
Received January 9, 2019, accepted January 18, 2019, date of publication January 24, 2019, date of current version February 12, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2895016

Extracting Centerlines From Dual-Line Roads
Using Superpixel Segmentation
YILANG SHEN , TINGHUA AI , AND MIN YANG
School of Resource and Environment Sciences, Wuhan University, Wuhan 430079, China

Corresponding author: Tinghua Ai (tinghuaai@whu.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 41531180, and in part by the National
Key Research and Development Program of China under Grant 2017YFB0503500.

ABSTRACT Extracting centerlines from dual-line roads is very important in urban spatial analysis and
infrastructure planning. In recent decades, numerous algorithms for road centerline extraction based on the
vector data have been proposed by various scholars. However, with the continual development of computer
vision technology, advances in the corresponding theories and methods, such as superpixel segmentation,
have provided new opportunities and challenges for road centerline extraction. In this paper, we propose a
new algorithm called superpixel centerline extraction (SUCE) for dual-line roads based on the raster data.
In this method, dual-line roads are first segmented using a superpixel algorithm called simple linear iterative
clustering. Then, the superpixels located at road intersections are merged to generate connection points
from their skeletons. Finally, the centerlines of roads are generated by connecting the center points and
edge midpoints of each superpixel. To test the proposed SUCE method, the vector data of roads at a scale
of 1:50 000 from Shenzhen, China, and the raster data of roads at the 18th level from the Tiandi map are used.
Compared with a traditional method in ArcGIS software (version 10.2) based on the vector data and four
existing thinning algorithms based on the raster data, the results indicate that the proposed SUCEmethod can
effectively extract centerlines from dual-line roads and restore the original road intersections while avoiding
burrs and noises, both for simple and complex road intersections.

INDEX TERMS Centerline extraction, dual-line roads, image data, superpixel segmentation.

I. INTRODUCTION
Centerline extraction (also called skeleton line, axis line,
or medial line extraction) is an interesting problem in pat-
tern recognition, spatial analysis, map generalization, and
urban infrastructure planning [1], [2]. Roads are among the
most abundant elements on many maps, and the centerline
extraction of roads is necessary for spatial analyses and other
purposes. For example, urban road infrastructure location
is an analysis mainly based on street networks. Good cen-
terline extraction algorithms that can preserve the correct
road intersections are very important for business applica-
tions such as route planning, vehicle navigation and public
facilities accessibility. Map generalization is a process that
simplifies the representation of geographical data to produce
a map with a smaller scale than the original data [3], [4].
During map generalization, centerline extraction is necessary
because geographical features, such as rivers and roads, must
be represented with single lines when the scale is sufficiently
small. Thus, centerlines are the key elements used in the
dissolve and collapse operators for map generalization.

According to different data types, studies of the skeleton
extraction of area features can be divided into raster-based
and vector-based methods. For vector data, scholars mainly
use Delaunay triangulation [5]–[16] and straight skele-
tons [17]–[21] for the skeleton extraction of area features.
DeLucia and Black [9] first used constrained Delaunay tri-
angulation for the extraction of polygonal skeletons. In this
method, the triangles in a triangular mesh are divided into
three types according to the number of polygon edges. Then,
the skeletons of the objects can be generated by different
types of triangles. This method based on constrained Delau-
nay triangulation provided the foundation for subsequent
research. Zou and Yan [11] proposed a method for the extrac-
tion of polygon skeletons using constrained Delaunay trian-
gulation. Based on themethod proposed by Zou andYan [11],
Morrison and Zou [12] developed an improvedmethod for the
extraction of polygon skeletons.

Jones et al. [15] adjusted the type-III triangles to extract
the T-shaped junctions by calculating the direction of the
three associated skeleton line branches. However, this method
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has shortcomings in handling ‘+’-shaped branches. Subse-
quently, Penninga et al. [13] modified the method proposed
by Jones et al. [15] to solve the issues associated with the
extraction of ‘+’-shaped branches. Gao and Minami [16]
developed an approach to address X- and Y-shaped
junctions based on constrained Delaunay triangulation.
In addition, McAllister and Snoeyink [7] and Regnauld and
Mackaness [8] developed methods of extracting river cen-
terlines based on Delaunay triangulation. In summary, the
existing methods based on Delaunay triangulation can solve
only relatively simple problems related to polygon skele-
tons, and they display shortcomings in certain complex
situations, such as a scenario with skeleton branches in
different directions [22]. Another method based on the
straight skeleton method [17]–[21] was first proposed by
Aichholzer et al. [17]. They extracted skeletons by connect-
ing straight-line segments consisting of angular bisectors of
polygon boundaries. The original method based on a straight
skeleton could address only some simple polygons. Thus,
Das et al. [18] and Eppstein and Erickson [19] improved
the original straight skeleton method for complex polygons
and based on the extremes of binary functions. Haunert and
Sester [20] used the straight skeletonmethod for area collapse
in map generalization, and the method was proven effective
for area-line geometry changes. In addition, Lee [23] and
Montanari [24] applied Voronoi diagrams to obtain the skele-
ton lines of polygon boundaries.

Studies based on raster data for centerline or skele-
ton extraction mainly include image thinning algo-
rithms [25]–[43]. Deng et al. [28] developed a one-pass
parallel asymmetric thinning algorithm that can gener-
ate 8-connected skeleton outputs without serious erosion
and with good noise resistance at a relatively fast speed.
Ahmed and Ward [32] proposed a thinning algorithm based
on a rule system. They developed 20 rules in an inference
engine that are concurrently applied to each pixel in an
image. This method is very efficient for symmetrical thin-
ning and maintaining the topology of letters and symbols.
Wu and Tsai [39] proposed a one-pass parallel thinning
method for binary images. In this method, template match-
ing is used to iteratively remove edge points. The pro-
posed method has the advantages of obtaining skeletons
with 8-connected properties and preserving the topology of
the original shape. In addition, it is insensitive to noise.
Zhou et al. [40] proposed a sequential thinning method
in which both a bitmap and flag map are used to delete
the boundary pixels, and the final skeleton is smoothed
using smoothing templates. The Zhang and Suen (ZS) algo-
rithm [31] is a classic and popular iterative parallel thin-
ning algorithm based on a 3 × 3 neighborhood that is
simple, proven and efficient. Based on the ZS algorithm,
many scholars proposed improved methods for image thin-
ning [41]–[43]. Due to acute angles, the ZS algorithm can
generate redundant segments; Chen et al. [41] proposed a
thinning method for removing the redundant segments based
on the ZS algorithm. This method was proven effective for

solving the problems in the ZS algorithm while maintain-
ing its characteristics. Lü and Wang [42] developed a fast
parallel thinning method based on the ZS algorithm. The
method can maintain the advantages of the ZS algorithm
and overcome some disadvantages in the ZS algorithm.
In addition, this method is faster than the original algorithms.
Boudaoud et al. [43] proposed a modified ZS (MZS) algo-
rithm for image thinning. The MZS method was compared
against seven existing thinning algorithms, and the results
showed that the MZS thinning method is more than 21 times
faster than the existing CPU sequential version. Thomas [44]
proposed another method of centerline generation for roads
by transforming vector data to raster data. Nevertheless,
the current image thinning algorithms struggle to meet the
demands of map generalization, such as maintaining road
intersections when extracting centerlines.

As the number of unstructured data sets has grown, map
generalization based on image data has become increas-
ingly necessary [45]. For example, Shen et al. [46] proposed
a method for polygonal boundary simplification based on
image processing in 2018. The existing raster-based methods
used for centerline extraction have shortcomings for main-
taining original road intersections, especially in complicated
situations.Moreover, with the continual development of com-
puter vision technology, advanced theories andmethods, such
as superpixel segmentation, have provided new opportunities
and challenges for centerline extraction. Thus, in this article,
we develop a newmethod for road centerline extraction based
on superpixel segmentation technology.

The outline of this paper is organized as follows.
Section 2 compares the superpixel and centerline extraction
to lay a theoretical foundation for the centerline extraction
of roads based on raster data. In section 3, we present the
methods for road centerline extraction, which mainly include
superpixel segmentation of the original roads, superpixel
merging for generating connection points from skeletons, and
centerline generation by connecting the center points and
edge midpoints of each superpixel. Section 4 presents the
experiment results that illustrate the proposed SUCE method
and provides an analysis and discussion of the proposed
SUCE method compared with the traditional methods in
ArcGIS software and the ZS thinning algorithms. Finally,
section 5 presents the conclusions.

II. SUPERPIXEL AND CENTERLINE EXTRACTION
The concept of the superpixel was first announced by
Ren and Malik [47] at the Ninth IEEE International Confer-
ence on Computer Vision. By analyzing the intensities, col-
ors, textures and other characteristics of the adjacent standard
pixels, a pixel block called a superpixel, larger than normal
pixels with uniform color and brightness can be generated.
These standard pixels consist of a superpixel locally have the
similar features. Using the superpixel technology, the com-
plexity of the original image can be effectively reduced and
the expression of the original image can be more simplified.
The motivations of superpixel segmentation are that [47]:
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(1) the standard pixels are only a discrete representation of
objects, they cannot represent natural entities; and (2) it is
difficult for optimization at the normal pixel level due to huge
number of pixels. Thus, the superpixels with locally coherent
features can preserve the main information of images at the
level of interest.

FIGURE 1. An example of superpixels.

Basically, superpixel segmentation is a process of sim-
plifying the representation of images based on clustering.
Figure 1 shows a typical example of superpixel segmentation
at two different scales. The size of the original image in
Figure 1 (left) is 570 × 720, The sizes of the superpix-
els used for the segmentation are S = 2000 (middle), and
S = 5000 (right) pixels, respectively. By increasing the size
of each superpixel, the original objects are divided into larger
segments with similar features. After the superpixel segmen-
tation, the expression of the original human is simplified
using different superpixel sizes at different scales. In the pro-
cess of segmentation, the main information that we are inter-
ested in is preserved and similar details are aggregated into
superpixels by clustering. Analogously, centerline extraction
is a simplification process that converts two-dimensional
information to one-dimensional information. Common char-
acteristics exist between centerline extraction and superpixel
segmentation. Notably, both are simplified representations of
objects in which multiple or multidimensional objects are
simplified. In this process, the minor details are removed,
but the main information is maintained. Superpixel segmen-
tation technology was first used by Shen et al. [48] to sim-
plify polygonal and linear features on a map. The method
proposed by Shen et al. [48] is called simplification using
superpixel segmentation (SUSS). However, they applied the
superpixel technology only to objects with the same dimen-
sions. Because the basic principle of superpixel segmentation
and centerline extraction is the same, in this article, image
analysis and processing technologies based on superpixel
segmentation are applied for road centerline extraction with
dimensional changes.

III. METHODOLOGIES FOR ROAD
CENTERLINE EXTRACTION
As shown in Figure 2, the methodologies for road centerline
extraction can be divided into three steps: (1) the superpixel
segmentation of the original roads using a superpixel algo-
rithm called simple linear iterative clustering (SLIC) [49];

FIGURE 2. Steps in road centerline extraction based on superpixel
segmentation.

(2) merging superpixels located at road intersections, which
mainly includes corner detection for selecting the superpixels
and dilation and erosion for merging; and (3) the generation
of road centerlines by connecting the center points and edge
midpoints of the superpixels, which mainly includes extract-
ing the center points of type-M superpixels based on skeleton
lines and extracting the center points of type-N superpixels
using image moment.

A. SUPERPIXEL SEGMENTATION BASED ON
THE SLIC ALGORITHM
Using superpixel technology, the original normal pixels can
be clustered into different subareas of interest. Thus, the
redundancy of the original image is reduced. Superpixel
segmentation technology can improve various image pro-
cessing tasks, such as depth estimation [50], body model
estimation [51], object localization [52], and object segmen-
tation [53]–[55]. Since the superpixel concept was first pro-
posed, many methods of generating superpixels have been
presented [56]–[60]. However, in this study, the superpixel
segmentation algorithm called SLIC is applied to segment
polygonal features. This method has two distinct advantages:
(1) boundaries are maintained better than in other algorithms,
and (2) SLIC is fast, efficient and easy to implement. The
SLIC algorithm applies a k-means clustering method to pro-
duce superpixels. A weighted distance that considers both
spatial proximity and color is used to cluster the local pixels.
However, because considering color when extracting road
centerlines is meaningless, we remove the color distance and
consider only the spatial distances between pixels when using
the SLIC algorithm.

Figure 3 shows an example of the superpixel segmentation
of roads. The size of the original image used to generate the
superpixels is 2500× 2500 pixels. The sizes of the superpix-
els used for the segmentation in Figures 3b-3d are S = 1000,
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FIGURE 3. Superpixel segmentation based on the SLIC algorithm.

S = 2000, and S = 3000 pixels, respectively. As the size of
each superpixel increases, the original roads are divided into
more complete segments.

B. MERGING SUPERPIXELS LOCATED AT
ROAD INTERSECTIONS
After performing superpixel segmentation using the SLIC
algorithm, the original roads are divided into many superpix-
els that are regularly arranged in the direction of the original
roads, as shown in the regions marked in green in Figure 4a.
However, the superpixels located at road intersections should
be merged because the original intersection features are seg-
mented by several superpixels, as shown the regions marked
in red in Figure 4a. Figure 4b shows the merging results for
the superpixels in Figure 4a.

FIGURE 4. Merging superpixels located at road intersections.

The detailed merging of superpixels is based on a method
involving the corner detection of superpixels. In general,
a corner can be considered as a local point with two dif-
ferent edge directions. Corners have various forms, such as

a separate point with a locally maximal or minimal intensity,
a point on a curve with a local curvature maximum or a
line end. Corners are usually used to represent local critical
features of images. Corner detection is very useful for many
applications, such as image matching, object recognition and
motion tracking [61]–[63]. Therefore, many scholars have
proposed a number ofmethods for corner detection [64]–[68].
The corners of each superpixel are detected using the method
proposed by He and Yung [69]. The method of corner detec-
tion based on curvature scale space describes three important
parameters: (1) angle (A): represents the maximum obtuse
angle used for screening true corners; (2) ratio (R): represents
the minimum ratio of the major axis to the minor axis of
an ellipse; and (3) endpoint (E): represents a flag to decide
whether to consider the end points on a curve as corners.
When E = 1, it means yes. When E = 0, it means no.
The default values of these three parameters are A = 162,
R = 1.5 and E = 1. The values of these three parameters
are not fixed but are relatively reasonable in this experiment.
More information about these three parameters can be found
in the research of He and Yung [69].

FIGURE 5. Steps in merging superpixels.

Next, superpixel selection is performed. If the corner of a
superpixel is located in the interior of an original road, the
superpixel should be selected to be merged. For example,
as shown in Figure 5a, there are five corners (a, b, c, d and e)
of superpixel A marked in red. Corner c is located in the
interior of the original road pixels, so superpixel A should be
selected for merging. Next, dilation and erosion operations
are used to merge the selected superpixels. Figure 5b shows
the detailedmerging results of the superpixels fromFigure 5a.

C. EXTRACTING THE CENTER POINTS OF SUPERPIXELS
AND GENERATING THE CENTERLINES OF ROADS
Two types of superpixels exist after merging superpixels:
type-M and type-N superpixels. When there are more than
two intersecting line segments between a superpixel and
the interior of an original road, the superpixel is considered
type M. As shown in Figure 6, the superpixel marked in
yellow is a type-M superpixel because it contains four inter-
secting line segments between the superpixel and the interior
of the original road, which are marked in blue. The superpixel
marked in green is a type-N superpixel because it contains
only two intersecting line segments between the superpixel

15970 VOLUME 7, 2019



Y. Shen et al.: Extracting Centerlines From Dual-Line Roads

FIGURE 6. Type-M and Type-N superpixels.

and the interior of the original road, which are marked in blue.
When there are only two intersecting line segments between a
superpixel and the interior of an original road, the superpixel
is classified as type-N. The methods used for extracting the
center points of type-M superpixels are as follows.

FIGURE 7. Steps for generating the center points of merged superpixels.

First, the skeleton lines of each type-M superpixel are
extracted using the algorithm proposed in [70]. Figure 7a
shows the skeleton lines of the four merged superpixels.

Then, three types of nodes along the skeleton lines
are identified. Type-I nodes are located at the boundaries
of the original roads, such as the nodes marked in gray
in Figure 7b. Type-II nodes, such as the nodes marked in yel-
low in Figure 7b, directly connect to type-I nodes via skeleton
lines. Type-III nodes are all the remaining nodes connected to
the type-II nodes, such as those marked in green in Figure 7b.
Finally, the center points of each type-M superpixel can be

determined by the following rules. (1) When the number of
type-III nodes is zero and the number of type-II nodes is
odd, the type-II node located in the middle will be selected
as the center point, such as the red point P1 in Figure 7c.
When the number of type-III nodes is zero and the number of
type-II nodes is even, the midpoint of the two type-II nodes
located in the middle will be selected as the center point.
(2) When the number of type-III nodes is one, this type-III
node will be selected as the center point, such as the red point
P4 in Figure 7c. (3) When the number of type-III nodes is
two, the midpoint of these two nodes will be selected as the
center point, such as the red points P2 and P3 in Figure 7c.
(4) When the number of type-III nodes is more than two and
the number of type-III nodes is odd, the type-III node located
in the middle will be selected as the center point. When the
number of type-III nodes is greater than two and the number
of type-III nodes is even, the midpoint of two type-III nodes
located in the middle will be selected as the center point.

For the type-N superpixels, the center points can be con-
firmed by calculating the image moment [71]. In the field of
image processing, an image moment represents a particular
weighted average of image pixel intensities and is specifi-
cally used to describe an image object [71]. By calculating
the image moments, some properties of the image, such as
the area, centroid or orientation, can be acquired. A central
moment is the moment of a probability distribution of a
random variable about the mean of the random variable. This
moment is the expected value of a specified integer power
of the deviation of the random variable from the mean. For a
digital image f(x,y) of size m× n, the moment of order (p+q)
can be defined as follows.

Mpq =

m∑
x=1

n∑
y=1

(x − x̄)p (y− ȳ)qf (x, y) (1)

Moments can be used to generate a series of values that are
useful for characterizing the properties of a probability distri-
bution. Compared with ordinary moments, central moments
are more commonly used when computing deviations from
the mean rather than from zero. Specifically, high order cen-
tral moments are related to only the shape and spread of the
distribution, rather than the location. Central moments can be
defined as:

upq =

∞∫
−∞

∞∫
−∞

(x − x̄)p (y− ȳ)q f (x, y) dxdy (2)

where x̄ and ȳ are the components of the centroid. The
components can be formulated as follows.

X = x̄ =
M10

M00
,Y = ȳ =

M01

M00
(3)

Thus, (X, Y) are the coordinates of the center point of each
type-N superpixel.

As shown in Figure 8, the centerlines of original roads
can be generated by connecting the center points and edge
midpoints of superpixels. To obtain the edge midpoints of
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FIGURE 8. Connecting center points and edge midpoints.

the superpixels, the following two steps should be performed.
First, the intersecting line segments between the superpixel
and the interior of the original road of each superpixel should
be calculated by overlaying. An example of intersecting line
segments between the superpixel and the interior of the orig-
inal road can be seen in Figure 6 (blue line segments). Then,
the coordinates of the edgemidpoints of each intersecting line
segment can be acquired by calculating the midpoint between
the two endpoints of each intersecting line segment.

FIGURE 9. Final extraction results of road centerlines.

Figure 9a shows the center points and edge midpoints
of all superpixels. The center points of the superpixels are
marked in red and the edge midpoints of the superpixels are
marked in blue. Figure 9b shows the final extraction results
of centerlines from the original dual-line roads.

IV. EXPERIMENTS AND EVALUATIONS
A. CASE STUDY OF ROADS WITH SIMPLE INTERSECTIONS
In this experiment, the original road data with simple inter-
sections used to test the proposed SUCE method are from
the southeastern part of the Futian District of Shenzhen,
China. The original scale of the data is 1:50000. Because
the original roads are vector data, ArcGIS software (ESRI,
Redlands, CA, USA) is used to convert the vector data to
raster data. The corresponding toolbox for rasterization in
ArcGIS is located in the following subdirectory: ‘‘Toolboxes -
Conversion Tools - To Raster - Polyline to Raster’’. The cell
size used in the ArcGIS conversion toolbox is 1, which means
1 pixel in raster data represents 1 m in vector data. As shown
in Figure 10, the size of the image after conversion is
9922 × 7371 pixels. The standard road centerlines are pro-
vided by the surveying andmapping department of Shenzhen,
China, and are shown in Figure 11.

To evaluate the proposed SUCE method, we used two
algorithms to perform comparative experiments. The first is
the ZS thinning algorithm, which is one of the most common
methods used in the field of image processing. The other

FIGURE 10. Original road data with simple intersections.

FIGURE 11. Extraction results for road centerlines using the proposed
SUCE method.

is called the ‘‘collapse dual lines to centerline’’ method in
ArcGIS software. This approach is widely applied in the
field of map generalization. Figure 11 shows the extraction
results for road centerlines using the proposed SUCEmethod,
from which we can see that the proposed SUCE method can
effectively extract centerlines from dual-line roads. Figure 12
shows the extraction results of road centerlines using the two
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FIGURE 12. Extraction results for road centerlines using comparative
methods.

comparative methods. Although these methods can be used to
extract road centerlines, they yield different extraction results
at road intersections. It is extremely important to properly
handle branches when extracting the centerlines of roads,
especially in regions with more than two branches. To better
illustrate the differences in the results of the various methods,
we select some typical regions to display the corresponding
detailed information, such as the regions marked with blue
circles in Figures 11 and 12. Figure 13 shows the detailed
information at road intersections in these typical regions
using the proposed SUCE method and the two comparative
methods.

Figure 13 shows that for simple branches, the results from
ArcGIS tend to generate vertical or inclined intersections,
such as the road intersections in Figures 13a and 13d. The
results of the ZS and SUCE methods tend to generate center-
lines closer to the centers of the original roads, such as the
results in Figures 13b-c and 13e-f. Additionally, for compli-
cated intersections, the results from ArcGIS cannot maintain
the original road junctions, as in Figure 13g, and in some
cases, centerlines are not generated, such as in Figure 13j.
Although the ZSmethod can generate centerlines, the original
road junctions are not always maintained and branches still
exist in centerline results, as shown in Figures 13h and 13k.

FIGURE 13. Detailed information at road intersections.

However, the proposed SUCE method can effectively extract
centerlines from dual-line roads in the case of complicated
road intersections and effectively preserve road junctions.
Additionally, no redundant branches exist in the results,
as shown in Figures 13i and 13l.

To evaluate the restoration accuracy for the roads with
simple intersections, we compared both the geometric accu-
racy and number of incorrect road intersections of these three
methods. To evaluate the geometric accuracy of centerlines,
the method of measuring the positional accuracy of linear
features proposed by Goodchild and Hunter [72] is applied.
Because the original roads and centerline results from the
ArcGIS method are vector data, we convert them to raster
data using the ArcGIS conversion toolbox. The cell size
used in the ArcGIS conversion toolbox is 1, which means
1 pixel in raster data represents 1 m in vector data. Based
on the standard centerlines, buffers of different sizes (1 pixel,
2 pixels, 3 pixels and 4 pixels) are created. Then, the length
percentages of roads located in the buffers are calculated.
Table 1 shows the results of the evaluation of geometric
accuracy for the ArcGIS, ZS and SUCE methods. Notably,
as the buffer size increases, the length percentages for the
three methods increase. Although the geometric accuracy
of the ArcGIS method is better than that of the other two
methods, the percentages obtained with the proposed SUCE
method are still above 90%, and the results are considered
acceptable. In addition, the ArcGIS method performs better
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TABLE 1. Evaluation in the case of simple road intersections.

because the standard centerline data tend to maintain ver-
tical intersections rather than being closer to the centers
of original roads in the case of simple branches, such as
in the case of Figure 13a, compared to the other methods.
We also calculated the number of incorrect road intersections.
As shown in Table 1, the ZS method produces the most
incorrect road intersections, which reaches up to 32. The
ArcGIS method also produces 8 incorrect road intersections.
However, the number of incorrect road intersections produced
by the proposed SUCE method is zero, which means that
the SUCE method can effectively restore the original road
intersections.

FIGURE 14. Original road data with complex intersections.

B. CASE STUDY OF ROADS WITH
COMPLEX INTERSECTIONS
In this experiment, the original road data with complex inter-
sections used to test the proposed SUCE method are from
the Tiandi map in China, which can be downloaded for free
on the Internet according to the Uniform Resource Loca-
tor (URL). The tile map is organized by a pyramid rule [45].
The road data on the tile map used to test the proposed
SUCE method are at the 18th level. The size of each tile is
256 × 256 pixels. As shown in Figure 14, several test
regions with complex road intersections, such as in a region

containing interchanges or street gardens, were chosen to
perform the experiment.

Before executing the SUCE method, the roads should first
be extracted from the original tile map. Usually, the colors of
the roads on the Tiandi map are uniformly yellow or white
according to their grades. However, due to overlays of other
geographical elements, such as text or arrows, it is still
difficult to perfectly extract roads from the Tiandi map.
The method used for extracting roads can be found in the
study of Shen and Ai [45] and is effective for filling the
holes or connecting the fractures caused by the overlays of
other geographical elements. Since this study focuses on the
centerline extraction from dual-line roads, further discussion
about extracting roads from raster maps will not be provided.
Figure 15 shows the road extraction results, which can be
directly used for the proposed SUCE method.

FIGURE 15. Road extraction from the original tile map.

Figure 16 shows the extraction results for the road cen-
terlines using the proposed SUCE method. For the cen-
terline extraction of road data with complex intersections,
two important additional steps of the SUCE method should
be emphasized. (1) Since the road intersections are too
close in some complex cases, under-segmentation may occur.
To solve this problem, the following rules should be applied.
When the number of first merging superpixels is above a
fixed threshold, such as 6, the superpixel after the first merg-
ing should be segmented by SLIC again. The number of
superpixels used for segmentation for the second time is
usually twice as many as the number of superpixels for the
first time. For example, Figure 17a shows the original road,
and the result of the first superpixel segmentation is shown
in Figure 17b. 10 superpixels marked in red are detected
to be merged, and the result of the first merging is shown
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FIGURE 16. Extraction results for road centerlines using the proposed
SUCE method.

FIGURE 17. Under-segmentation of complex road intersections.

in Figure 17c. Figure 17d shows the result of the superpixel
segmentation for the second time. Figure 17e shows the result
of the second superpixel merging, and Figure 17f shows the
final result of the road centerline extraction. (2) Another
problem may appear when two intersections are too close.
As shown in Figure 18a, since the distribution of superpixels
is homogeneous, the superpixels marked in red are super-
pixels that are detected to be merged, but in this case, only
one intersection can be generated. However, two intersections
actually exist in the original roads. To maintain the correct
number of road intersections, the following rules should be
applied. The numbers in Figure 18a, such as 1 and 2, rep-
resent the number of corners of each superpixel located in
the interior of the original roads. When a superpixel with

FIGURE 18. Remerging of superpixels.

2 corners located in the interior of the original roads connects
four superpixels with 1 corner located in the interior of the
original roads, this superpixel with 2 corners can be called a
connecting superpixel. In this case, three center points should
be calculated, which include two center points of the merged
superpixel that consists of one connecting superpixel and two
superpixels with 1 corner located in the interior of the original
roads and one center point of the connecting superpixel,
as shown in Figure 18b-d. Figure 18e shows the final result
of the road centerline extraction in this case.

FIGURE 19. Extraction results for road centerlines using ZS.

To evaluate the ability of the SUCE method for extracting
the centerlines of roads with complex intersections, four other
image thinning algorithms, including the ZS, Rosenfeld [73],
Pavlidis [74] and morphological [75] methods, were applied
in contrast experiments. Figures 19-22 show the extraction
results for the road centerlines using the ZS, Rosenfeld,
Pavlidis and morphological methods, respectively.
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TABLE 2. Evaluation in the case of complex road intersections.

FIGURE 20. Extraction results for road centerlines using Rosenfeld
method.

To clearly display the differences in the capacity to handle
complex road intersections between these methods, some
typical regions marked in red circles in Figures 19-22 were
chosen. Figure 23 shows the centerline extraction differences
of complex road intersections between the ZS, Rosenfeld,
Pavlidis, morphological and proposed SUCEmethods, which
reveal the following: in the case of complex road inter-
sections, the ZS method tends to generate incorrect circu-
lar road intersections (such as in Figure b1), burrs (such
as in Figure c1) and redundant road intersections (such as
on the left side in Figure e1); the Rosenfeld method tends
to generate incorrect circular road intersections (such as in
Figures b2 and c2); the Pavlidis method tends to generate
incorrect fractured road intersections (such as in Figures c3,
d3 and e3) and burrs (such as in Figures a3 and b3); and
the morphological method tends to generate incorrect frac-
tured road intersections (such as in Figures b4 and e4) and
noise (such as in Figures a4, c4 and d4). To summarized, the

FIGURE 21. Extraction results for road centerlines using Pavlidis method.

structure and topological relations of the original road net-
work were destroyed by these four image thinning algo-
rithms. However, as shown in Figures a5, b5, c5, d5 and e5,
the proposed SUCE method can effectively maintain the
correct road intersections and the topological relations of the
original road. Thus, the structure of the original road network
can be effectively preserved by the proposed SUCE method,
even in the case of complex road intersections.

To evaluate the five methods for extracting the centerlines
of roads with complex intersections, as shown in Table 2,
the number of redundant intersections, number of broken
intersections, number of incorrect intersections, number of
burrs, noise, and average execution time were calculated. The
Rosenfeldmethod produces themost redundant intersections,
which reaches up to 24. The numbers of redundant inter-
sections of the ZS and Pavlidis methods are close, which
are 8 and 10, respectively. The SUCE method produces the
fewest (only 2) redundant intersections. The morphological
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FIGURE 22. Extraction results for road centerlines using morphological
method.

FIGURE 23. Differences of capacity for handling complex road
intersections between five methods.

method produces the most broken intersections, which
reaches up to 79. The Pavlidis method contains 31 bro-
ken intersections. The numbers of broken road intersec-
tions produced by the ZS, Rosenfeld and SUCE methods
are zero. In total, the morphological method produces the
most incorrect intersections, which reaches up to 83. The
numbers of incorrect road intersections produced by the ZS,
Rosenfeld and Pavlidis methods are 8, 24 and 41, respec-
tively. However, the number of incorrect road intersections
produced by the proposed SUCE method is only 2, which

means that the SUCE method can effectively restore the
original road intersections even in the case of complex road
intersections. In addition, the ZS and Pavlidis methods tend
to produce burrs, but the other three methods can effectively
avoid burrs, and themorphological method is the onlymethod
that tends to produce noise. The average execution time of the
morphological method performed the best of all fivemethods.
Since the proposed SUCE method is a process of integrat-
ing multiple technologies including superpixel segmentation,
corner detection and image moments, the average execution
time is the longest.

V. CONCLUSIONS
This study proposes an innovative method of extracting cen-
terlines from dual-line roads using superpixel segmentation
based on raster data. In the traditional methods of road center-
line extraction, vector data are used as the primary experimen-
tal data. However, our study focuses on centerline extraction
using the SUCEmethod based on superpixel technology. The
original roads are first segmented by a superpixel algorithm
called SLIC. Then, the superpixels located at road intersec-
tions are merged. Finally, the road centerlines are generated
by connecting the center points and edge midpoints of super-
pixels. Compared with the existing four thinning algorithms
based on raster data and the traditional ArcGIS method based
on vector data, the results show that the proposed SUCE
method can effectively extract centerlines from dual-line
roads and effectively restore the original road intersections,
even in case of complicated road intersections. In addition,
the proposed SUCE can effectively avoid burrs and noise.
Since the parameter setting of the number of superpixels is
very important, as neither too large nor too small is good,
how to adaptively set more accurate parameters is a topic for
future research.
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