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ABSTRACT In this paper, the problem of active node selection for localization tasks, on the Internet of
Things (IoT) sensing applications, is addressed. IoT plays a significant role in realizing the concept of smart
environments, such as in environmental, infrastructural, industrial, disaster, or threat monitoring. Several IoT
sensing nodes can be deployed within an area to collect regional information for the purpose of achieving a
common contextual goal. Active node selection proves useful in mitigating common IoT-related issues like
resource allocation, network lifetime, and the confidence in the collected data, by having the right sensors
active at a given time. Current active node selection schemes prove inefficient when adapted to localization
tasks, as they- 1) are usually designed for general monitoring, not localization, 2) do not dynamically exploit
data readings in the selection process, and 3) are mostly designed for systems with nodes having sensing
ranges. To address these challenges, we propose a novel Data-driven active node selection approach that-
1) dynamically uses data readings from current active nodes to select future ones, 2) assesses the area
coverage achieved by a group of nodes while considering range-free sensors, 3) considers parameters like
residual energy, power cost, and data confidence levels in the selection process, and 4) combines group-
based and individual-based selection mechanisms to enhance the localization process in terms of time and
power consumption. These considerations are integrated into a two-phase active node selection mechanism
that uses genetic and greedy algorithms to select optimum groups for localization tasks. The efficacy of the
proposed approach is validated through an example of radioactive source localization by using real-life and
synthetic datasets, and by comparing the proposed approach to existing benchmarks. The results demonstrate
the ability of the proposed approach to performing faster localization at low energy cost, even with a smaller
number of active nodes.

INDEX TERMS 10T, localization, active node selection, data-driven, radiation detection.

I. INTRODUCTION

With the rapid development of information technologies,
the Internet of Things (IoT) paradigm has become one of
the main attractions for researchers and businesses. It is
considered by many to be the next big technological rev-
olution [1]. IoT is based on the ability of different objects
to interact and cooperate towards achieving common goals,
with minimal human interaction. Such objects include sen-
sors, RFIDs, actuators, and mobile phones [2]. In sensing
applications, a vital enabler for the IoT paradigm is Wireless
Sensor Networks (WSNs) [3]. WSNs are networks consisting

of a large number of small, inexpensive, and battery powered
devices, i.e. nodes, that are equipped with sensors. Typically,
these nodes can process, store, and communicate data among
each other or to a sink node [4], [5]. IoT plays a vital
role in applications related to environmental, infrastructural,
industrial, disaster, or threat monitoring [5]-[8]. For instance,
nuclear mill tailings are constantly monitored for radiologi-
cal pollution through random deployment of multiple small
IoT sensors in the Area of Interest (Aol) [9].

“Target localization” is an important aspect of environ-
mental monitoring. It relies on deploying sensing nodes to
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work towards localizing a specific target in a certain Aol.
Although few big powerful sensors could be satisfactory for
the purpose of detecting the target, that is not always the case
for localizing it. It has been shown in the literature that the
performance in localization tasks is improved when many
small sensors are employed [10], which demonstrates the
potential effectiveness of using IoT nodes in such applica-
tions. However, using [oT sensors in such tasks is challenging
mainly due to the nature of the used sensors, which have
limited resources like energy.

A deployment solution that requires all nodes to be active,
when a subset of nodes is enough, compromises the net-
work’s lifetime and makes the system inefficient. In addi-
tion, the correctness of readings provided by these nodes
can be affected by several factors like nodes’ faultiness and
efficiency [11], [12]. This affects the reliability of such sys-
tems, and may lead to incorrect results or fake alarms, which
decreases the confidence level in the received data and can be
fatal for critical monitoring and localization tasks.

A. PROBLEM STATEMENT AND MOTIVATION

The challenge of energy limitations in localization tasks is
primarily addressed in literature by optimizing the number
of deployed nodes and their placement, while achieving
good Aol coverage [13]-[15]. However, such optimiza-
tion proves difficult since the prior information about the
source location is not known. This complicates the place-
ment schemes and makes the system less adaptive and inef-
ficient. Additionally, many of the current schemes rely on
taking many readings from multiple nodes for a localization
task. These solutions increase the system overhead, generate
redundant data, and often lead to wastage of energy and
resources.

Instead of optimizing the number of nodes and their
placement, the problem of resource and energy limitations
could be addressed through active node selection. In this
case, the nodes may be arbitrarily deployed and, for a given
task, only a subset of nodes are activated at a given time.
Active node selection helps in saving energy by choosing
the right subset of nodes to be active depending on the
task requirements. Such selection could be group-based,
where potential groups are assessed as a whole and a best
group is chosen, or individual-based, where each node is
assessed individually and the best nodes are chosen. This
assessment is based on the specified task requirements and
constraints.

The current active node selection frameworks are designed
for general sensing tasks, where the goal is to collect regional
sensing reports [12], [16]-[18]. While efficient for general
sensing or monitoring tasks, these frameworks prove ineffi-
cient when adapted to localization tasks. Localization tasks
are significantly affected by the proximity of active nodes to
the source to be localized [10]. Since the source location is
unknown, the desired goal of a selection scheme should be
to select nodes near potential source locations. The selection
parameters in current works are not enough to solve the
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problem of target localization. Precisely, the current selection
schemes cannot be well-adapted to localization tasks due to
the following shortcomings:

o The current selection approaches focus on general envi-
ronmental monitoring, making them less application-
specific.

o The collected data is not used in a feedback mechanism
to update the group of active nodes, which could be
crucial to speed up the localization process.

« Most works in the literature which consider Aol cov-
erage are designed for nodes that have sensing ranges.
This may not be true for all sensors, such as for radiation
sensors where no such range exists.

These shortcomings call for a dynamic selection scheme
that adapts to the localization task and exploits the collected
readings in updating the current set of active nodes.

B. CONTRIBUTION

This work proposes a novel dynamic Data-driven Active
Node Selection (DANS) mechanism, which is targeted for
monitoring and localization applications. In comparison with
the current general selection approaches, the main contribu-
tions of the proposed work are-

« Introducing a data-based parameter in the assessment of
individual nodes;

« Assessing the utilization of a group, leading to better Aol
coverage, while considering range-free sensors;

« Integrating group-based and individual-based selection
mechanisms in a two-phase approach, using genetic and
greedy methods;

o Enhancing the source localization process with
fewer number of active nodes through selection
optimization.

The testing and evaluation of the proposed approach is
done using two datasets; a synthetic dataset and a real-life
dataset obtained from [19]. The applicability of DANS is
compared to two data-independent selection mechanisms;
a group-based one from [16], and an individual-based one
from [12] and [17]. A use case scenario of a radi-
ation environment, where a radiation source is to be
localized, is used to prove the efficacy of the proposed
approach.

C. PAPER OUTLINE

The rest of the paper is organized as follows- Section II
reviews published works which are related to similar topics.
Section III describes the generic source localization algo-
rithm and its adaptation to the radiation example. Section IV
presents the proposed selection model with all the considered
parameters and constraints. Section V discusses the proposed
selection approach. Section VI presents and discusses simu-
lation results and evaluation metrics comparing the proposed
approach with other works from the literature, and finally
Section VII draws conclusions from the presented work. For
the sake of clarity, the list of the abbreviations used in this
paper is provided in Table 1.
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TABLE 1. List of abbreviations.

abbreviation | Term

Aol Area of Interest

DANS Data-driven Active Node Selection

DIRS Data-driven Individual-based Recruitment System
GRS Group-based Recruitment System
IoT Internet of Things
IRS Individual-based Recruitment System
QoL Quality of Localization
QoS Quality of Service

WSN Wireless Sensor Network

Il. RELATED WORK

Various models and several solutions have been proposed
in the literature targeting source localization. The main
approach to this issue targets node placement, which is a
critical problem that has been tackled by many researchers
aiming to find the best locations to deploy nodes. The prob-
lem has been defined as an NP-Hard problem, where most
works approach it through heuristics. The work in [13] con-
siders the placement of 9 nodes using greedy and genetic
algorithms, with the aim of minimizing the localization time
and maximizing the detection accuracy. Another work adds
more complexity to the problem by considering mobile nodes
in the deployment strategy, which is also solved by a genetic
algorithm based approach [14]. In [15], a mathematical for-
mulation of the node placement problem is presented with
considerations to the uncertainty of the placed nodes. The
work considers an existing localization network and aims to
minimize the number of assisting nodes, i.e. nodes deployed
to improve the network’s localization accuracy.

As mentioned earlier, existing works that target active node
selection focus on general sensing tasks, and none considers
localization tasks [12], [16]-[18]. Each of these works use
specific parameters during the selection process that can be
either device-, Aol-, or user- related. In addition, the selection
schemes are either one-time selection, where a single group
of nodes is selected to perform the task entirely, or dynamic
selection, where groups of nodes alternate during the execu-
tion of the task.

In IoT sensing applications, the availability of nodes
within or around the Aol forms as the main criterion in the
selection process. For example, an individual-based greedy
selection scheme is proposed in [12] aiming to maximize
the application relevance, which depends on parameters like
the proximity to the Aol, with constraints on energy con-
sumption. The problem is formulated as a knapsack problem
where nodes are greedily put in the knapsack until it is full,
i.e. the constraints are met. Other works constrain the nodes
to be within the Aol to be eligible for selection, with the
aim of maximizing Aol coverage. A group-based coverage
assessment of the Aol in [16] is done by first dividing the
Aol into sub-regions of equal dimensions, and then labeling
sub-regions that contain at least one node as covered. The
same work also assesses the uniformity of the group mem-
bers’ distribution within the Aol using the Chi-square test.
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The works aims to maximize the group’s Quality of Ser-
vice (QoS) based on area coverage, distribution of nodes,
residual energy, and sampling frequency with constraints on
the location, budget, and reputation. In [18], a distributed
game theoretic approach is proposed for the selection of
active nodes with the aim of maximizing Aol coverage. The
coverage problem is formulated as a non-cooperative game
in which nodes, with certain sensing and communication
ranges, compete in each round to be active. This competition
is assessed based on coverage redundancy, activation cost,
the number of active neighbors, and uncovered region.

The active nodes selected to perform a certain task sacrifice
their energy resources. In terms of energy, two main param-
eters are considered in the literature during the selection
process. The first parameter is Residual Energy (RE), which
is the amount of energy available in the node’s battery, and
is a measure of the readiness of a node to perform the task.
The other parameter is the power consumption. Nodes vary
in terms of power consumption depending on characteris-
tics related to sensing, processing, and communication [20].
It is significant to consider these two parameters during the
selection of active nodes due to their effect on the network’s
lifetime. The selection scheme in [12] introduces RE in the
utility function, to be maximized using greedy algorithm. The
same work considers power cost as a constraint limited by the
energy budget as specified by the task requester. Similarly,
the group-based selection in [16] considers the group RE as
part of the QoS to be maximized.

The reliability of any IoT-based sensing system heavily
relies on the data provided by its nodes, hence it is essential
to question the correctness of their readings. This can be
referred to as the ’trustworthiness’ or the ‘reputation’ of these
nodes. The reputation of a node can be affected by several
factors, mainly by ones related to the history of the tasks
performed by the node (or its holder in case of Mobile Crowd
Sensing). According to [21], data trustworthiness is a function
of hard and soft reputation. Hard reputation is quantified as
the accuracy of the sensor readings, while soft reputation is
quantified as the malicious behavior of the participants, i.e.
the nodes’ holders. In [16] the reputation of participants is
calculated based on their historical commitment and their
successful completion of tasks out of all the assigned tasks.

Most of the systems proposed in the literature use a subset
of the above discussed parameters in the selection process.
However, none of these parameters consider the data obtained
by nodes. It is important to consider all such parameters,
especially data, due to their effect on the localization task.
Moreover, works concerned with Aol coverage are designed
for systems with nodes that have sensing ranges. In tasks
related to applications like radiation monitoring, sensors do
not have a fixed sensing range as this range is source depen-
dent, i.e. the stronger the source, the further the distance it
can be detected from. Hence, such models cannot be adapted
for such applications.

Additionally, most works in the literature assess the
expected QoS before the execution of the actual task.
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While this is acceptable as an estimation, it does not fully
reflect the actual results obtained during the task. The pro-
posed work selects active nodes dynamically while perform-
ing the localization task and assesses the selection scheme
based on the actual results of the task execution.

Ill. LOCALIZATION ALGORITHM

Source localization is a typical problem associated with
environmental monitoring. The data reports provided by the
nodes, which are deployed within the Aol, are usually aggre-
gated at a fusion center or a platform that processes them
with an aim to estimate the location of the source. In this
work, radiation localization is used as a running example,
where the aim is to locate a radiation source. The follow-
ing sections illustrate the localization algorithm along with
the models employed to simulate radiation. Section III-A
discusses the generic Bayesian localization algorithm, while
Sections III-B and III-C present the radiation model and its
integration into the localization algorithm.

A. PROBABILISTIC LOCALIZATION ALGORITHM

The localization algorithm used in this work is a probabilistic
one, based on Bayes’ Theorem [22]. The theorem describes
the probability of an event based on prior knowledge, com-
bined with a likelihood function that is derived from the
current observations.

The basic idea behind the Bayesian localization pro-
cess, obtained from [10], is to assume a source location
and assess the probability of this location being true. This
assessment is done using the current observations and the
prior belief. The process of localization starts with dividing
the Aol into M small equally sized grid elements labeled
k e {1,2,3,...,M}. Each k holds a certain probability
related to the belief that the source is within that grid element.
Initially, all grid elements have equal probabilities. The local-
ization process is iterative, where in each iteration, the new
readings provided by the active nodes are used to update the
probability in each grid element. To update the probability
in k, the source is assumed to be in that grid element, and
the expected readings from each of the active nodes due to
this source location are generated and compared with the
actual readings. Let Ex = [e, e2, ..., e,] be the expected
readings from the n active nodes due to the assumed source
location in k, and R = [ry, 2, ..., r,] be the actual readings
from these nodes. To update the probability in k, the degree
of similarity, S, between E; and R is used. S; represents
a score between O and 1 that indicates how similar R and
E} are, where 1 indicates that they are exactly the same.
The mathematical formulation of Sy varies depending on the
application. One approach is to represent Sy as a function of
the Euclidean distance between Ej and R. Another approach
is based on the probabilistic behavior of some applications,
such as radiation, in calculating Si. This is explained in details
in Section III-C. The a posteriori probability of the source
being in grid element k is then given from Bayes Law as [10]:

Py = Pri x S (1)
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FIGURE 1. Probability distribution (represented via heatmap) of source
location after: a. 40 iterations (left), and b. 400 iterations (right).

where Py is the a posteriori probability at k, Pry is the
a priori probability at k, and Sy is the the degree of similarity.
This process is repeated for all grid elements with the final
result being a probability distribution throughout the Aol. The
probability in each grid is normalized to obtain a probability
distribution that adds up to 1, as follows:

Py M
P normal = ﬁa Ny = Zpk (2)
$ k=1

As the process continues, i.e. more localization iterations
have been executed, the probabilities start converging towards
a specific area that indicates the source location. The local-
ization process is best illustrated using a heatmap, such as
the one shown in Fig. 1. This heatmap represents the differ-
ent distributions of probabilities after a specific number of
localization iterations. As the process progresses with more
iterations, the certainty about the source location increases.
It can be seen in 1b that after 400 iterations, the hot spots
have higher probabilities than the ones after 40 iterations.
During the localization process, multiple false hot spots could
result due to the probabilistic behavior of the process. For
example, Fig. 1a shows multiple false hot spots, which are
gradually replaced by a single hot spot, as shown in Fig. 1b.
This happens after a certain number of updates, as the process
converges towards the source location.

The localization process is terminated once a certain prob-
ability is concentrated within a certain area. In this work,
a source is declared to be localized when 95% of the prob-
ability is contained within 1% of the area. The process of
generating the expected readings depends on the phenomenon
to be monitored and localized. Section III-B describes the
radiation model that is used as a running example in this

paper.

B. RADIATION MODEL

This section presents the radiation model used in the localiza-
tion process. The photons from a radiation source are emitted
following a Poisson distribution and the radiation detectors
record readings in the form of discrete counts of photons.
The expected rate of photon counts per minute (CPM) at
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node i due to source S is given as in [13] and [23]:
3)

where I; is the source strength in photons per minute, A; is the
detector’s surface area, dis is the distance between the node
and the source, and 7; is the detector’s efficiency which is
given as [24]:

# of photon counts recorded

“

= # of incident photons on the detector

It is assumed that the background radiation, which is same
throughout the Aol, is negligible when compared to the
source of radiation. Following the Poisson distribution, and
given the CPM;, the probability of node i recording A; hits
from the photons, within time period At is given as [10]:

i —Ai
Pty = P )
i!

where A; = At x CPM; denotes the photons hit rate per At,
which represents the duration of each localization iteration.
In this model, CPM; is time varying and hence the Poisson
process is inhomogeneous. The time varying nature of the
process is modeled, as presented in [10], by carrying out
calculations in time increments, with the assumption that
CPM; does not change within an increment. This implies that
with a proper choice of At, k; can only have a value of O or 1.
In other words, At should be small enough that only 1 photon
at the maximum is recorded. Following this consideration, (5)
can be simplified to the following equation [10]:

e i, h;=0

A‘,
.lh' =
L P

(6)
This assumption proves accurate provided that the radiation
source is stationary and At is small enough, but not smaller
than the dead time of detector i. The dead time represents the
minimum time that the detector needs between two consec-
utive photon hits to be able to record both. In this work, Az
is set to 20 ms, which is consistent with prior works [10].
To generate readings in simulations, a random probability
Dremp 15 generated at node i and is compared with pf" 0),
which is the probability that node i gets no hits. If psemp <
p,.k"(O) then node i has got 0 hits in this iteration, otherwise it
is considered to have had 1 hit.

C. RADIATION LOCALIZATION

The radiation model is incorporated in the localization algo-
rithm described in Section III-A as follows: Given the read-
ings obtained from the active nodes within an iteration, i.e.
within a At, the probability in grid element k is updated
by assuming that the source is in k and then calculating the
expected p?‘i(O) and pii (1) for each active node, using (6).
Hence, the degree of similarity at an active node i given an
assumed source location at k is given as [10]:

pr0), hi=0

S (i) = )
Pl hi>0

@)
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and Sy is then taken as:
n
Sk =[Sk ®)
i=1

where 7 is the total number of active nodes. It is assumed
that an estimation of the source intensity is already available,
which makes the problem a localization one only.

Algorithm 1 summarizes the Bayesian-based localization
algorithm with the radiation model.

Algorithm 1 Bayesian-Based Localization Algorithm
Input: priori probabilities (Pr), set of active nodes, Num-
ber of active nodes (n)

Output: posterior probability distribution as a heatmap
(P), termination flag (SourceL.ocationFound).

1: for iteration = 1 to NumOfTterations do

2: Collect readings (R) from active nodes

3 for k = 1 to NumOfGrids do

4 fori=1tondo

5: Calculate d;

6: Calculate CPM;

7. Calculate A;

8: Calculate p?"(O) and p?" (1)

9; if R(i) == 1 then Si()=p]"(1);
10: if R(i) == 0 then Sk(i)zpl}f"(O);
11: end for

12: P, = Pr; X 1_[?:1 Sr (D);

13: end for

14:  N; = sum(P);

15: Porm = PINg;

16: Pr = P,omm;

17: while Sliding Summing Window over Py, do

18: if Sum=>0.95 then SourceLocationFound = 1;
19: if SourceLocationFound then break;

20: end for

21: if SourceLocationFound then break;

22: end for

IV. SELECTION ALGORITHM

The active node selection algorithm proposed in this work
exploits the probability distributions generated during the
localization process. Active nodes are selected based on the
probability distribution throughout the Aol, along with other
important parameters that are discussed in the following
subsections. Performing selection before each localization
iteration is time consuming, hence, the iterations of the
localization task are grouped into rounds, where each round
represents a fixed number of localization iterations that are
executed by the same group of active nodes. Fig. 2 describes
the full process of selection, data collection, and localization.

A. SELECTION MODEL DESCRIPTION
Given a set of nodes, N, for a task of source localization,
the goal is to select the best starting group of active nodes,
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Active Nodes Selection
Mechanism

v

Data Collection using active
nodes for one iteration

v

Localization Process

Source Localized?

iteration = iteration + 1 —

— round =round + 1

FIGURE 2. High level diagram of the proposed process starting from the
active node selection until the completion of the localization task.

TABLE 2. List of used symbols.

Symbols Definition
ID; ID number of node 7
l; Location of node % in x-y coordinates
RE; Residual energy in node ¢
SA; Surface area of the detector at node %
C; Power cost of node %
PDR; Potential data relevance of node ¢
i Sensing efficiency of node ¢
T; Trustworthiness of node 4
FA; Faultiness level at node 7
Con; Confidence level of node ¢
P; Probability that the source is near node %
d:’ Distance between node 4 and hottest spot
RE(g) Group residual energy
C(g) Group cost
Con(g) Group confidence
U(g) Group utilization
F; Individual fitness score
F(g) Group fitness score

g1 € N, and then dynamically alter the group during the
execution of the task, to achieve faster localization with high
data confidence and low power cost.

The selection algorithm should comply with all constraints
specified by the task requester, such as location or energy con-
straints. In the proposed approach, each node, i, is character-
ized with < ID;, I;, RE;, SA;, C;, PDR;, n;, T; >, as defined
in Table 2. Using these parameters, a two-phase selection
mechanism is proposed, where the first phase employs a
group-based selection using genetic algorithm, while the sec-
ond phase employs an individual-based selection using
greedy methods. A group-based selection assesses each
potential group as a whole, gives it a ’group fitness’ score,
then selects the best group with the highest score. On the
other hand, an individual-based selection assesses each node
individually using a ’fitness’ score, ranks nodes accordingly,
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and finally selects the set of nodes with the highest scores.
Group-based selection has an advantage when assessment
includes parameters that cannot be assessed for an individual
node, such as Aol coverage [16]. Both individual and group
parameters that are used for assessment, are further in the
following subsections.

B. INDIVIDUAL PARAMETERS

This section describes the different individual parameters
used in the selection model. Individual parameters are ones
that are assigned to each, independently from other nodes,
based on attributes and traits that the node has. These indi-
vidual parameters are described as:

1) NODE LOCATION (/;)
The location coordinates of node i.

2) COST (C))

The cost of selecting a node is defined as the power consump-
tion in the active mode per second. This reflects the power
spent on sensing, processing, and transceiving. On the other
hand, if a node is in sleep mode, i.e. not selected to be active,
its power cost is negligible since it is much smaller compared
to the active mode [25].

3) RESIDUAL ENERGY (RE;)

Residual energy is defined as the remaining energy in the
node’s battery. It is a measure of the readiness of a node to
participate in the localization task. After each round r, RE; is
updated according to the following expression:

REI™' = RE — (1r x C)) )

where #r is the round duration. The process of either recharg-
ing the node’s battery or its replacement is not considered in
this work.

4) CONFIDENCE (Con;)

Confidence is a measure of the expected correctness of
the data provided by node i. It is evaluated based on two
attributes: node’s sensor efficiency (»;) and node trustworthi-
ness (7). The efficiency n; depends on inherent properties of
the sensor, and its definition could vary from one application
to another. For photon-counting sensors, like radiation detec-
tors, n; is given as presented in (4). T; is related to the expected
faultiness (FA;) of node i, which is based on the historical
performance of the node. Faultiness can be defined as:

FA; = set of tasks where i sh.owed fau.ltiness (10)
set of tasks assigned to i

Hence, T; is given as:
T, =1— FA; (1D

Con; is then given as the weighted geometric mean of E;

and T;:
Con; = \/n; x T? (12)
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T; is given more weight since a faulty node, not only fails
to deliver the expected readings, but also delivers mislead-
ing readings that could significantly affect the localization
process. Several methods for faultiness detection have been
proposed in the literature, which can be used to determine FA;.
Most of these works are statistical and mathematical methods
for anomaly detection [26]-[29].

5) POTENTIAL DATA RELEVANCE (PDR;)

Potential data relevance is the expected usefulness of the
readings provided by node i to the localization process. It is
an estimation that is based on the readings obtained during
previous rounds of the same localization task and on some
node parameters like the detector’s surface area. The nodes
that are around hot spots are expected to report more useful
readings than those which are far. Additionally, sensors with
more surface area tend to contribute more to the localization
process since they have higher probability of being hit by
photons.

PDR); depends on three attributes: (i) the probability of the
source being around the node (P;), (ii) the distance between
the node and the hottest spot (d;" ), and (iii) the node’s sensor
surface area (A;). As discussed in Section III, several hot
spots could result during the localization process, which later
converge to one spot indicating the source location. To fasten
up the process, it is important to select nodes which are
around these spots to either verify or deny the existence of
a source. This is realized using the parameter P;, which is
given as the sum of all probabilities in a square window of
width w; centered at the node’s location. The width (w;) is
chosen based on the surface area (A;) of the node’s detector,
where larger w; is chosen for nodes with higher A;. This is
because larger A; has more effect on the Bayesian probability
distribution, as shown in (3) and (6).

In many cases, a node might not be around any of the hot
spots. To differentiate between nodes in such a scenario, those
that are closer to the single hottest spot should be given higher
importance than those which are far, since they contribute
more to the localization process based on (3). This is achieved
through the parameter diSp , which is the Euclidean distance
between node i and the hottest spot that represents a potential
source.

Following the localization process executed in a round,
a probability distribution is obtained as explained in
Section 111, which is used to obtain P; and d;” for each node
as illustrated in Fig. 3.

PDR; is then given as:

PDR; = \J(P)? x & (13)

where §;” is a function of the distance d,” that calculates
the discount to the node’s depending on its proximity to the
hottest spot; the smaller the distance the higher the score. 8;’7
is given as [30] and [31]:

87 =1 — max(0, min[logp(d;"), 11) (14)
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FIGURE 3. The PDR; of node i depends on its proximity to the hottest
spot, d’.sP, and the probability of it being around the source, P;. P; is
taken as the summation of all probabilities within a square window of
width w; that is determined based on A;.

where D is the maximum possible distance between a node
and the hottest spot, taken as the diagonal of the Aol. PDR; is
then normalized as shown in (15), so that the total potential
relevance of all nodes adds up to 1.

PDR;

PDRifn()rm = m

15)

To illustrate the effectiveness of PDR; and its sub-
parameters, Fig. 4 considers an example of 5 nodes and
a probability distribution generated during the localization
process. The heatmap shows two hot spots, with the one in
the bottom left corner having higher probabilities. Table 3
presents the different nodes’ characteristics along with their
PDR scores. The significance of P;, D;, and A; is discussed
below:

o P;: It can be seen that node 1 has the highest P; score
since it is at the hottest spot, which leads to it having the
highest PDR. Additionally, when comparing node 4 to
node 5, it can be seen that although node 5 is far from
the hottest spot, it has a higher P; due to the fact that it
is around another hot spot. This leads to node 5 having
higher PDR than node 4, given that both have same A;

o D;: when comparing node 6 to node 2, though both have
the same A; and both are not around any hot spot, node 2

FIGURE 4. Potential data relevance (PDR) example.
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TABLE 3. PDR; scores for 5 different nodes.

Node # Al' Pi 57.’ 4 PDRZ‘
1 93 0.0427 0.734 0.110
2 89 0.0184 0.276 0.0454
3 95 0.0241 0.286 0.0550
4 81 0.0161 0.286 0.0420
5 81 0.0306 0.101 0.0316
6 89 0.0181 0.195 0.0400

has a higher PDR score since it closer to the hottest spot;
i.e. its D; score is higher.

o A;: It can be seen that, although nodes 2 and 3 are at
nearly the same distance from the hottest spot, node 3
has a higher P; score due to its bigger surface area, which
leads to a higher PDR score.

C. GROUP PARAMETERS

The section describes the different group parameters consid-
ered in the selection model. The group parameters are used
to collectively assess a group of nodes by combining their
individual features into a group score. These parameters are
described as:

1) UTILIZATION U(g)

This metric evaluates how the members of a group are utilized
based on their locations within the Aol. It is a measure of
how significant a node is within its group. Bad utilization
could be a result of either (a) nodes located around the
Aol boundaries, hence covering areas outside the Aol while
leaving areas within the Aol uncovered, or (b) multiple nodes
redundantly covering same areas. These two scenarios are
illustrated in Fig. 5. Good utilization, in which Aol coverage
is maximized and redundant coverage is minimized, reflects
good distribution of nodes within the Aol.

(a) (b)

FIGURE 5. Two scenarios showing bad utilization of a node. In (a) the
node is covering areas outside the Aol. In (b) the node is redundantly
covering areas that are covered by another node.

As discussed earlier, in some applications like radiation,
nodes do not have sensing ranges. This introduces difficulties
in assessing the utilization, i.e. the sensing coverage, of a
node. To circumvent this issue, the solution for a set of
problems called Covering Circles, which falls under the Set
Cover Problem from combinatorics, is used [32]. Covering
Circles is a set of problems which aim to cover certain shapes
with either the smallest number of fixed size circles or a fixed
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number of circles with the smallest size. In [32], the problem
of fully covering a square with n identical circles is addressed,
where for each n, the aim is to find the smallest radius r,, of
the identical circles that will entirely cover the square. This
is extrapolated in this work to obtain the radius of circles
for each group size n. In other words, for a group of size n,
acircle of radius ry, is centered at each of the group members’
locations, and U(g) is then calculated as:

#of subareas covered
Ug) = (16)
total # of subareas

A subarea is considered covered if it is within one or more
circles. The dependence of r, on the group size is criti-
cal to ensure good distribution of nodes. r, is smaller for
big group sizes, whereas it is bigger for small group sizes,
to minimize redundant coverage. This forces the selection
scheme to choose groups with well-distributed members.
Fig. 6 shows U(g) score for three different five-member
groups. It can be seen that a group that is well distributed,
as shown in Fig. 6¢, has a better U(g) score compared to
the other two groups where nodes are either covering areas
outside the Aol or redundantly covering areas inside the Aol.

2) GROUP RESIDUAL ENERGY RE(g)

To collectively assess RE(g), the arithmetic mean of residual
energies alone is not enough as it only reflects the central
tendency of the distribution. The standard deviation, along
with the arithmetic mean, are used to calculate RE(g) of a
group of size n, at round r as:

REr(g) — e—a(members’RE') (17)

Zieg REir
—_— X
n

where o (members’'RE") is the standard deviation of group
members’ residual energies. This results in uniformity of the
selected group in terms of RE. Using (17), RE(g) will be
equal to the average only if all group members have the
same RE;. Otherwise, this value will be reduced based on the
deviation of members’ residual energies from the mean.

3) GROUP CONFIDENCE Con(g)

A single member producing false readings could severely
drop the value of the group’s data and give misleading out-
comes. Hence, the group confidence is taken as the lowest
confidence value among the group members:

Con(g) = min(Con;)i € g (18)

4) GROUP COST C(g)
The cost of a group represents the total power consumption
of group members, and is simply computed as:

Ce =) C (19)

ieg
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FIGURE 6. Three cases with different U(g) scores: (a) U(g) = 0.6127, (b) U(g) = 0.7065, (c) U(g) = 0.9882.

D. OPTIMIZATION PROBLEM DEFINITION
To assess a group of nodes for selection, the group is given a
score based on the following group fitness metric:

F(g) = y/U(g) x RE(g) x Con(g) x C(g)  (20)

Similarly, to evaluate each individual node for selection, it is
given a score based on the following individual fitness metric:

Fi = \S/C,- x RE; x Con; x PDR? 2D

Here, PDR; is given a higher weight to signify the data-driven
selection. Finally, in both selection processes, a candidate
node must not violate any of the following constraints:

e X and Y coordinates are within the Aol

e RE; > tr x C;

V. PROPOSED APPROACH
As discussed earlier, the active node selection is done in
rounds. Before each round, the selection scheme chooses the
best set of active nodes to perform the localization for that
round. After the execution of each round, RE; is updated for
nodes that were active, while PDR; is updated for all nodes.

For the selection of the first group, genetic algorithm
is used to select nodes that maximize the group’s fitness
function (F(g)). Since no readings are available prior to the
first round, a data-driven selection is not possible. Hence,
it is best to have the group distributed throughout the Aol,
which is achieved by the U(g) parameter. Therefore, a group-
based assessment is used for the first group. The way GA
used is similar to that in [16]. Here, GA is used primarily
because (i) U(g) cannot be assessed on an individual basis
hence algorithms like greedy cannot be used, and (ii) GA is
efficient and scalable in searching for the optimal solution in
the search space [16]. It should be noted that this only needs
to be done once, since PDR will always be available after the
first round.

For the subsequent rounds, the selection is an individual-
based one, where F; for each node is computed, and the
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nodes with the highest scores are selected. Here, since U(g)
is not required anymore, greedy algorithm is used because
it requires less computation time compared to GA, which is
important since the selection is done dynamically during the
localization task.

A detailed description of the data-driven active node
selection algorithm is given below, and the corresponding
flowchart is shown in Fig. 7. The pseudo-code of the full
algorithm is detailed in Algorithm 2.

1) Given a dataset of available nodes and their character-
istics, nodes’ IDs are rearranged randomly, and groups
of the specific size are formed. This set of groups is
referred to as the initial population.

2) Each group in the population is checked against the
constraints, as presented in Section IV-D. The groups
that violate these constraints are removed from the
selection process.

3) F(g) of each group in the population is evaluated
using (20).

4) A roulette wheel is spun to select the parent groups for
the next generation based on the fitness scores. The
wheel is spun multiple times, where the number of
times it is spun is equal to the population size, i.e. the
number of groups. For each spin, the groups with higher
fitness scores have higher probability of being chosen
as parents.

5) Each pair (parents) of the selected groups, chosen in
order from step 4, might undergo a one-point crossover
process, that is determined by a crossover probabil-
ity, to generate children. If the crossover probability
is 0.6 then there is a 60% chance for a pair to undergo
a crossover operation. The point at which the crossover
operation for a pair of groups will be done is chosen
randomly. The result of this process is a set of new
generation of children groups.

6) Some groups selected at random are mutated, where
each group member might be replaced with another
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TABLE 4. List of parameters used in QoL.

Parameter | Explanation
TrLoc number of localization iterations it takes to localize the
source
Cavg the average power cost score per round
REqvq the average residual energy score per round
Conaug the average confidence score per round
TotalCost | The cost of the entire localization process, i.e. the summa-
tion of Cqg for all rounds

member from the set of nodes, depending on a mutation
probability.

7) Steps 2-6 are repeated for the new generated pop-
ulation. The process keeps repeating until i) the
maximum number of GA iterations is reached,
ii) a F(g) convergence occurs, or iii) a group with
the best possible F(g) is found. Convergence occurs
when F(g) remains the same for a certain number of
GA iterations.

8) The group with the best F'(g) executes the first round
of the task, i.e. the first set of localization iterations.
The result is a probability distribution as discussed in
Section III-A, which is used in the selection of the
subsequent sets of active nodes. After the end of the
first round, RE; is updated for nodes that were active,
while PDR; is updated for all nodes.

9) F; for each node is evaluated, and the nodes are sorted
in a descending order.

10) The nodes with the highest F; are selected until the
group size (n) is fulfilled.

11) The set of active nodes perform the localization task for
the next round and update the probability distribution
obtained previously. RE; is updated for nodes that were
active, while PDR; is updated for all nodes.

12) Steps 9-11 repeat for all subsequent rounds until the
stopping criteria of the localization process is met.

VI. SIMULATION AND EVALUATION

A. EVALUATION METRICS & BENCHMARK

To assess the performance of the proposed approach and to
compare it with other selection schemes, a Quality of Local-
ization (QoL) evaluation metric is developed that combines
several parameters. The QoL is given as:

1 1
QoL = C/ 7 X Z— X REgy3 X Congyg (22)
0C avg

Table 4
for QoL.
The proposed approach, henceforth called DANS, is also
compared to the following familiar selection schemes for IoT
sensing applications:
1) A data-independent, Group-Based Recruitment system
(GRS) in [16].
2) A data-independent, Individual-Based Recruitment
system (IRS), like the ones used in [12] and [17].

explains the various parameters used
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Algorithm 2 Data-Driven Active Node Selection
Input: Iocalization task requirements and constraints,
nodes’ dataset (N), group size (n).
Output: posterior probability distribution (P), time to
localize (TLoc), avg group cost (Cgyg), avg group confi-
dence (Congyyg), avg group residual energy (RE ).
1: Pr = initialPriori();
2: for round=1 to MaxNumOfRounds do
3 if round == 1 then // GA Process
4 seed = []; //holds GA seed
5: bestG = []; //holds the best group
6: bestFit = 0; //holds the best fitness score
7.
8

G = initialPopulation(N,n);
while GAlteration < MaxGAlteration
& Fit_Converge < MaxFitConverge do

9: for all g € Gdo

10: Calculate F(g)

11: if g violates any constraint then delete g
from G

12: if F(g) > bestFit then bestFit=F(g) &
best G = g;

13: end for

14: R = rouletteWheel(G);

15: C = crossover(R);

16: G = mutation(C);

17: iteration = iteration + 1;

18: end while

19:  elseif round > 1 //Greedy Process
20: bestG=[];

21: forallie N

22: Calculate F;;

23: Check if node i violates any constraint

24: if i violates any constraint then discard i from N
25: end for

26: SN = Sort(N,F;,descending); //sorted nodes

27: bestG = SN(1:n); // take the top n nodes

28: endif

29:  [P,SourceLocationFound] =
Localization(Pr,bestG,n);

30: Pr=P;

31:  UpdateRE(N,bestG); //update RE for active nodes

32:  UpdatePDR(N,bestG,P); //update PDR for all nodes

33:  if SourceLocationFound then break;

34: end for

35: return [Tr,c, Congyg, Cavg, REqyg];

3) An adapted version of IRS, that is data-driven (DIRS),
but without consideration to Aol coverage in the initial
round.

Both DANS and DIRS reflect the proposed work. DIRS
shows the importance of introducing only the PDR parameter
in IRS, while DANS represents the full approach. Table 5
summarizes the methodology behind each of the four
models.
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Input:Nodes datasets and localization task
requirements and constraints

v

round = 1

v

G = Generate a random population of groups
of size n

v

» Discard groups that violate the task
7] constraints

Yes
F(g) converged?

GAlteration < MaxGAlteration?

g=group with the highest F(g)

F(g) > bestFit?

bestG=g
bestFit=F(g)

v

R = rouletteWheel(G) <—

v

C = crossover(R)

v

G = mutation(C)

Task
Completed

Execute localization for the current round  [€—

Y

Update RE for active nodes
Update PDR for all nodes

Yes .
SourcelLocationFound?

round = round + 1

v

Calculate F; for all nodes

v

Discard nodes that violate constraints

v

SN = Sort nodes in descending order

v

bestG = SN(1:n) —

FIGURE 7. Flowchart of the data-driven active node selection scheme.

TABLE 5. Summary of the simulated selection models.

DANS (GA, Greedy, Data-Driv) DIRS (Greedy, Data-Driv)  IRS (Greedy) GRS (GA)
1) Form groups of the specified group size. 1) Assess F; of each 1) Assess Frrs = 1) Form groups of candidate
2) Assess F'(g) of each group. individual node. VCi X RE; x Con; nodes.
3) Select the best group according to the first part ~ 2) Select best nodes to of each individual node.  2) Assess F(g) of each group.
of Algorithm 2. fill the group according 2) Select top nodes to 3) Select the best group accord-
4) Perform the first round of the localization task. to F;. fill the group according ing to the first part of Algo-
5) Update RE and PDR. 3) Perform the following to F;. rithm 2.
6) Assess F; of each individual node. round of the task. 3) Perform the following 4) Perform the first round of the
7) Select best nodes to fill the group according to 4) Update RE and PDR. round of the task. localization task.
F;. 5) Repeat steps 1-4 until 4) Update RE. 5) Update RE.
8) Perform the following round of the task. source is localized. 5) Repeat steps 1-4 until 6) Repeat steps 1-5 until source

9) Repeat steps 5-8 until source is localized.

B. DATASET

The datasets used in simulations consist of 8 parameters,
as detailed in Table 2 and as discussed in Section IV-A, that
characterize each of the nodes. In this work, two datasets, are
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source is localized. is localized.

used: Dataset 1 - a synthetic one with uniformly distributed
nodes throughout the Aol in a grid layout, and Dataset 2 -
a non-uniform distribution of nodes which is obtained
from the Sarwat Foursquare Dataset in [19]. The Sarwat
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Foursquare Dataset includes several parameters, however
only nodes’ locations are used from this dataset. For both
datasets, the residual energy, sensor surface area, trustwor-
thiness, and efficiency are randomly generated and assigned
to the nodes following a uniform distribution. The power
cost of each node is generated based on the efficiency and
sensor surface area, where nodes with higher values for these
attributes are expected to consume more power. All these
attributes are given a value between 0 and 1.

C. PERFORMANCE EVALUATION AND COMPARISON
Multiple experiments are executed to evaluate and validate
the performance of the proposed (DANS) scheme. During
these experiments, a Dell Intel Xeon workstation equipped
with 256 GB RAM and 300 GB hard disk is used. The
simulations are performed for all selection models, to localize
a nuclear radiation source in the same environment.

The source strength, population size (number of available
nodes), and the size of the Aol are also varied to study
their effect on the localization task. The results are pre-
sented as QoL for different group sizes, where the group
size is given as the % of active nodes. For each of the
proposed and benchmarked algorithms, the simulations are
carried out 5 times in 9 different source locations, with a total
of 45 runs. The final result is presented as an average of all the
runs.

For the following results and discussion, a uniform dataset,
i.e. Dataset 1, is used for Sections VI-C1 and VI-C2, whereas
a real-life dataset, referred to as Dataset 2, is used in
Section VI-C3.

1) EFFECT OF GROUP SIZE ON TIME, TOTAL COST, AND QoL
This experiment shows the effect of group size, i.e. the % of
active nodes, on localization time, total cost, and QoL, where
the group size is varied from 10% to 100% in decade steps.
A population size of 121 nodes, an Aol size of 300m x 300m,
and a source strength of 10° photons/minute are used in this
experiment. As seen in Fig. 8, the models which include a
data-based parameter (PDR), namely DANS and DIRS, out-
perform the data-independent models, namely GRS and IRS,
in terms of localization time for different group sizes. The
difference is more significant for smaller group sizes. As the
group size increases beyond 50-60%, the localization time
converges for all models. This is expected as the selection
schemes become inconsequential since almost all nodes are
becoming active.

As the group size increases, more nodes become active,
with expectations that the localization process is to finish
faster. However, a question remains: what is the tradeoff
between the localization time and the cost of employing
more active nodes? Intuitively, employing more active nodes
should result in higher average cost (Cgy,) per round. How-
ever, since the nodes remain active for less time, as the
localization task finishes faster, the total cost for the entire
localization process is reduced. Here, C, reflects the cost
related to the number of active nodes per round, whereas the
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FIGURE 8. The effect of varying the group size on localization time, using
dataset 1.

FIGURE 9. The effect of varying the group size on the total power cost,
using dataset 1.

total cost reflects both C,e and the duration of the localiza-
tion task. In other words, total cost is given as:

TotalCost = Cyyg x No.ofLocalizationRounds ~ (23)

Fig. 9 shows that both data-driven approaches, DANS and
DIRS, cost less compared to GRS and IRS, especially for
low group sizes. Faster localization process by DANS and
DIRS, due to the selection of informative nodes, results in
significant preservation of energy. It can also be seen that
for DANS and DIRS, increasing the % of active nodes just
adds more cost without having significant effect on local-
ization time, resulting in a higher total cost. This is because
these two models succeed in selecting the nodes that con-
tribute the most to the localization process, which represent
a small % of the total number of nodes. When the group size
is increased, more nodes with less contribution are added,
resulting in an increase in Cg,, With no significant effect on
localization time. This is important as it reflects the ability of
both approaches to exploit informative nodes leading to less
number of nodes being active.

Fig. 10 shows the QoL of the different selection algorithms
as a function of group size. DANS and DIRS can be seen
to have better QoL, until all models converge at high % of
active nodes. Specifically, DANS is seen to outperform GRS
and IRS by an average of 48.1% and 52.0%, respectively.
Additionally, it can be seen that DANS and DIRS have
similar performance, although a marked difference between
them can be seen at smaller group sizes. Since a selection
scheme is more significant when small groups of nodes are
selected to perform a given task, thus, Fig. 11 shows the
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FIGURE 10. The effect of varying the group size on QolL, using dataset 1.

FIGURE 11. The effect of varying the small group sizes on QoL, using
dataset 1.

comparison of the different selection algorithms for smaller
group sizes. The figure shows a noticeable difference
between both data-driven approaches, DANS and DIRS,
which reflects the significance of the U(g) parameter in the
selection of the first group. DANS, which considers this
parameter, performs on average 34.2% better than DIRS,
which does not include U(g) at all. The selection of the first
group is significant, especially for small group size, because
it is the group the generates the first probability distribution
that is the base a priori to the localization process. Since no
readings are available prior to the first round, it is shown
that considering U(g) in the DANS model, which results in
good Aol coverage, improves the QoL when compared to
DIRS. Additionally, for small group sizes, DANS is found
to significantly outperform GRS and IRS by an average of up
to 2.7 and 4 times, respectively.

For both DANS and DIRS, the QoL initially increases
with group size but eventually drops as group size keeps
increasing. As the number of active nodes increases, Aol
coverage becomes easier to achieve for DIRS even though
it does not consider it during the selection process. Hence,
the effect of U(g) becomes less significant, leading to DIRS
having similar behavior as DANS. This experiment validates
the effectiveness of the proposed approach, where the highest
QoL can be achieved for a small group of size 6, which
represents only 5% of the total number of available nodes.

2) SCALABILITY
To prove the scalability of the proposed model, simulations
were conducted for different population sizes (varying from
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FIGURE 12. The effect of varying the population size on the maximum
achieved QolL, using dataset 1.
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FIGURE 13. The effect of varying the area size on the maximum achieved
QolL, using dataset 1.

49 to 441), and on different area sizes (varying from 100m x
100m to 500m x 500m). Population size was varied for a
fixed Aol size of 300m x 300m, while Aol size was varied
for a fixed population size of 121. A source strength of 10°
photons/minute was used in all simulation. It should be noted
that since the nodes are uniformly distributed throughout a
square Aol in a grid layout, the population sizes had to be
square numbers for simplicity. For each simulation, for a
specific population or area size, the group size is varied and
the maximum QoL, per population or area size, is recorded.
The maximum QoL referes to the best QoL achieved by a
group size, which is varied, in the specific population size.
As shown in Fig. 12 and Fig. 13, the proposed DANS still per-
forms better than other selection models. On average, DANS
18 54.8% better than GRS, 51.2% better than IRS, and 11.6%
better than DIRS, in terms of maximum QoL, for varying
population sizes. On the other hand, in area scalability, DANS
performs on average 67.1% better than GRS, 72.8% better
than IRS, and 8.4% better than DIRS.

3) ADAPTABILITY

In this experiment, the performance of the system is studied
using Dataset 2 which has real-life nonuniform distribution
of nodes. A population size of 200 nodes, an Aol of 300m x
300m, and a source strength of 10° photons/minute are used.
Fig. 14, Fig. 15, and Fig. 16 show a similar behavior to the
results obtained in Section VI-C1, where data-driven mod-
els perform better than data-independent ones. DANS was
found to outperform GRS, IRS, and DIRS by an average of
52.4%, 74.8%, and 3.1%, respectively. As evident, all models
converge at a larger group size, around 80%, compared to
50-60% in the uniform distribution simulations, i.e. Dataset 1.
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FIGURE 14. The effect of varying the group size on the localization time,
using dataset 2.

FIGURE 15. The effect of varying the group size on the total cost, using
dataset 2.

The sheer non-uniform distribution of the nodes makes a
selection process relatively harder when compared to uni-
formly distributed nodes. This is because the spatial availabil-
ity of nodes in a uniformly deployed network is better than
that in a non-uniformly deployed one, hence increasing the
chance of finding informative nodes around the source. This
makes the selection scheme, DANS, more significant for non-
uniform networks, as other data-independent schemes will
struggle more in choosing informative nodes. Additionally,
Fig. 17 presents the QoL obtained for small group sizes,
which shows the significance of DANS over DIRS. DANS is
found to perform 7.3% better than DIRS, while performing up
to 2.1 and 2.9 times better than GRS and IRS, respectively.
Fig. 18 and Fig. 19 show the maximum QoL achieved for
each model given different population or Aol sizes. It can be
seen that DANS adapts to the new dataset and still performs
better than all other approaches for different population and
Aol sizes.

4) EFFECT OF VARYING SOURCE STRENGTH

This experiment explores the effect of varying the source
strength on the localization process in terms of QoL. For each
selection model, the source strength is varied for different
group sizes, and the maximum QoL is recorded along with the
corresponding group size. As shown in Fig. 20, the proposed
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FIGURE 16. The effect of varying the group size on the QoL, using
dataset 2.

FIGURE 17. The effect of varying small group sizes on the QoL, using
dataset 2.

FIGURE 18. The effect of varying the population size on the maximum
achieved QolL, using dataset 2.

E DANS
N DIRS
[ IRS
7 GRS

AN\
AN\
|
o

AN\

N\

N 7
200 300
Area Length

N

3
S
w
S
S

FIGURE 19. The effect of varying the Aol size on the maximum
achieved QolL, using dataset 2.

approach- DANS, still achieves the highest QoL compared
to the other models at all source strengths. Additionally,
a general trend can be noticed in which the stronger the source
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FIGURE 20. The effect of varying the source strength on the maximum
achieved QoL.

is, the smaller the required group size. For example, at a low
source strength of 10° photons/minute, DANS achieves the
highest QoL with only a group size of 7%, compared to 8%
for DIRS, 70% for GRS, and 80% for IRS, with the latter two
having low maximum QoL. This shows the ability of DANS
in choosing the informative nodes and performing better than
other approaches even with much smaller number of active
nodes. For all source strengths, the data driven approaches
show high maximum QoL with small number of active nodes
(3%-8%), whereas other approaches have lower maximum
QoL even with higher number of active nodes (20% - 90%).

VII. CONCLUSION

In this paper, a two-phase selection mechanism that uses
genetic and greedy algorithms has been proposed. The first
phase employs a group-based selection using genetic algo-
rithm to collect primitive data about the source. In the second
phase, the readings from the active nodes are dynamically
used to select the next best set of active nodes through an
individual-based greedy selection mechanism. Both phases
are integrated in a novel and dynamic Data-driven Active
Node Selection framework (called DANS), which tackles
localization tasks in IoT sensing applications. Additionally,
a coverage assessment method has been developed consider-
ing sensors which may not have a sensing range. The effec-
tiveness of the proposed approach is verified by experiments
using real-life and synthetic datasets. It is compared to exist-
ing data-independent benchmarks, GRS and IRS, in terms
of localization time, power cost, and Quality of Localization
(QoL) metric. The results demonstrated that the proposed
approach, DANS, outperforms existing benchmarks in terms
of QoL by up to 52% using the synthetic dataset, and by up to
75% using the real-life dataset. DANS was especially shown
to perform better for small groups of active nodes, where
its performance in terms of QoL exceeded benchmarks by
up to 4 times using a synthetic dataset. It was also found to
outperform existing benchmarks by a percentage as high as
74% using a real-life dataset. The same trend is also observed
for localization time and power cost, where DANS systemat-
ically does exceedingly better than the existing benchmarks.
DANS also displayed scalability in terms of population and
area sizes and demonstrated superior performance in diverse
conditions. The results verify the viability of the presented
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mechanism and show that by using a novel data-driven
approach and the proposed selection algorithm, a faster, more
reliable, and lower-cost localization task can be performed
even with small number of active nodes, in differing situations
and environments.
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