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ABSTRACT Structural optimization of complex mechatronic components may involve heterogeneous
competing performance indices, including the cost, fixation, benefit, and deviation ones. However, such
optimization problems with heterogeneous objectives have not been investigated so far. In this paper,
a novel interval heterogeneous-objective robust optimization approach is proposed for complex mechatronic
components. First, a unified interval heterogeneous-objective robust optimization model is constructed
for mechatronic components with the uncertainties described as interval variables. Subsequently, a new
interval robust equilibrium optimization algorithm is proposed to solve the interval heterogeneous-objective
robust optimization model. Specifically, the unified formulas for assessing the robustness of interval
heterogeneous-objective performance indices and the robust equilibrium among them are derived at first.
Then, the preferential guidelines considering the robust equilibrium among all the objective and con-
straint performance indices are proposed for the direct ranking of various design vectors, and finally,
the heterogeneous-objective robust equilibrium optimization of complexmechatronic components is realized
by integrating the Kriging technique and the nested genetic algorithm. The feasibility and effectiveness of
the proposed heterogeneous-objective robust optimization approach are verified by a numerical example and
a case study.

INDEX TERMS Heterogeneous-objective robust optimization, complex mechatronic component, interval,
robust equilibrium, closeness coefficient, group ranking.

I. INTRODUCTION
Uncertainties such as machining and assembly errors, mate-
rial variations of key components, voltage fluctuations, and
so on are inevitable for complex mechatronic equipment.
The optimal designs for the key components of complex
mechatronic equipment obtained by traditional deterministic
optimization approaches neglecting these uncertainties can
hardly achieve the desired structural performance and may
be sensitive to uncertainties. Therefore, it is necessary for us
to take these uncertainties into consideration in the design
process of complex mechatronic components [1]–[4].

Robust design optimization capable of achieving the
design of optimal structural performance insensitive to uncer-
tainties by combining the optimization theorywith robustness

assessment has been widely applied in engineering [5]–[10].
Traditional robust design of uncertain structures is usu-
ally conducted on the premise that the probabilistic dis-
tributions of uncertainties are known [11]. For example,
Medina and Taflanidis [12] proposed a probabilistic robust-
ness measure defined as the likelihood that a particular
design outperformed the rival ones in an alternative set.
Richardson et al. [13] investigated the robust topology opti-
mization of truss structures with random loads and material
properties. Cheng et al. [14] investigated the robust opti-
mization of dynamical characteristics for complex structures
with random parameters by integrating Kriging technique
and the constrained non-dominated sorting genetic algorithm.
Martínez-Frutos et al. [15] proposed a stochastic robust shape
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optimization framework for continuous structures based on
the level set method. Zhang and Kang [16] investigated the
robust shape and topology optimization method consider-
ing geometrical uncertainties with stochastic level set per-
turbation. However, the precise probabilistic distributions of
uncertainties can hardly be determined in the design phase of
complexmechatronic components due to the lack of uncertain
information [17]–[25].

In recent years, a series of non-probabilistic robust opti-
mization approaches have been proposed [26], [27]. For
instance, Gong et al. [28] proposed a set-based genetic
algorithm for interval many-objective optimization prob-
lems. Sun et al. [29] put forward an ensemble framework
for assessing solutions of interval programming problems.
Zhou et al. [30] proposed a sequential quadratic program-
ming approach for robust optimization with interval uncer-
tainties. Mortazavi et al. [31] investigated the adaptive
gradient-assisted robust design optimization under inter-
val uncertainty. Cheng et al. [32] proposed a hybrid algo-
rithm for multi-objective robust optimization with interval
uncertainty by integrating multi-objective differential evo-
lution, sequential quadratic programming with robust opti-
mization. Wu et al. [33] investigated the robust topology
optimization of structures under interval uncertainty and
developed a new sensitivity analysis method. Chen et al. [34]
proposed the target-performance-based analytical scheme
for the robust optimization of uncertain structures based
on hyper-ellipsoidal and interval models. Hot et al. [35]
investigated the robust design of a pre-stressed space
structure under epistemic uncertainties based on info-gap
model. Hanks et al. [36] proposed a robust goal program-
ming approach utilizing different robustness echelons via the
norm-based and ellipsoidal uncertainty sets. Cheng et al. [37]
proposed an efficient robust optimization approach for com-
plex uncertain structures based on normalized violation
degrees of interval constraints. Hu et al. [38] investigated the
robust optimization with convex model considering bounded
constraints and proposed a new robustness index based
on the sensitivity Jacobian matrix of system performances.
Liu and Gea [39] put forward a new robust topology opti-
mization approach for structures under multiple indepen-
dent unknown-but-bounded loads based on theWolfe duality.
Zhou et al. [40]–[42] proposed an on-line Kriging model-
assisted variable adjustment robust optimization approach
and the multi-objective robust optimization approach for
engineering design under interval uncertainty.

As can be seen from the above literature review, the present
researches on non-probabilistic robust optimization have the
following limitations. Firstly, most of them are focused on
the problem of single objective optimization and cannot han-
dle the robust optimization problems with multiple objective
performance indices. Secondly, present multi-objective non-
probabilistic robust optimization approaches usually produce
a set of Pareto-optimal solutions. The determination of a final
design from Pareto optimal solutions is a challenging task
dependent on the rich experience and expert skills of decision

makers, which greatly limits the application of present multi-
objective robust optimization approaches in engineering.
Gong and Yuan [43] and Gong et al. [44] proposed evolution-
ary algorithms with preference polyhedron and interactive
evolutionary algorithms with decision-maker’s preferences
for solving interval multi-objective optimization problems,
which generated one or more preferred Pareto-optimal solu-
tions and thus reduced the difficulty of decision making after
optimization. They provided the valuable idea of introduc-
ing decision making into the optimization process, which
also applies to interval multi-objective robust optimization.
Finally, all of the present researches on robust optimization
are focused on the problems with only cost or benefit objec-
tive functions, the goal of which is to minimize or maximize
the objective values and reduce their sensitivity to uncertain-
ties. However, the optimization of complexmechatronic com-
ponentsmay simultaneously involve the cost, fixation, benefit
and deviation objective performance indices [45]. Namely,
there may be the cost objective that is the smaller the better,
the fixation objective that is the closer to a given constant the
better, the benefit objective that is the larger the better, and the
deviation objective that is the farther away from a given con-
stant the better. Take the high-speed actuating mechanism as
an example, the maximum deformation is a cost performance
index since the smaller deformation indicates the higher stiff-
ness; the maximum equivalent stress can be regarded as a
fixation performance index considering its given upper limit
and the purpose of avoiding over-conservative design [46];
the stamping frequency is a benefit performance index since
it is the larger the better; the natural frequency can be
regarded as a deviation performance index since its farther
distance from the stamping frequency indicates the better
anti-vibration performance of the mechanism. Whereas the
robust optimization problem with heterogeneous objectives
has not been investigated so far, which is much more diffi-
cult to solve compared with the conventional multi-objective
robust optimization problems due to the competition among
heterogeneous objectives.

In this paper, the new research topic of interval
heterogeneous-objective robust optimization is investi-
gated for the first time. A novel heterogeneous-objective
robust optimization approach is proposed for complex
uncertain mechatronic components. A unified interval
heterogeneous-objective robust optimization model is con-
structed for complex mechatronic components with the
uncertainties influencing structural performance indices
described as interval variables. To avoid the challeng-
ing decision-making process of choosing the final design
from Pareto optimal solutions, the interval heterogeneous-
objective robust optimizationmodel is solved by a novel inter-
val robust equilibrium optimization algorithm considering the
conflict and competition among all the objective and con-
straint performance indices. Firstly, the unified formulae for
assessing the robustness of heterogeneous objective perfor-
mance indices as well as the robust equilibrium among them
are derived. Secondly, the preferential guidelines considering

VOLUME 7, 2019 20539



J. Cheng et al.: Heterogeneous-Objective Robust Optimization

the robust equilibrium among all the objective and constraint
performance indices are put forward for directly ranking
various design vectors based on grouping and group ranking.
Finally, the interval heterogeneous-objective robust equilib-
rium optimization algorithm is realized by integrating Krig-
ing technique and nested genetic algorithm (GA). As a result,
the optimal solution to the interval heterogeneous-objective
robust optimization model can be located with no challenging
decision-making process involved. The feasibility and valid-
ity of the proposed heterogeneous-objective robust optimiza-
tion approach are verified by both numerical example and
case study.

II. UNIFIED INTERVAL HETEROGENEOUS-OBJECTIVE
ROBUST OPTIMIZATION MODEL FOR COMPLEX
UNCERTAIN MECHATRONIC COMPONENTS
An interval number U can be denoted as

U = [uL , uR] =
〈
uC , uW

〉
, (1)

where uL , uR, uC , uW are its left bound, right bound, center
and width. And there are

uC =
(
uL + uR

)
/2, (2)

uW = uR − uL . (3)

Robust optimization of complex uncertain mechatronic
components may involve heterogeneous objectives including
the cost, fixation, benefit and deviation structural perfor-
mance indices, which are the functions of design variables
and interval parameters when the uncertainties are described
as interval numbers. Supposing that the cost, fixation, benefit
and deviation structural performance indices are indicated by
subscripts 1, 2, 3, 4 respectively, the heterogeneous objectives
involved in the robust optimization of an uncertain mecha-
tronic component can be described as

min
x

{〈
f C1i (x) , f

W
1i (x)

〉}
(i = 1, 2, · · · , n1); (4)

min
x

{〈∣∣∣f C2i (x)− bC2i∣∣∣ , f W2i (x)〉} (i = 1, 2, · · · , n2); (5)

min
x

{
−f C3i (x) , f

W
3i (x)

}
(i = 1, 2, · · · , n3); (6)

min
x

{
−

∣∣∣f C4i (x)− bC4i∣∣∣ , f W4i (x)} (i = 1, 2, · · · , n4). (7)

where x is the design vector of a mechatronic compo-
nent; f C1i (x), f

W
1i (x), f

C
2i (x), f

W
2i (x), f

C
3i (x), f

W
3i (x), f

C
4i (x),

f W4i (x) are the center and width of the cost, fixation, benefit
and deviation structural performance indices respectively;
n1, n2, n3, n4 are the numbers of the cost, fixation, benefit
and deviation performance indices; subscript i indicates the
ith objective performance index in the same category; bC2i is
the center of the ith interval constant B2i that the ith fixation
performance index is expected to approach; bC4i is the center of
the ith interval constant B4i that the ith deviation performance
index is expected to deviate from.

Supposing that all the structural performance indices of
an uncertain mechatronic component are influenced by both

design variables and interval uncertain parameters and that
there are some performance indices with upper limits besides
the heterogeneous ones, the interval robust optimization
model of an uncertain mechatronic component with hetero-
geneous objective performance indices can be unified as

min
x

{〈
sign (2.5− j)×

(
f Cji (x)/

∣∣∣f Cji (x)∣∣∣)j
×

∣∣∣f Cji (x)− bCji ∣∣∣ , f Wji (x) 〉},
where

f Cji (x) =
(
f Lji (x)+ f

R
ji (x)

)
/2, f Wji (x) = f Rji (x)− f

L
ji (x);

f Lji (x) = min
U

fji (x,U) , f Rji (x) = max
U

fji (x,U);

Bji =
[
bLji , b

R
ji

]
=

〈
bCji , b

W
ji

〉
;

B1i = B3i = [0, 0] = 〈0, 0〉 ;

i =


1, 2, · · · , n1. j = 1;
1, 2, · · · , n2. j = 2;
1, 2, · · · , n3. j = 3;
1, 2, · · · , n4. j = 4.

s.t. Gk (x) ≤ Bk (k = 1, 2, · · · , ng). (8)

where

Gk (x) = gk (x,U) =
[
gLk (x) , g

R
k (x)

]
=

〈
gCk (x) , g

W
k (x)

〉
;

gLk (x) = min
U

gk (x,U) , gRk (x) = max
U

gk (x,U);

gCk (x) =
(
gLk (x)+ g

R
k (x)

)
/2, gWk (x) = gRk (x)− g

L
k (x);

Bk =
[
bLk , b

R
k

]
=

〈
bCk , b

W
k

〉
;

x = (x1, x2, · · · , xnx) , xl ∈
[
xLl , x

R
l

]
(l=1, 2, · · ·, nx);

U = (U1,U2, · · · ,Unu) ,

Um =
[
uLm, u

R
m

]
(m = 1, 2, · · · , nu).

where x is an nx-dimensional design vector, U is an nu -
dimensional interval parameter vector. fji (x,U) and Gk (x)
are the objective and constraint performance indices of the
uncertain mechatronic component, which are the functions
of design vector x and interval parameter vector U . f Cji (x),
f Wji (x), f

L
ji (x) and f

R
ji (x) are the center, width, left and right

bounds of the ith objective performance index in the jth cat-
egory of heterogeneous objectives. gLk (x), g

R
k (x), g

C
k (x) and

gWk (x) are the left bound, right bound, center and width of the
kth constraint performance index.Bk is the given interval con-
stant corresponding to the kth constraint performance index
while bLk , b

R
k , b

C
k , b

W
k are its left bound, right bound, center

and width. It is worth noting that the objective functions in (8)
are the same as (4), (5), (6), (7) respectively when j equals 1,
2, 3, 4.

III. UNIFIED ASSESSMENT OF ROBUST EQUILIBRIUM
AMONG HETEROGENEOUS OBJECTIVES
The optimal solution to the interval heterogeneous objec-
tive robust optimization problem in (8) should have robust
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Rfji (x) =
|sign (j− 2)| ×

∣∣∣f Cji (x)− bCji ∣∣∣+ |sign [(j− 1)× (j− 3)× (j− 4)]| ×
∣∣∣f Wji (x)− bWji ∣∣∣∣∣∣f Cji (x)− bCji ∣∣∣+ ∣∣∣f Wji (x)− bWji ∣∣∣ . (12)

equilibrium structural performance indices considering the
conflict and competition among them. That is, all the struc-
tural performance indices of the optimal solution should have
approximate values of robustness indices.

To assess the robust equilibrium among heterogeneous
objectives, the robustness of heterogeneous objective perfor-
mance indices fji (x,U) = Fji (x) (j = 1, 2,3, 4) should be
assessed at first. This section firstly proposes the formulae for
assessing the robustness of the cost, benefit, fixation and devi-
ation performance indices, then derives the unified formula
for assessing the robustness of all heterogeneous objective
performance indices, and finally proposes the approach for
assessing the robust equilibrium among heterogeneous objec-
tive performance indices.

A. UNIFIED ROBUST ASSESSMENT OF HETEROGENEOUS
OBJECTIVE PERFORMANCE INDICE
For a cost or benefit performance index Fji (x) (j = 1, 3),
the larger fluctuation under uncertainties indicates the worse
robustness. Thus the robustness of a cost or benefit perfor-
mance index can be assessed by

Rfji (x) =

∣∣∣f Cji (x)∣∣∣∣∣∣f Cji (x)∣∣∣+ f Wji (x) (j = 1, 3). (9)

For a fixation performance index F2i (x), the larger
deviation from given interval constant B2i indicates the
worse robustness. Considering that two fixation performance
indices symmetrical about B2i have the same robust level,
the robustness of a fixation performance index can be
assessed by

Rf2i (x) =

∣∣f W2i (x)− bW2i ∣∣∣∣f W2i (x)− bW2i ∣∣+ ∣∣f C2i (x)− bC2i∣∣ . (10)

For a deviation performance index F4i (x), the larger devi-
ation from given interval constant B4i indicates the better
robustness, which is just opposite to a fixation one. Thus the
robustness of a deviation performance index can be evalu-
ated by

Rf4i (x) =

∣∣f C4i (x)− bC4i∣∣∣∣f W4i (x)− bW4i ∣∣+ ∣∣f C4i (x)− bC4i∣∣ . (11)

Considering that there are B1i = B3i = 〈0, 0〉 for the cost
and benefit performance indices, the formula for assessing the
robustness of heterogeneous objective performance indices
including the cost, fixation, benefit and deviation ones can be
unified as (12) shown at the top of this page. Obviously, there
is 0 ≤ Rfji (x) ≤ 1 for any objective performance index. The
larger objective robustness index Rfji (x) indicates the better
robustness of objective performance index Fji (x).

B. UNIFIED ASSESSMENT OF ROBUST EQUILIBRIUM
AMONG HETEROGENEOUS OBJECTIVES
To assess the robust equilibrium among heterogeneous objec-
tive performance indices, the robust equilibrium coefficient
for design vector x as far as the ith objective performance
index in category j can be calculated by

Bfji (x) = Rfji (x)− Rfji (x) (13)

where Rfji (x) is the average of the ith objective performance
index in category j for a group of alternative design vectors.
Then the heterogeneous objective performance indices are

robust equilibrium for design vector x if there is ∀Bfji (x) ≥ 0;
otherwise, they are not. Design vector x1 has the more robust
equilibrium objective performance indices than design vector
x2 if there is ∀Bfji (x1) ≥ 0 but ∃Bfji (x2) < 0.

IV. PREFERENTIAL GUIDELINES FOR DESIGN VECTORS
OF UNCERTAIN MECHATRONIC COMPONENTS
In order to realize the direct ranking of design vec-
tors and locate the robust optimal solution to the
heterogeneous-objective robust optimization problem in (8),
the preferential guidelines for design vectors of uncertain
mechatronic components are put forward based on grouping
and group ranking. Firstly, all the alternative design vectors
are classified into two groups (namely, the feasible and infea-
sible ones) according to the results of feasibility assessment.
Secondly, the feasible design vectors are further classified
into four groups according to the robust equilibrium among
all of their structural performance indices. Finally, the rank
orders of all the alternative design vectors are determined by
group ranking after ranking in each group.

A. FEASIBILITY ASSESSMENT OF DESIGN VECTORS AND
RANKING OF INFEASIBLE ONES
According to the frequency that the boundaries of constraint
performance index Gk (x) in (8) cross over those of its corre-
sponding interval constant Bk , there are five positional rela-
tionships between Gk (x) and Bk : (a) no boundary crossing
as shown in Fig. 1(a); (b) one boundary crossing, namely,
gRk (x) crosses over b

L
k as shown in Fig. 1(b); (c) two boundary

crossings, namely, gRk (x) crosses over both b
L
k and bRk when

gWk (x) > bWk as shown in Fig. 1(c1) or both gRk (x) and g
L
k (x)

cross over bLk when gWk (x) < bWk as shown in Fig. 1(c2); (d)
three boundary crossings, namely, gRk (x) crosses over both b

L
k

and bRk while gLk (x) crosses over b
L
k , see Fig. 1(d); (e) four

boundary crossings, namely, both gRk (x) and g
L
k (x) cross over

bLk and bRk , see Fig. 1(e).
To describe the relative position between interval con-

straint performance index Gk (x) and interval constant Bk ,
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FIGURE 1. Relative positional relationships between interval
performance index Gk (x) and interval constant Bk .

a new concept of closeness coefficient is proposed. Specif-
ically, a closeness coefficient describes the degree that the
boundary of interval constraint performance index Gk (x)
approaches that of interval constant Bk , which monotonously
increases from 0 to 1 when the former gradually approaches
the latter and keeps the value of 1 after the former crosses the
latter.

There are four closeness coefficients for describing the
relative position between interval performance index Gk (x)
and constant Bk , namely, ccRLk (x) describing the degree of
gRk (x) approaching bLk , ccLLk (x) describing the degree
of gLk (x) approaching bLk , cc

RR
k (x) describing the degree

of gRk (x) approaching b
R
k , cc

LR
k (x) describing the degree of

gLk (x) approaching b
R
k .

Supposing that ccRLk (x) monotonously increases from
0 to 1 when boundary gRk (x) is approaching bLk under the
condition that gRk (x) ≥ bLk − bWk and there is ccRLk (x) ≡ 1
when gRk (x) ≥ bLk , the formula for calculating ccRLk (x) is
derived as (14). It is obvious that there is ccRLk (x) ≡ 1 for all
the relative positional relationships between Gk (x) and Bk
except the case in Fig. 1(a).

ccRLk (x) = max

(
0,
gRk (x)−

(
bLk − b

W
k

)
bWk +

∣∣bLk − gRk (x)∣∣
)

(14)

Supposing that ccLLk (x) monotonously increases from
0 to 1 when boundary gLk (x) is approaching bLk under the
condition that gRk (x) ≥ bLk and there is ccLLk (x) ≡ 1 when
gLk (x) ≥ bLk , the formula for calculating ccLLk (x) can be
derived as (15). It is obvious that there is ccLLk (x) ≡ 0 for the
relative positional relationship in Fig. 1(a) and ccLLk (x) ≡ 1
for those shown in Figs. 1(c2), (d), (e).

ccLLk (x) = max

(
0,

gRk (x)− b
L
k

gRk (x)− g
L
k (x)+

∣∣bLk − gLk (x)∣∣
)

(15)

Supposing that ccRRk (x) monotonously increases from
0 to 1 when boundary gRk (x) is approaching bRk under the
condition that gRk (x) ≥ bLk and there is ccRRk (x) ≡ 1 when
gRk (x) ≥ bRk , the formula for calculating ccRRk (x) can be
derived as (16). It is obvious that there is ccRRk (x) ≡ 0 for the
relative positional relationship in Fig. 1(a) and ccRRk (x) ≡ 1

for those in Figs. 1(c1), (d), (e).

ccRRk (x) = max

(
0,

gRk (x)− b
L
k

bRk − b
L
k +

∣∣bRk − gRk (x)∣∣
)

(16)

Supposing that ccLRk (x) monotonously increases from
0 to 1 when boundary gLk (x) is approaching bRk under the
condition that gRk (x) ≥ bRk and there is ccLRk (x) ≡ 1 when
gLk (x) ≥ bRk , the formula for calculating ccLRk (x) can be
derived as (17). It is obvious that there is ccLRk (x) ≡ 0 for
the relative positional relationships in Figs. 1(a), (b), (c2) and
ccLRk (x) ≡ 1 for the case in Fig. 1(e).

ccLRk (x) = max

(
0,

gRk (x)− b
R
k

gRk (x)− g
L
k (x)+

∣∣bRk − gLk (x)∣∣
)
(17)

The variation curves of four closeness coefficients with
gRk (x) are illustrated in Fig. 2, where Fig. 2(a) corresponds
to the case when gWk (x) < bWk while Fig. 2(b) corresponds
to the case when gWk (x) > bWk . It is worth noting that the
variation curve of ccLLk (x) will coincide with that of ccRRk (x)
when gWk (x) = bWk .

FIGURE 2. Variation curves of four closeness coefficients with gR
k (x):

(a) gW
k (x) < bW

k ; (b) gW
k (x) > bW

k .

As can be observed from Figs. 1 and 2, the interval con-
straint Gk (x) ≤ Bk will be violated when gRk (x) > bLk , and
the larger closeness coefficients ccLLk (x), ccRRk (x), ccLRk (x)
indicate the greater violation degree of the interval constraint.
Considering that the denominators of the formulae for calcu-
lating ccLLk (x), ccRRk (x), ccLRk (x) may be zero when Gk (x)
or Bk degenerates into a real number, let ccLLk (x) = 0 when
gLk (x) = gRk (x) = bLk , cc

RR
k (x) = 0 when bLk = bRk = gRk (x),

and ccLRk (x) = 0 when gLk (x) = gRk (x) = bRk . Then the
feasibility of interval constraintGk (x) ≤ Bk for design vector
x can be assessed by the following tri-dimensional violation
vector:

vk (x) =
(
ccLLk (x) , ccRRk (x) , ccLRk (x)

)
,
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where

ccLLk (x)

=


0,

when sign
(∣∣gLk (x)− gRk (x)∣∣+∣∣gLk (x)− bLk ∣∣) = 0;

max
(
0,

gRk (x)−b
L
k

gRk (x)−g
L
k (x)+

∣∣bLk−gLk (x)∣∣
)
, otherwise.

ccRRk (x)

=


0,

when sign
(∣∣bLk − bRk ∣∣+ ∣∣gRk (x)− bRk ∣∣) = 0;

max
(
0,

gRk (x)−b
L
k

bRk−b
L
k+
∣∣bRk−gRk (x)∣∣

)
, otherwise.

ccLRk (x)

=


0,

when sign
(∣∣gLk (x)− gRk (x)∣∣+ ∣∣gLk (x)− bRk ∣∣) = 0;

max
(
0,

gRk (x)−b
R
k

gRk (x)−g
L
k (x)+

∣∣bRk−gLk (x)∣∣
)
, otherwise.

(18)

Therefore, the feasibility of design vector x for an uncer-
tain mechatronic component can be assessed by the fol-
lowing total tri-dimensional violation vector of all interval
constraints in (8):

vT (x) =
ng∑
k=1

vk (x). (19)

Design vector x is feasible if there is vT (x) = (0, 0, 0);
otherwise, it is infeasible. Then all the design vectors of an
uncertainmechatronic component can be classified into feasi-
ble and infeasible ones. A feasible design vector is obviously
superior to an infeasible one. The infeasible design vectors
can be ranked according to their total tri-dimensional viola-
tion vectors calculated by (19). The larger norm of the total
tri-dimensional violation vector indicates theworse infeasible
design vector.

B. RANKING OF FEASIBLE DESIGN VECTORS
CONSIDERING ROBUST EQUILIBRIUM
To achieve the optimal design vector of the heterogeneous-
objective robust optimization model in (8), all the feasible
design vectors are firstly classified into four groups according
to the robust equilibrium among all of their objective and
constraint performance indices, then sorted by group accord-
ing to the preferential relations among different groups, and
sorted in each group based on the integral nominal robustness
distances of heterogeneous objective performance indices. As
a result, the rank orders of all the feasible design vectors
can be determined according to their merits of heterogeneous
objectives and the robust equilibrium among all structural
performance indices.

1) GROUPING AND GROUP RANKING BASED ON ROBUST
EQUILIBRIUM STRATEGY
Considering that both the smaller closeness coefficient
ccRLk (x) and the smaller fluctuation of constraint performance
index gWk (x) will lead to the better robustness of interval
constraint Gk (x) ≤ Bk , the robust level of constraint per-
formance index Gk (x) can be assessed by the following
constraint robustness index:

Rgk (x) = max

{
0,

∣∣gCk (x)∣∣− ccRLk (x)× bWk∣∣gCk (x)∣∣+ gWk (x)
}
. (20)

It is obvious that constraint robustness index Rgk (x) takes
a value between 0 and 1. The larger constraint robustness
index Rgk (x) indicates the better robustness of constraint
performance index Gk (x).

Then the robust equilibrium coefficient for design vector
x corresponding to the k th constraint performance index can
be calculated by:

Bgk (x) = Rgk (x)−
∣∣∣bCk ∣∣∣/(∣∣∣bCk ∣∣∣+bWk ), k = 1, 2, · · · , ng.

(21)

The constraint performance indices are robust equilibrium
for design vector x if there is ∀Bgk (x) ≥ 0; otherwise,
they are not. Design vector x1 has more robust equilibrium
constraint performance indices than design vector x2 if there
is ∀Bgk (x1) ≥ 0 but ∃Bgk (x2) < 0.
Then all the feasible design vectors can be classified into

four groups based on their robust equilibrium coefficients
corresponding to all the objective and constraint performance
indices calculated by (13) and (21). Specifically, feasible
design vector x belongs to Group A when ∀Bgk (x) ≥ 0 and
∀Bfji (x) ≥ 0; it belongs to Group B when ∀Bgk (x) ≥ 0 but
∃Bfji (x) < 0; it belongs to Group C when ∀Bfji (x) ≥ 0 but
∃Bgk (x) < 0; it belongs to Group D when ∃Bgk (x) < 0 and
∃Bfji (x) < 0. The preferential relations for the four groups
of feasible design vectors are {Group A} � {Group B} �
{Group C} � {Group D}.

2) RANKING IN THE SAME GROUP BASED ON ROBUSTNESS
DISTANCE
To directly rank the feasible design vectors in the same group,
a new concept of robustness distance is proposed. Firstly,
a unified formula for calculating the robustness distances of
heterogeneous objective performance indices is derived based
on the formulae corresponding to the cost, fixation, benefit
and deviation ones. Secondly, a dimensionless rank vector
is generated for every feasible design vector based on its
robustness distances corresponding to heterogeneous objec-
tives. Finally, the integral nominal robustness distances of
feasible design vectors are calculated considering the robust
equilibrium among all the structural performance indices,
based on which the feasible design vectors in the same group
can be directly ranked.
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For a cost performance index F1i (x), the smaller f C1i (x) the
better, thus its robustness distance can be calculated by:

D1i (x) = [1− Bf1i (x)]× f C1i (x). (22)

For a fixation performance index F2i (x), the smaller∣∣f C2i (x)− bC2i∣∣ the better, thus its robustness distance can be
calculated by:

D2i (x) = [1− Bf2i (x)]×
∣∣∣f C2i (x)− bC2i∣∣∣ . (23)

For a benefit performance index F3i (x), the larger f C3i (x)
the better, thus its robustness distance can be calculated by:

D3i (x) = − [1+ Bf3i (x)]× f C3i (x). (24)

For a deviation performance index F4i (x), the larger∣∣f C4i (x)− bC4i∣∣ the better, thus its robustness distance can be
calculated by:

D4i (x) = − [1+ Bf4i (x)]×
∣∣∣f C4i (x)− bC4i∣∣∣ . (25)

Based on (22)-(25), the formula for calculating the
robustness distances of heterogeneous objective performance
indices can be unified as:

Dji (x) = sign (2.5− j)×
[
1− sign (2.5− j)× Bfji (x)

]
×

(
f Cji (x)/

∣∣∣f Cji (x)∣∣∣)j × ∣∣∣f Cji (x)− bCji ∣∣∣ . (26)

Obviously, the smaller robustness distanceDji (x) indicates
the better design vector x as far as the ith objective perfor-
mance index of category j is concerned.

Considering that heterogeneous objective performance
indices may have different dimensions and different orders
of magnitude, the robustness distances calculated by (26)
are incommensurable for different objective performance
indices. To achieve a dimensionless robustness measure for
heterogeneous objectives, all the feasible design vectors in
the same group are ranked in parallel according to their
corresponding robustness distance Dji (x) to the effect that a
smaller robustness distance Dji (x) is assigned a smaller rank
number rji (x) and that feasible design vector x is assigned
a nf = n1 + n2 + n3 + n4 dimensional rank vector r (x)
comprising nf number of rji (x), the norm of which can be
calculated by:

|r (x)|

=

√√√√ n1∑
i=1

r1i (x)2+
n2∑
i=1

r2i (x)2+
n3∑
i=1

r3i (x)2+
n4∑
i=1

r4i (x)2.

(27)

It is obvious that |r (x)| is a dimensionless quantity reflect-
ing both the merits of heterogeneous objective performance
indices and the robust equilibrium among them.

Considering that there is a competition between the con-
straint and objective performance indices and that the close-
ness coefficient ccRLk (x) monotonously increases from 0 to
1while the constraint robustness indexRgk (x)monotonously

decreases when gRk (x) gradually approaches b
L
k (x), the close-

ness coefficients ccRLk (x) is utilized to assess the robust equi-
librium between the constraint and objective performance
indices. Therefore, the integral nominal robustness distance
of design vector x can be calculated by:

D (x) =

2−

√√√√ ng∑
k=1

ccRLk (x)2/
√
ng

× |r (x)| . (28)

It is obvious that the smaller integral nominal robustness
distance indicates the better and more robust design vector.

V. INTERVAL HETEROGENEOUS-OBJECTIVE ROBUST
EQUILIBRIUM OPTIMIZATION ALGORITHM
For the purpose of achieving the globally robust opti-
mal solution to the optimization model in (8), an inter-
val heterogeneous-objective robust equilibrium optimization
algorithm is proposed by integrating the Kriging technique
for efficiently computing the performance indices of uncer-
tain mechatronic components, the inner GAs for calculating
the interval bounds of performance indices, and the outer
GA for directly sorting various design vectors based on the
preferential guidelines proposed in Section IV. The validity
the proposed algorithm is verified by a numerical example.

A. ALGORITHM DESCRIPTION
The flowchart of the interval heterogeneous-objective robust
equilibrium optimization algorithm for complex uncertain
mechatronic components is illustrated in Fig. 3, the imple-
mentation of which includes 6 steps.
Step 1: Construct the interval heterogeneous-objective

robust optimization model of the uncertain mechatronic com-
ponent. Determine the design variables and interval parame-
ters as well as their varying ranges, describe the cost, fixation,
benefit and deviation performance indices as heterogeneous
objective functions, and describe the requirements on the
other performance indices as constraint functions.
Step 2: Construct the Kriging models for efficiently cal-

culating the structural performance indices of the uncer-
tain mechatronic component based on Latin hypercube sam-
pling (LHS) and finite element analysis (FEA).
Step 3: Initialize GA parameters, including the population

sizes, maximum iteration numbers, crossover and mutation
probabilities of the inner and outer GAs, prescribe the con-
vergent threshold of outer GA. Set the iteration number of
outer GA as 1 and generate the first population of outer GA.
Step 4: Calculate the interval bounds of all performance

indices in parallel by integrating Kriging models and inner
GAs, and calculate the total tri-dimensional violation vectors
of all interval constraints for the individuals in the current
population of outer GA.
Step 5: Sort the individuals in the current population of

outer GA based on the preferential guidelines for design
vectors proposed in Section IV, to the effect that the individual
corresponding to design vector x is assigned a rank number
R (x). The better and more robust design vector is assigned a
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FIGURE 3. Flowchart of the interval heterogeneous-objective robust
equilibrium optimization algorithm.

smaller rank number. Then the fitnessvalue of design vector
x can be calculated by Fit (x) = 1/R (x).
Step 6: Output the design vector with the largest fitness

value as the optimal solution if the outer GA reaches the con-
vergent threshold or maximum iteration number; otherwise,
increase the iteration number of outer GA by 1 and generate
the next population, return to Step 4.

B. VERIFICATION OF ALGORITHM BY A
NUMERICAL EXAMPLE
The numerical example in (29) is utilized to verify the valid-
ity of the proposed interval heterogeneous-objective robust
equilibrium optimization algorithm. There are the cost, fix-
ation, benefit and deviation objective functions f11 (x,U),
f21 (x,U), f31 (x,U) and f41 (x,U) in the optimization prob-
lem. The interval constant for fixation objective function
f21 (x,U) to approach is B21 = [4, 8] = 〈6, 4〉 while the
interval constant for deviation objective function f41 (x,U)
to deviate from is B41 = [16, 20] = 〈18, 4〉. There are two
interval constraint functions g1 (x,U) and g2 (x,U) with the
same given interval constant of [0, 0.3].

min
x

{〈
sign (2.5− j)×

(
f Cj1 (x)/

∣∣∣f Cj1 (x)∣∣∣)j
×

∣∣∣f Cj1 (x)− bCj1∣∣∣ , f Wj1 (x) 〉}

where

f Cj1 (x) =
(
f Lj1 (x)+f

R
j1 (x)

)
/2, f Wj1 (x)= f

R
j1 (x)−f

L
j1 (x);

f Lj1 (x) = min
U

fj1 (x,U) ,

f Rj1 (x) = max
U

fj1 (x,U) , (j = 1, 2, 3, 4)〈
bC11, b

W
11

〉
=

〈
bC31, b

W
31

〉
= 〈0, 0〉 ,

〈
bC21, b

W
21

〉
= 〈6, 4〉 ,〈

bC41, b
W
41

〉
= 〈18, 4〉 ;

f11 (x,U) = U2
1 (x1 − 1)2/4− U3

2 (x2 − 4)2/2;

f21 (x,U) = U2
1

(
x21 + x1x2 + 1

)
+ U2

(
x1x2 − x21 − 2

)
;

f31 (x,U) = U3
1

(
x1 + x22

)
− U2 (x2 + 2)2 ;

f41 (x,U) = U1 (x1 + x2 − 7.5)2 + U2
2 (x2 − x1 + 3)2 ;

s.t. g1 (x,U) = U2
1 (x1 − 2)3/2+ U2x2 − 2.5 ≤ [0, 0.3];

g2 (x,U) = U3
1 x2 + U

2
2 x1 − 3.85

− 8U2
2 (x2 − x1 + 0.65)2 ≤ [0, 0.3].

x1 ∈ [0, 5], x2 ∈ [0, 3];

U1 = [0.9, 1.1] , U2 = [0.9, 1.1] . (29)

There is no need to construct Kriging models here since all
the objective and constraint functions in (29) are analytical.
The maximum iteration number, population size, crossover
andmutation probabilities are 150, 100, 0.99 and 0.05 respec-
tively for both the inner and outer GAs for solving the
numerical example. Besides the maximum iteration number
given as the stop criterion, the outer GA iteration is termi-
nated when the absolute differences of f Cj1 (x) between the
optimal solution and the average of the current population
are less than 10−2. The outer GA reaches the convergent
threshold after 68 iterations and achieves the optimal solution
xo=(1.20, 2.26). The convergent curves of the heterogeneous
objectives and constraints obtained by the proposed algorithm
are illustrated in Fig. 4 and Fig. 5 respectively.

To solve the numerical example in (29) by conventional
optimization algorithm [49], it should be transformed into a
single objective unconstrained deterministic model at first
based on the weighting and penalty function methods. The
weighting factors of f Cj1 (x) , f

W
j1 (x) (j = 1, 2, 3, 4) are settled

as 1/8 with the same normalization factor of 1 while the
penalty factors and satisfactory degrees for both constraints
are prescribed as 1000 and 1 respectively. Then the model
after transformation is solved by the nested GAwith the same
GA parameters and convergent threshold as those utilized in
the proposed method. The outer GA converges at the 36th
generation, with the optimal solution located as x∗=(3.61,
0.00). Table 1 lists the statistics of the heterogeneous objec-
tives and constraints in (29) at the optimal solutions obtained
by the proposed and indirect algorithms. As can be seen
from Table 1, both constraints g1(xo, U) and g2(xo, U) are
fully satisfied at xo obtained by the proposed algorithm but
constraint g1(x∗, U) will be violated at x∗ obtained by the
indirect algorithm, which leads to the small robustness index

VOLUME 7, 2019 20545



J. Cheng et al.: Heterogeneous-Objective Robust Optimization

FIGURE 4. Convergent curves of the objective values: (a) The 1st objective
value of the optimal point; (b) The 2nd objective value of the optimal
point; (c) The 3rd objective value of the optimal point; (d)The 4th
objective value of the optimal point.

FIGURE 5. Convergent curves of constraint values: (a) The 1st constraint
value of the optimal point; (b) The 2nd constraint value of the optimal
point.

of 0.33. Meanwhile, the interval of the fixation objective
function f21(xo, U) ([4.37, 6.57]) at xo is fully enclosed by
its corresponding interval constant [4, 8] while that of f21(x∗,
U) ([−5.17, 3.45]) is not, which also leads to the small
robustness index of 0.40 for the fixation objective function at
x∗. To sum up, the robustness indices of all the objective and
constraint functions range from 0.53 to 0.77 at the optimal
solution xo obtained by the proposed algorithm while those
at the optimal solution x∗ obtained by the indirect algorithm
range from 0.08 to 0.78, demonstrating that the proposed
algorithm can achieve the optimal solution with much more
robust equilibrium objective and constraint values to the
heterogeneous-objective robust optimization problem in (29)
than the indirect one. Additionally, the experience-depended
model transformation process in the indirect algorithm has
also been avoided.

VI. CASE STUDY
A. PROBLEM DESCRIPTION
The high-speed stamping press illustrated in Fig. 6 (a)
is a kind of complex mechatronic equipment capable of
continuously stamping various motor cores, such as those
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TABLE 1. Heterogeneous-objective robust optimization results of the numerical example in (29) .

utilized in new energy vehicles, air-conditioning compres-
sors, and so on. The high-speed actuating mechanism
in Fig. 6 (b) is the most important component of a stamping
press, the structural performance indices of which greatly
influence the stamping precision of press and the service
life of molds. According to the research results of previous
work [47], [48], the frictional heat generated at the ten bear-
ings for connecting the crankshaft with linkages or upper
beam will lead to the significant temperature rise and thermal
deformation of the actuating mechanism in the stamping
process. Therefore, the frictional heat as well as its influ-
ence on structural performance indices should be consid-
ered in the robust optimization of the high-speed actuating

FIGURE 6. The high-speed stamping press: (a) photo of a workplace;
(b) 1/2 solid model of the high-speed actuating mechanism; (c) cross
section of slider.

mechanism. Considering that the larger rotary speed of
crankshaft will lead to the larger frictional heat at the bear-
ings, both the geometrical parameters b1, b2, b3, h in Fig. 6(c)
and the rotary speed of crankshaft n are chosen as design
variables. The density ρ and Poisson ratio ν of slider are
described as interval numbers considering their uncertain-
ties. The varying ranges of five design variables and two
interval parameters are listed in Table 2. There are b1 =
85mm, b2 = 30mm, b3 = 30mm, h = 980mm, n =
400rpm for the initial design of the high-speed actuating
mechanism.

Considering that the thermal stiffness of slider is the most
important performance index for the high-speed actuating
mechanism, themaximum thermal deformation of slider indi-
cating thermal stiffness is described as the objective perfor-
mance index, which is a cost objective function of interval
parameters ρ and ν. The stamping frequency of press is also
chosen as the objective function considering its influence
on the production efficiency and the temperature rise in the
actuating mechanism, which is a benefit one independent of
uncertain parameters. To avoid ponderous and risky design,
the upper limits for the weight and maximum thermal equiv-
alent stress of the slider are prescribed as [1400, 1500] kg
and [200, 210]MPa respectively, which are described as con-
straint functions. The weight of slider is independent of Pois-
son ratio ν and thus it is only influenced by interval density ρ.
The maximum thermal equivalent stress of the slider is the
function of both interval Poisson ratio ν and interval den-
sity ρ. Consequently, the interval heterogeneous-objective
robust optimizationmodel for the high-speed actuatingmech-
anism can be constructed as

min
x
{d (x,U) ,−fs (n)}

where

d (x,U) =
[
dL (x) , dR (x)

]
=

〈
dC (x) , dW (x)

〉
;

dL (x) = min
U

d (x,U) , dR (x) = max
U

d (x,U);

dC (x) =
(
dL (x)+ dR (x)

)
/2,

dW (x) = dR (x)− dL (x).

s.t. w(x,U1) =
[
wL(x),wR(x)

]
≤ [1400, 1500]kg;
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TABLE 2. Varying ranges of design variables and uncertain parameters.

δ(x,U) = [δL(x), δR(x)] ≤ [200, 210]MPa;

wL(x) = min
U1

w (x,U1) ,wR(x) = max
U1

w (x,U1);

δL (x) = min
U
δ (x,U) , δR (x) = max

U
δ (x,U). (30)

where x = (b1, b2, b3, h, n) is the design vector, U =

(U1,U2) = (ρ, υ) is the interval parameter vector;
d (x,U) is the maximum thermal deformation of slider while
dL (x), dR (x), dC (x) and dW (x) are its left bound, right
bound, center and width; fs (n) is the stamping frequency
of the press and there is fs (n) = n for the investigated
high-speed press; w (x,U1) and δ (x,U) are the weight
and maximum thermal equivalent stress of slider while
wL(x), wR(x), δL (x), δR (x) are their left and right bounds
respectively.

B. CONSTRUCTION OF KRIGING MODELS
It is cumbersome and computationally expensive to calcu-
late the high-speed actuating mechanism’s structural perfor-
mance indices considering the influence of frictional heat
since the thermal loads and boundary conditions need to
be calculated for design vectors with different rotary speed
of the crankshaft. Therefore, three Kriging models need to
be constructed for calculating the maximum thermal defor-
mation d (x,U), weight w (x,U1) and maximum thermal
equivalent stress δ (x,U) of the slider in order to solve
the robust optimization model in (30). The sample points
for constructing Kriging models are generated by LHS in
the space determined by the design variables and inter-
val parameters, with the structural performance indices of
which obtained by FEA. The force loads and constraints
of the finite element model are illustrated in Fig. 7. The
thermal loads and boundary conditions of the initial design
xI = (85, 30, 30, 980, 400) are illustrated in Fig. 8 while
the thermal deformation and thermal equivalent stress of
the initial design when U = (7300, 0.3) are illustrated
in Fig. 9.

The construction of Kriging models is an iterative
process [14]. Specifically, the initial Kriging models for cal-
culating the maximum thermal deformation d (x,U), weight
w (x,U1) and maximum thermal equivalent stress δ (x,U)
of the slider are constructed by 164 sample points gener-
ated by LHS. Then 10 test points generated by LHS are
utilized to verify the prediction precision of the current
Kriging models based on the calculation of multiple cor-
relation coefficient (MCC) and relative maximum absolute
error (RMAE). The test points as well as 3 resampled points
arranged around every current sample point of the largest
RMAE are added to the sample point set to construct the
next Kriging models when there exists MCC < 0.95 or

FIGURE 7. Force loads and constraints of the 1/2 finite element model.

FIGURE 8. Finite element model of the initial design: (a) thermal loads;
(b) boundary conditions.

RMAE>0.05. The statistics of the Kriging models in the
iteration process are listed in Table 3. The statistical data
in the last line of Table 3 demonstrate that all of the three
Kriging models generated by 252 sample points can sat-
isfy the requirement of prediction precision and thus can
be utilized to calculate the structural performance indices of
the slider in the heterogeneous-objective robust optimization
process.

C. OPTIMIZATION RESULTS AND DISCUSSIONS
The interval heterogeneous-objective robust optimization
model in (30) is solved by the proposed algorithm integrating
Kriging models with nested GA, the parameters of which are
listed in Table 4. The outer GA evolution is terminated whe
the absolute differences of dC (x), fs (n) between the optimal
solution and the average of the current population are less
than 10−4 mm and 1rpm respectively. As can be seen from
the convergent curves of the structural performance indices
in Fig. 10, the outer GA reaches the convergent threshold
after 70 iterations and the optimal design vector is obtained
as xo = (116.8, 29.2, 18.9, 1015.6, 259.0).
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FIGURE 9. Structural performance indices of the initial design when
U=(7300, 0.3): (a) thermal deformation; (b) thermal equivalent stress.

To solve the optimization model in (30) by conventional
indirect algorithm [49], it is transformed into a single objec-
tive unconstrained deterministic model at first based on
the weighting and penalty function methods. The weight-
ing factors of dC (x) , dW (x) , fs (n) are settled as 1/3 while
their normalization factors are settled as 0.001, 0.00008 and
1 respectively. The penalty factors and satisfactory degrees
for both constraints are prescribed as 1000 and 1 respectively.
Then the model after transformation is solved by the nested
GA with the same GA parameters and convergent threshold
as those utilized in the proposed method. The outer GA
converges at the 16th generation, with the optimal solution
located as x∗=(110.5, 40.0, 42.2, 1053.6, 254.5).

Table 5 provides a comparison of the structural perfor-
mance indices of the optimal design obtained by the pro-
posed and indirect algorithms. As can be seen from Table 5,
the width of the maximum thermal deformation at the optimal
solution xo obtained by the proposed algorithm is smaller than
that at x∗ obtained by the indirect one although the center of
the maximum thermal deformation at xo is slightly larger than
that at x∗, leading to the improvement of objective robustness
index of maximum thermal deformation. At the same time,

FIGURE 10. Convergent curves of structural performance indices:
(a) maximum deformation of slider; (b) stamping frequency of press;
(c) weight of slider; (d) maximum equivalent stress of slider.
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TABLE 3. Statistics of the Kriging models for computing the structural performance indices of the slider.

TABLE 4. GA parameters for solving the interval heterogeneous-objective robust optimization model in (30).

TABLE 5. Comparison of the structural performance indices of the actuating mechanism obtained by different methods.

the benefit performance index of stamping frequency at xo

obtained by the proposed algorithm is higher than that at
x∗ obtained by the indirect one with the same robustness
index of 1. Both constraints of weight and maximum thermal
equivalent stress are fully satisfied at the optimal solution xo

obtained by the proposed algorithm while the constraint on
maximum equivalent stress may be violated at the optimal
solution x∗ obtained by the indirect one. Thus, the proposed
algorithm can achieve the optimal solution with more robust
constraints than the indirect one, which can also be observed
from the larger robustness indices of the weight and max-
imum equivalent stress corresponding to xo in comparison
with those corresponding to x∗. To sum up, the proposed algo-
rithm can achieve the optimal solution with the more robust
equilibrium structural performance indices than the indirect
one since the maximum difference among the robustness
indices of all structural performance indices corresponding to
xo (0.1871) is smaller than that corresponding to x∗(0.2337).
Although the indirect approach might also achieve a solu-

tion with both constraints satisfied by adjusting the penalty
factors of constraints in the model transformation process,
it is dependent on the rich experience of engineering design-
ers. Similarly, different normalization factors for the hetero-
geneous objectives in Eq. (30) will also produce different
optimization results, the determination of their appropriate
values is also dependent on the experience of engineering
designers.Whereas the proposed approach can directly locate
the optimal solution to the interval heterogeneous objec-
tive robust optimization model based on the direct rank-
ing of design vectors according to the robust equilibrium
strategy among the heterogeneous objectives and constraints

so that the high-challenging model transformation process
can be avoided. Therefore, the effectiveness and advantage
of the proposed heterogeneous-objective robust optimization
approach in the design optimization of complex mechatronic
components with interval uncertainties are demonstrated.

VII. CONCLUSION
This paper proposed the new research topic of the robust
parameter optimization of complex mechatronic compo-
nents involving heterogeneous competing objectives for the
first time. A unified interval heterogeneous-objective robust
optimization model was constructed for complex uncertain
mechatronic components considering the probable coexis-
tence of the cost, fixation, benefit and deviation performance
indices. The unified formulae for assessing the robustness of
heterogeneous objective performance indices and the robust
equilibrium among them were proposed. The preferential
guidelines for ranking various design vectors were put for-
ward based on grouping and group ranking considering the
robust equilibrium among all of the structural performance
indices. Subsequently, an integrated interval robust equilib-
rium optimization algorithm was proposed to achieve the
optimal solution to the heterogeneous-objective robust opti-
mization model of uncertain mechatronic components, which
efficiently computed the structural performance indices by
Kriging models, calculated in parallel the interval bounds
of structural performance indices by a series of inner GAs,
and directly sorted alternative design vectors in the outer
GA according to the preferential guidelines considering the
robust equilibrium among all structural performance indices.
The validity of the proposed optimization algorithm as well
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as its advantage over previous indirect one was verified
by a numerical example with the cost, fixation, benefit
and deviation objectives. Finally, a case study on the high-
speed actuating mechanism in a stamping press is conducted.
The aim is to minimize the thermal deformation and max-
imize the stamping frequency under the restrictions on the
weight and maximum equivalent stress. The optimization
results demonstrated that the proposed approach could not
only ensure the fully satisfaction of both constraints on the
weight and maximum equivalent stress but also achieve the
more robust structural performance indices than the indirect
approach. The proposed approach also demonstrated its obvi-
ous advantage of convenient implementation by avoiding the
high-challenging model transformation process.

In this paper, the interval robust equilibrium optimization
algorithm is developed to locate a single optimal solution
for the interval heterogeneous-objective robust optimiza-
tion problem and avoid the challenging decision making
process of choosing the final design after optimization.
Future research may focus on the development of multi-
objective optimization algorithm for solving the interval
heterogeneous-objective robust optimization problems so as
to provide a group of trade off solutions for the conflicting
cost, fixation, benefit and deviation objectives.
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