∥∥ =∥∥∥(1− π)λ[t] + π λ̃[t+1]∥∥∥ ≤ (1− π)

∥∥λ[t]∥∥ + π

∥∥∥λ̃[t+1]∥∥∥.
In summary, we conclude that

∥∥λ[t+1]∥∥ <∞. This completes
the proof of Theorem 2.
In order to prove the convergence of JCCPA, we need to

analyze the Lyapunov drift rate of a time slot.
The Lyapunov drift function is defined as follows:

V
(
y[t],λ[t]

)
=

1
2π

∥∥y[t] − y∗
∥∥2 + 1

2µ3π

∥∥λ[t] − λ∗∥∥2 ,
which represents the distance between the primal-dual iterate
(y[t],λ[t]) and the perturbed KKT point (y∗,λ∗). Therefore,
the one-slot Lyapunov drift 1V

(
y[t],λ[t]

)
can be described
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as follows:

1V
(
y[t],λ[t]

)
= V

(
y[t+1],λ[t+1]

)
− V

(
y[t],λ[t]

)
=

1
2π

(y[t+1] + y[t] − 2y∗)>(y[t+1] − y[t]) (38)

+
1

2µ3π
(λ[t+1] + λ[t] − 2λ∗)>(λ[t+1] − λ[t]). (39)

Next, we discuss (38) and (39), respectively.

A. DISCUSSION OF EQUATION (38)

(38) =
[ 1
π

(
y[t] − y∗

)
−

1
2
F−1[t]

[
g[t]

−

(
M> −∇e[t]

)
Q−1[t] 1

]]>
×

[
−πF−1[t]

[
g[t] −

(
M> −∇e[t]

)
Q−1[t] 1

]]
= −

(
y[t] − y∗

)> F−1[t]

×

[
g[t] −

(
M> −∇e[t]

)
Q−1[t] 1

]
(40)

+
π

2

[
g[t] −

(
M> −∇e[t]

)
Q−1[t] 1

]>
×

(
F−1[t]

)2 [
g[t] −

(
M> −∇e[t]

)
Q−1[t] 1

]
. (41)

Based on perturbed KKT conditions (11) and (14),
we have: g∗ + (M> −∇e∗)λ∗ = 0, where λ∗ = − (Q∗)−1 1.
So, (40) can be converted into

(40) = −
(
y[t] − y∗

)> F−1[t]

[
g[t] − g∗ −

(
M> −∇e∗

)
λ
∗

−

(
M> −∇e[t]

)
Q−1[t] 1

]
= −

(
y[t] − y∗

)> F−1[t]

[
g[t] − g∗

+

(
M> −∇e∗

)
Q−1∗ 1−

(
M> −∇e[t]

)
Q−1[t] 1

]
= −

(
y[t] − y∗

)> F−1[t]

(
g[t] − g∗

)
(42)

+
(
y[t] − y∗

)> F−1[t]

[ (
M> −∇e[t]

)
Q−1[t]

−

(
M> −∇e∗

) (
Q∗
)−1 ]1. (43)

For (42), we have

(42) = −
(
y[t] − y∗

)> F−1[t]

(
g[t] − g∗

)
≤ −

1
λmin{F}

(
y[t] − y∗

)> (g[t] − g∗
)
, (44)

where λmin {F} = inft
{
λmin

{
F[t]

}}
denotes the lower bound

of the smallest eigenvalue in all time slots of F[t]. By analogy,
the eigenvalue of other matrices can be defined in the same
way.

In order to obtain the bound of
(
y[t] − y∗

)>(
g[t] − g∗

)
,

we first obtain the following results according to the Taylor
Mean-Value Theorem:

fµ
(
y[t]
)
= fµ

(
y∗
)
+
(
g∗
)> (y[t] − y∗

)
+

1
2

(
y[t] − y∗

)> H [ỹ1]
(
y[t] − y∗

)
,

fµ
(
y∗
)
= fµ

(
y[t]
)
+
(
g[t]
)> (y∗ − y[t]

)
+

1
2

(
y∗ − y[t]

)>H[ỹ2]
(
y∗ − y[t]

)
,

where H[ỹ1] and H[ỹ2] represent the Hessian matrices at
points ỹ1 and ỹ2, ỹ1 = (1− α1) y[t] + α1y∗, and ỹ2 =
(1− α2) y[t]+α2y∗, for 0 ≤ α1, α2 ≤ 1. Based on the above
equations, we can obtain(

g[t] − g∗
)> (y[t] − y∗

)
=

1
2

(
y[t] − y∗

)> (H[ỹ1]+H[ỹ2]
) (
y[t] − y∗

)
≥ λmin {H}

∥∥y[t] − y∗
∥∥2 .

Therefore, by combining the above equation with (44),
the following result can be introduced

(42) ≤ −B1
∥∥y[t] − y∗

∥∥2 , (45)

where B1 =
λmin{H}
λmin{F}

.

In the definition of F[t] : F[t] =

[
H[t] − ∇

2e[t] −(
M> −∇e[t]

)
Q−1[t] λ[t]

(
M − ∇e>[t]

)]
, H[t], ∇2e[t], and

Q−1[t] λ[t] are all diagonal matrices. Some diagonal elements in
H[t] tend to be infinite withµ→∞, and the rest are indepen-
dent ofµ.∇2e[t],Q−1[t] λ[t], and

(
M> −∇e[t]

)
are independent

ofµ, so bothλmin {H} andλmin {F} are independent ofµ. That
is to say, the value of B1 is also independent of µ.
We now discuss the term in (43). The numerator and

denominator are multiplied by Q[t]Q∗ simultaneously, so we
have

(43) ≤
1

λmin {F}01

(
y[t] − y∗

)>
×

[(
M> −∇e[t]

)
Q∗ −

(
M> −∇e∗

)
Q[t]

]
1, (46)

where 01 = inft λmin
{
Q[t]Q∗

}
.

Due to Q[t]1 = My[t] − e[t], we have the following
relationships according to the vectorial Taylor expansion:

Q[t]1 = Q∗1+
(
M> −∇e∗

)> (
y[t] − y∗

)
+ o

(∥∥y[t] − y∗
∥∥) 1,

Q∗1 = Q[t]1+
(
M> −∇e[t]

)> (
y∗ − y[t]

)
+ o

(∥∥y∗ − y[t]
∥∥) 1.

After shifting items, we obtain

Q[t]1−Q∗1− o
(∥∥y[t] − y∗

∥∥) 1
=

(
M> −∇e∗

)> (
y[t] − y∗

)
,

Q∗1−Q[t]1− o
(∥∥y∗ − y[t]

∥∥) 1
=

(
M> −∇e[t]

)> (
y∗ − y[t]

)
.
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Substitute them into (46) and simplify it as follows:

(46) =
1

λmin {F}01

[(
Q[t]1−Q∗1

+ o
(∥∥y∗ − y[t]

∥∥) 1)>Q∗1− (Q[t]1−Q∗1

− o
(∥∥y[t] − y∗

∥∥) 1)>Q[t]1
]

= −
1

λmin {F}01

[ ∥∥Q[t]1−Q∗1
∥∥2

+
[
o
(∥∥y[t] − y∗

∥∥) 1]> (Q∗1+Q[t]1
) ]

≤ 0. (47)

Hence, combining (45) and (47), we have

(40) ≤ −B1
∥∥y[t] − y∗

∥∥2 . (48)

The upper bound of (38) has been found. Next, we discuss
the upper bound of (41).

According to the norm triangle inequality and the per-
turbed KKT conditions (11) and (14): g∗+ (M>−∇e∗)λ∗ =
0, λ∗ = − (Q∗)−1 1, we have

(41) ≤
π

2λ2min {F}

∥∥∥g[t] − (M> −∇e[t])Q−1[t] 1
∥∥∥2

=
π

2λ2min {F}

∥∥∥g[t] − g∗ −
(
M> −∇e∗

)
λ∗

−

(
M> −∇e[t]

)
Q−1[t] 1

∥∥∥2
=

π

2λ2min {F}

∥∥∥g[t] − g∗+
(
M> −∇e∗

) (
Q∗
)−1 1

−

(
M> −∇e[t]

)
Q−1[t] 1

∥∥∥2
=

π

2λ2min {F}

∥∥∥g[t] − g∗ −M>
(
Q−1[t] −

(
Q∗
)−1) 1

+∇e[t]Q−1[t] 1−∇e
∗
(
Q∗
)−1 1∥∥∥2

≤
π

2λ2min {F}

[ ∥∥g[t] − g∗
∥∥2

+

∥∥∥M> (Q−1[t] −
(
Q∗
)−1) 1∥∥∥2

+

∥∥∥∇e[t]Q−1[t] 1−∇e
∗
(
Q∗
)−1 1∥∥∥2 ]. (49)

Note that the µ-factors in (49) can be cancelled mutu-
ally. Moreover, because the utility function and channel
capacity function are differentiable, and y[t] is bounded,
we can conclude that (49) is upper-bounded. Let B2 =

1
2λ2min{F}

supt
{[∥∥∥g[t] − g∗

∥∥∥2 + ∥∥∥M>(Q−1[t] − (Q
∗)−1)1

∥∥∥2 +∥∥∥∇e[t]Q−1[t] 1−∇e
∗ (Q∗)−1 1

∥∥∥2]} denote the upper bound of
the part of (49) except π . Combining (48) with (49), we have

(38) = (40)+ (41) ≤ −B1
∥∥y[t] − y∗

∥∥2 + πB2. (50)

Thus far, we have completed the analysis for (38).

B. DISCUSSION OF EQUATION (39)

(39)

=
1

2µ3π

(
λ[t+1] + λ[t] − 2λ∗

)> (
λ[t+1] − λ[t]

)
=

1
2µ3π

[
2
(
λ[t] − λ

∗
)

−πG−1[t]

[ (
M−∇e>[t]

) (
H[t] −∇

2e[t]
)−1

×

(
g[t] +

(
M> −∇e[t]

)
λ
[t]

)
−

(
Q[t] + λ

−1
[t]

)
1
]]>

×

[
− πG−1[t]

[ (
M−∇e>[t]

) (
H[t] −∇

2e[t]
)−1

×

(
g[t] +

(
M> −∇e[t]

)
λ
[t]

)
−

(
Q[t] + λ

−1
[t]

)
1
]]

= −
1
µ3

(
λ[t] − λ

∗
)>
×G−1[t]

[ (
M−∇e>[t]

)
×

(
H[t] −∇

2e[t]
)−1 (

g[t] +
(
M> −∇e[t]

)
λ
[t]

)
− (Q[t] + λ

−1
[t] )1

]
(51)

+
π

2µ3

[ (
M−∇e>[t]

) (
H[t] −∇

2e[t]
)−1

×

(
g[t] +

(
M> −∇e[t]

)
λ
[t]

)
− (Q[t] + λ

−1
[t] )1

]>
×

(
G−1[t]

)2
×

[ (
M−∇e>[t]

) (
H[t] −∇

2e[t]
)−1

×

(
g[t] +

(
M> −∇e[t]

)
λ
[t]

)
− (Q[t] + λ

−1
[t] )1

]
.

(52)

Note that, according to (19), H[t] is in the expression
of G[t], so the bound of G−1[t] has relationship with µ.

First, according to perturbed KKT conditions (11): g∗ +
(M> − ∇e∗)λ∗ = 0, (51) can be further decomposed as
follows:

(51) = −
1
µ3

(
λ[t] − λ

∗
)>G−1[t]

[ (
M−∇e>[t]

)
×

(
H[t] −∇

2e[t]
)−1
×

[
g[t] +

(
M> −∇e[t]

)
λ
[t]

− g∗ −
(
M> −∇e∗

)
λ∗
]
−

(
Q[t] +3

−1
[t]

)
1
]

= −
1
µ3

(
λ[t] − λ

∗
)>G−1[t]

(
M−∇e>[t]

)
×

(
H[t] −∇

2e[t]
)−1 [ (

g[t] − g∗
)

+
(
∇e∗ −∇e[t]

)
λ∗
]

−
1
µ3

(
λ[t] − λ

∗
)>G−1[t]

(
M−∇e>[t]

)
×

(
H[t] −∇

2e[t]
)−1 [(

M> −∇e[t]
)
3

[t]

−

(
M> −∇e[t]

)
λ∗
]

+
1
µ3

(
λ[t] − λ

∗
)>G−1[t]

(
Q[t] +3

−1
[t]

)
1

VOLUME 7, 2019 17145



W. Feng et al.: An Energy-Efficient and Fast Convergent Resource Allocation Algorithm in Distributed Wireless Ad Hoc Networks

≤ −
1
µ3

(
λ[t] − λ

∗
)>G−1[t]

(
M−∇e>[t]

)
×

(
H[t] −∇

2e[t]
)−1 [ (

g[t] − g∗
)

+
(
∇e∗ −∇e[t]

)
λ∗
]

(53)

+
1
µ3

(
λ[t] − λ

∗
)>G−1[t]

(
Q[t] +3

−1
[t]

)
1. (54)

The inequality holds, because G−1[t]

(
M − ∇e>[t]

)(
H[t] −

∇
2e[t]

)−1(
M> − ∇e[t]

)
is a semipositive definite matrix,

which means

−
1
µ3

(
λ[t] − λ

∗
)>G−1[t]

(
M−∇e>[t]

) (
H[t] −∇

2e[t]
)−1

×

(
M> −∇e[t]

) (
λ[t] − λ

∗
)
≤ 0.

For (54), according to perturbed KKT conditions (14):
λ∗ = − (Q∗)−1 1, i.e., (Q∗ −

(
3∗
)−1)1 = 0, we can further

obtain

(54) =
1
µ3

(
λ[t] − λ

∗
)>G−1[t]

×

(
Q[t] −Q∗ −

(
3∗
)−1
+3−1[t]

)
1

=
1
µ3

(
λ[t] − λ

∗
)>G−1[t] M

(
y[t] − y∗

)
−

1
µ3

(
λ[t] − λ

∗
)>G−1[t]

(
e[t] − e∗

)
+

1
µ3

(
λ[t] − λ

∗
)>G−1[t]

[(
3−1[t] −

(
3∗
)−1) 1]

≤
1
µ3

(
λ[t] − λ

∗
)>

×G−1[t]

[(
My[t] − e[t]

)
−
(
My∗ − e∗

)]
. (55)

The inequality holds because
1
µ3

(
λ[t] − λ

∗
)>G−1[t]

[
(3−1[t] −

(
3∗
)−1)1]

≤ −
1
µ3

1
λmin{G}02

∥∥(λ[t] − λ∗)∥∥2 ,
where 02 = inft

{
λmin

{
3[t]3

∗
}}
.

Further transform (55) into the following equation:

(55) =
1
µ3

(
λ[t] − λ

∗
)>G−1[t]

×
[(
My[t] − e[t]

)
−
(
My∗ − e∗

)]
=

1
µ3

(
λ[t] − λ

∗
)>G−1[t]

[ (
M> −∇e[t]

)>
×
(
y[t] − y∗

)
− o

(∥∥y∗ − y[t]
∥∥) 1]

≤
1
µ3

(
λ[t] − λ

∗
)>G−1[t]

(
M> −∇e[t]

)> (
y[t] − y∗

)
.

(56)

Combining (53) with (56), we have

(51) ≤ −
1
µ3

(
λ[t] − λ

∗
)>G−1[t]

(
M−∇e>[t]

)
×

[ (
H[t] −∇

2e[t]
)−1 [ (

g[t] − g∗
)

+ (∇e∗ −∇e[t])λ∗
]
−
(
y[t] − y∗

) ]
. (57)

According to the vectorial Taylor expansion for multivari-
ate functions, g∗−∇e∗λ∗ can be expanded at points (y[t],λ[t])
as follows:

g∗ −∇e∗λ∗

= g[t] −∇e[t]λ[t]
+

(
H[t] −∇

2e[t]
) (

y∗ − y[t]
)

+
(
−∇e[t]

) (
λ∗ − λ[t]

)
+ o (ρ) 1

= g[t] −∇e[t]λ∗

+

(
H[t] −∇

2e[t]
) (

y∗ − y[t]
)
+ o (ρ) 1, (58)

where ρ =
√∥∥y∗ − y[t]

∥∥2 + ∥∥λ∗ − λ[t]∥∥2.
Combining (57) with (58), and according to the Cauchy-

Schwarz inequality, we have

(51) ≤
1
µ3

(
λ[t] − λ

∗
)>G−1[t]

(
M−∇e>[t]

)
ρ1

≤

ρ
∥∥λ[t] − λ∗∥∥ ∥∥∥(M−∇e>[t]) 1∥∥∥

µ3λmin{G}
. (59)

Because of the boundedness of y[t], ∇e>[t] is bounded.M is
a constant matrix representing network topology information,
so
(
M−∇e>[t]

)
1 is bounded. λ[t] is bounded according to

Lemma 2. Hence, the inequality (59) holds.
Let B3 =

1
µ2λmin{G}

supt
{
ρ

∥∥∥λ[t] − λ∗∥∥∥∥∥∥(M−∇e>[t])1∥∥∥},
and we have

(51) ≤
1
µ
B3. (60)

Finally, we discuss the upper bound of (52). In the step
control strategy, π ∈ (0, 1], so we have

(52) ≤
1

2µ3

[ (
M−∇e>[t]

) (
H[t] −∇

2e[t]
)−1

×

(
g[t] + (M> −∇e[t])λ[t]

)
−

(
Q[t] +3

−1
[t]

)
1
]>

×

(
G−1[t]

)2 [ (
M−∇e>[t]

) (
H[t] −∇

2e[t]
)−1

×

(
g[t] + (M> −∇e[t])λ[t]

)
−

(
Q[t] +3

−1
[t]

)
1
]

≤
1

2µ3λ2min{G}

∥∥∥ (M−∇e>[t]) (H[t] −∇
2e[t]

)−1
×

(
g[t] + (M> −∇e[t])λ[t]

)
−

(
Q[t] +3

−1
[t]

)
1
∥∥∥2.
(61)

According to the perturbed KKT conditions (14): λ∗ =
− (Q∗)−1 1 and (11): g∗ + (M> − ∇e∗)λ∗ = 0, referring
to the expression of Q∗1−Q[t]1 obtained above, (61) can be
transformed into

(61) =
1

2µ3λ2min{G}

∥∥∥ (M−∇e>[t]) (H[t] −∇
2e[t]

)−1
×

(
g[t] +

(
M> −∇e[t]

)
λ
[t]

)
−

(
Q[t] −Q∗ +3−1[t] −

(
3∗
)−1) 1∥∥∥2
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=
1

2µ3λ2min{G}

∥∥∥ (M−∇e>[t])
×

[ (
H[t] −∇

2e[t]
)−1 (

g[t] +
(
M> −∇e[t]

)
λ[t]

)
−
(
y[t] − y∗

) ]
+
(∥∥y∗ − y[t]

∥∥) 1− (3−1[t] −3
−1
∗

)
1
∥∥∥2

=
1

2µ332
min{G}

∥∥∥ (M−∇e>[t]) [ (H[t] −∇
2e[t]

)−1
×
((
g[t] − g∗

)
+
(
∇e∗ −∇e[t]

)
λ
∗)
−
(
y[t] − y∗

) ]
+

(
M−∇e>[t]

) [ (
H[t] −∇

2e[t]
)−1

×

(
g∗ +

(
M> −∇e[t]

)
×λ[t] −

(
∇e∗ −∇e[t]

)
λ∗
)]

+
(∥∥y∗ − y[t]

∥∥) 1− (3−1[t] −
(
3∗
)−1)1∥∥∥2

=
1

2µ3λ2min{G}

∥∥∥ (M−∇e>[t])
×

[ (
H[t] −∇

2e[t]
)−1 ( (

g[t] − g∗
)

+
(
∇e∗ −∇e[t]

)
λ∗
)
−
(
y[t] − y∗

) ]
+

(
M−∇e>[t]

) (
H[t] −∇

2e[t]
)−1

×

(
M> −∇e[t]

) (
λ[t] − λ

∗
)

+
(∥∥y∗ − y[t]

∥∥) 1− (3−1[t] −
(
3∗
)−1)1∥∥∥2. (62)

According to the norm triangle inequality, we have

(62) ≤
1

2µ3λ2min{G}

{∥∥∥ (M−∇e>[t]) [ (H[t] −∇
2e[t]

)−1
×
[(
g[t] − g∗

)
+
(
∇e∗ −∇e[t]

)
λ
∗]
− (y[t] − y∗)

]∥∥∥
+

∥∥∥ (M−∇e>[t]) (H[t] −∇
2e[t]

)−1 (
M> −∇e[t]

)
×
(
λ[t] − λ

∗
) ∥∥∥+ ∥∥y∗ − y[t]

∥∥
+

∥∥∥(λ−1[t] −
(
λ∗
)−1)1∥∥∥ }2. (63)

Note that the first part
(
M − ∇e>[t]

)[(
H[t] − ∇

2e[t]
)−1[(

g[t] − g∗
)
+

(
∇e∗ −∇e[t]

)
λ
∗]
−

(
y[t]−y∗

)]
in (63) has

the same form as (57), so∥∥∥ (M−∇e>[t]) [ (H[t] −∇
2e[t]

)−1 [ (
g[t] − g∗

)
+
(
∇e∗ −∇e[t]

)
λ∗
]
−
(
y[t] − y∗

) ]∥∥∥
≤ ρ

∥∥∥(M−∇e>[t]) 1∥∥∥ ,
and ρ

∥∥∥(M−∇e>[t]) 1∥∥∥ has upper bound.

For the second part
∥∥∥(M−∇e>[t])(H[t]−∇

2e[t]
)−1(

M>−

∇e[t]
)(
λ[t]− λ

∗

)∥∥∥ in (63), the µ factor in
(
H[t] −∇

2e[t]
)−1

is cancelled with that in λ[t] − λ∗. Moreover,
∥∥λ[t]∥∥ is

bounded according to Lemma 2. In matrix
(
M> −∇e[t]

)
,

M is a constant matrix representing network topology infor-
mation and ∇e[t] is bounded due to the boundedness of y[t],
so
(
M> −∇e[t]

)
is bounded. Based on these points, the sec-

ond part
∥∥∥(M−∇e>[t])(H[t]−∇

2e[t]
)−1(

M>−∇e[t]
)(
λ[t]−

λ∗
)∥∥∥ in (63) is bounded.

Due to the boundedness of y[t] and λ[t],
∥∥y∗ − y[t]

∥∥ and∥∥∥(3−1[t] −
(
3∗
)−1)1∥∥∥ are strictly bounded away from zero.

Therefore, (63) has an upper bound, which is defined as
follows:

B4

=
1

2µ3λ2min{G}
× sup

t

{∥∥∥ (M−∇e>[t])
×

[ (
H[t] −∇

2e[t]
)−1
×

[ (
g[t] − g∗

)
+
(
∇e∗ −∇e[t]

)
λ∗
]
− (y[t] − y∗)

]∥∥∥
+

∥∥∥ (M−∇e>[t]) (H[t] −∇
2e[t]

)−1 (
M> −∇e[t]

)
×
(
λ[t] − λ

∗
) ∥∥∥+ ∥∥y∗ − y[t]

∥∥+ ∥∥∥(3−1[t] −
(
3∗
)−1)1∥∥∥ }.

In summary, we have

(52) ≤
1
µ
B4. (64)

C. CONCLUSION
Based on the above discussion, combining (50), (60), and
(64), the one-slot Lyapunov drift rate is as follows:

1V
(
y[t],λ[t]

)
= V

(
y[t+1],λ[t+1]

)
− V

(
y[t],λ[t]

)
≤ −B1

∥∥y[t] − y∗
∥∥2 + πB2 +

1
µ
B3 +

1
µ
B4.
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