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ABSTRACT Comprehensive real-time event information is critical to policymakers during emergency
response and decision-making process. However, the development process of the emergent events has
great uncertainty, and situational evolutions of emergencies are often difficult to use the fixed reasoning
mode to attain. For this reason, this paper proposes a new method based on the ontology cluster for the
evolution reasoning of emergency scenarios and extends the sematic web rule language to realize the
scenario deduction, which can apply the Bayesian network to perform the conditional probability reasoning.
A counterpart modeling and modifying of the Bayesian network optimization process is introduced. Besides,
the probabilistic interpretation rules of atom components in context evolution are described with detailed
query examples of emergency situation deducting and reasoning. The experimental results show that this
approach is efficient in describing and capable of calculating the occurrence possibilities of the emergent
events.

INDEX TERMS Emergent events, event scenario deduction, ontology cluster, Bayesian network, SWRL.

I. INTRODUCTION
In recent years, the frequent occurrences of unexpected inci-
dents have caused a huge impact on social and economic
normal operation [1]. In the process of dealing with emergen-
cies, decision makers are usually faced with complicated nat-
ural and social environment. The analysis of the emergency
scenarios evolution can help decision-makers understand the
development trend of the event [2], which is of great guiding
importance for emergency decision-making. For the sake
of automatic association and inference ability of semantic
web, many researchers try to use semantic technology and
its tools to analyze the emergency trends [3], [4]. However,
the current semantic technologies and tools are unable to deal
with uncertain information, which disqualifies them to meet
the description of evolutional emergency scenarios.

Just as the Web Ontology Language (OWL) based on
Description Logics (DLs) has been applied in many fields,
one way to overcome this expressive limitation of DLs would
be to extend it with probabilistic rules [5]. Reasoning on
uncertainty and vagueness data with improved DLP and
SWRL gradually becomes a research hotspot [6]. By combin-
ing fuzzy dl-programs with Pool’s independent choice logic,
probabilistic fuzzy dl-programs can express probabilistic

rules. While BayesOWL [7], PR-OWL [8], [9] and supple-
ment OWL are useful for representing and reasoning with
uncertainty, there is little research about combining proba-
bility theory with semantic web rules [10], which are very
important for some real-world problems, such as disaster risk
evaluations and medical diagnosis.

In this paper, we propose a model for reasoning emer-
gency scenarios based on ontology cluster, and give the
counterpart example to illustrate how to design the rule lan-
guage to describe the evolution of the situational changes.
This study extends the classic SWRL language from syn-
tax and semantics, by which the extended scenario evolu-
tion rules can not only realize the evolution of language
context reasoning, but also achieve similar function as the
Bayesian Logic Program to calculate the probability of sec-
ondary emergencies [11], as well as to help decision-makers
quantitatively analyze the probability of each scenario in
emergencies. Besides, the ontology cluster can also facili-
tate dynamic information exchange between multiple orga-
nizations, incorporate human and data resources, as well as
improve semantic interoperability and integration. Further-
more, the performance of the inference algorithm for the
scene evolution rule sets is realized on the basis of the existing
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OWL-DL inference engine [12]. The second section of this
paper briefly explains the background and reasons that ontol-
ogy cluster is needed in scenario reasoning. The third section
of this paper introduces how to implement event evolution
reasoning by adopting Bayesian network. The fourth section
describes how to use the SWRL rule description language to
realize the reasoning and query of the emergency scene. The
fifth section is the counterpart experiment and evaluation of
extended SWRL rules for ontology cluster deduction. And in
the last section, we make a concise conclusion. The experi-
ment results demonstrate that the decision maker can analyze
the evolution probabilities of the situation in emergency life
cycle based on the evolutionary reasoning model and the
counterpart rule language algorithms.

II. ONTOLOGY CLUSTER EMERGENCY SCENARIO
EVOLUTION DEDUCTION
The current ontology research and application is still at a
low level of development, and it is time-consuming and
labor-intensive to build large-scale probability ontology. The
existing ontology construction methods are usually applied
to a specific area, not suitable for emergency deduction and
response field. Besides, there are many complicated concepts
with property importance and priority in emergencies, which
can cause an extra burden on the process of construction
or generating comprehensive domain probability ontology
with formal reasoning capabilities. There is a great deal of
uncertainty in the process of the occurrence and development
of unexpected events, so it is necessary to intelligently com-
bine the evolution of multiple event elements in the scenario
evolution of a specific event. Construction of emergency
scenario evolution ontology cluster is a development trend
to establish the evolution relationships between various sce-
narios and situations, which can help decision-makers effec-
tively implement disposal scheme. As for single event track-
ing, the academia has relatively wide recognized methods
and evaluation standards. Complex emergencies have greater
uncertainties and migration status changes. Events develop
into different statuses which are often triggered by newly
occurred natural hazards, human or technologically caused
natural hazards. The potential hazards can be classified by
the American Disaster and Emergency Standard [13]. The
disposal of emergencies often involves the collaboration of
various departments and relates to multiple related factors.
To this end, we propose an approach of fuzzy reasoning for
emergency scenarios, as described in Figure 1. The correla-
tion between the disaster causing factors depends on both the
conditions of the disaster environment and the harm degree
of the hazards factors. In order to apply the rule language
to realize event scenario evolution reasoning and querying,
we designed an emergency scenario reasoning ontology clus-
ters, which depicts the evolution of unconventional emer-
gency situations by causing disaster factors with conditions.
C(i), C(j), C(k) are related to the prerequisites for associated
disaster factors. We can calculate the possibilities of the event
changes in the decision making process.

FIGURE 1. A fuzzy scenario reasoning ontology cluster.

III. EVENT EVOLUTION REASONING MODEL BASED ON
BAYESIAN NETWORK
A. BAYESIAN NETWORK BASED ON DISASTER HAZARDS
If we generate a directed acyclic graph of event hazards caus-
ing factors with the conditional probability from the emer-
gent ontology cluster, a Bayesian event evolution inference
model can be constructed. Figure 2 depicts a graph that has
four nodes (Cloud, Earthquake, Rain, and Landside). The
nodes represent variables, and the edges represent probabilis-
tic dependencies between variables, for example: Landside
depends on whether the values of Earthquake and Rain are
true. Each node in the graph is probabilistic independent of
its descendant node, so we can compute the probability dis-

FIGURE 2. Bayesian networks and CPT.
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tribution of the Figure 2-(a) DAG (Directed Acycline Graph)
by adopting means of the local probability. C, E, R, and L
represent Cloud, Earthquake, Rain, and Landside respectively
and P (C, E, R, L) represent the probability of a state, such
as P (C=True, E=True, R=False, W=True). Based on the
probabilistic calculation rule, we can obtain:

P(C,E,R,L)=P(C)∗P(E|C)∗P(R|E,C)∗P(L|R,E,C)

(1)

When the parent value is obtained under given conditions,
each node is independent of its non-seed nodes. Therefore,
formula (1) can be simplified as:

P(C,E,R,L) = P(C)∗P(E|C)∗P(R|C)∗P(L|R,E) (2)

In determining a probability distribution table, only half of
the CPT probabilities need to be determined, while the other
half can be obtained by deducing. For example, in order to
compute the CPT of Cloud, we just need to determine P
(C=True) and then deduce the value of P (C=False) =1-P
(C=True). In the practical use of Bayesian network reason-
ing, a directed acyclic graph is usually constructed by domain
experts, and then the conditional probability table is learned
from the training data. The training set usually contains a
large number of samples and a certain redundancy is needed.
However, the practical application of the training set may
contain missing values which may be caused by missing
samples or the inconvenience of observation variables. In case
of missing, the expectationmaximization (EM) algorithm can
be applied to compute the conditional probability CPT table,
as shown in Figure 2-(b) CPT(conditional probability table).

B. DIRECTED SEGMENTATION OF BAYESIAN NETWORKS
A Bayesian network can be composed of directed segmenta-
tion links: sequential connection, divergence connection and
convergent connection [14].

(1) Sequential connections: Sequential connections (Xi→
Xk → Xj) are directed to chain nodes in a sequential structure,
where the middle node is referred to the head to tail type.
Figure 3-(a) is a Bayesian sequential connection example
for an extreme rainfall scenario, extreme rainfall nodes (high
level, middle level and low level), intermediate river water
rising nodes (high level, middle level and low level) and
the tail nodes (flood occurrence or non-occurrence) are in a
sequence connection.When the information of the river water
level node is unknown, the value of rainfall determines the
water level of the river, and the water level of the river also
affects the occurrence of flood. In this case, the rainfall node
determines the change of river water level and the occurrence
probability of flood disaster. But when the river water level
height has been at a warning water level, extreme rainfall and
flood nodes are blocked under this circumstance.

(2) Divergent connections: Divergent connections are in
the form of Xi ← Xk → Xj, in which node Xk is called tail
to tail node. In the case of unknown intermediate node Xk ,
the probability change or update will affect the child node

FIGURE 3. Bayesian networks connection examples. (a) A Bayesian
sequential connection example. (b) A Bayesian divergent connection
example. (c) A Bayesian convergent connection example.

Xi and Xj. However, when the probability distribution of the
intermediate node Xk is known, the child node and the parent
node are divided. Figure 3-(b) shows the divergent connec-
tions between floods (occurring, not occurring), river flow
velocity (extreme, medium, and gentle) and river discharge
(large, small). If we do not know whether there is a flood
disaster or not, according to the velocity of the river flow,
we can calculate whether the flood disaster occurs and further
determine the flow volume of the river. If it is known that
the floods have occurred in an un-recorded extreme situation,
there is no need to judge the velocity or volume of the
river [15]. The velocity and the discharge volume of the river
become independent.

(3) Convergent connections: Directed chains in the form
of Xi → Xk ← Xj are called Bayesian convergent con-
nections, in which the middle node is called head to head
node. Figure 3-(c) is an example ofXk convergent connection.
When there is no extreme rainfall, the daily maximum precip-
itation nodes and the maximum precipitation day nodes are
conditionally independent. When extreme rainfall is known,
the maximum daily rainfall and maximum rainfall days are
conditional.

C. THE MODELING PROCESS OF BAYESIAN NETWORK
A Bayesian network can be composed of directed segmenta-
tion links: sequential connection, divergence connection and
convergent connection [14].

Bayesian networkmodeling is a continuous process, which
includes problem definition, node selection, variable defini-
tion, data processing, algorithm selection andmodel improve-
ment [16]. Therefore, the actual network modeling is a
repeated refining process and the model needs to be modified
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continuously to achieve the best evaluation results. The fol-
lowing is a simplified general process of modeling.

(1) Problem definition: the purpose of constructing
Bayesian network model should be clear and the domain
knowledge must be possessed before the model construction.
Besides, relevant domain knowledge is essential to construct
a Bayesian network, which depends on howmuch knowledge
are needed for a rational network model and prior probability
construction.

(2) Variable selection: the variables correspond to the
nodes in the Bayesian network structure, and the number of
nodes will have a greater impact on the results of the model.
It is necessary to make clear that the more variables are,
the higher the accuracy of the evaluation is in constructing
Bayesian network models. Selecting effective variables is
a very complicated work, which will be affected by many
factors, such as the variable selection from different experts’
opinions. The expert knowledge often plays a very important
role, as experts are familiar with the relative research field
and know which variables may have a greater impact on the
results.

(3) Variable processing: the processing of data acquisition
includes the processing of the missing value, the elimination
of singular values and the discretization of data. The Bayesian
network based on discrete random variables is efficient to
construct and operate.

(4) Network construction: to construct a Bayesian network
model, one should not only rely on expert knowledge, but
also refer to the different construction method and continuous
improvement of the probability distribution of the Bayesian
network model.

D. THE MODIFYING PROCESS OF BAYESIAN NETWORK
Emergency decision making often faces limited priori knowl-
edge, so it is necessary to add human-computer interaction
and introduce expert knowledge to optimize the structure
of Bayesian network. When modifying Bayesian network
model, we should communicate with experts in time, detect
the logical correctness of the model and solve the practi-
cal problems. And there are usually three ways to modify
Bayesian networks, shown as in Figure 4 series taking an
earthquake emergency scenario evolution as an example.

(1) Adding a new node to the directed path without an
intermediate node, as shown in Figure 4-(a).

(2) Adding a parent node to a node without a parent,
as shown in Figure 4-(b).

(3) Adding a child node to a node, as shown in Figure 4-(c).
Since there is no influence on the causal relation and probabil-
ity distribution of the existing nodes in the Bayesian network,
there is no constraint condition for adding a child node to a
parent node.

The decomposition of Bias network node value is a useful
way to increase the density of node value, and the combina-
tion of node value is the counterpart way to reduce the node
value density [17]. Bayesian decomposition network node
value can increase the accuracy of the node value, so as to

FIGURE 4. Bayesian networks modification examples.

improve the accuracy of Bayesian network model, such as a
‘‘earthquake’’ node ranges from {<6,6-8,>8} can be decom-
posed as {<3,3-4.5,4.5-6,6-8, >8}. Meanwhile, simplifying
Bayesian network nodes can reduce node complexity and
improve the calculation speed of Bayesian network model.
For example, the ‘‘number of casualties’’ node range {<10,
10-20, 20-50, 50-100,>100} can be merged into the range of
{<50, 50-100, >100}.

IV. SWRL BASED DESCRIPTION LANGUAGE FOR
SCENARIO EVOLUTION RULES
A. BAYESIAN NETWORK BASED ON DISASTER HAZARDS
The sematic web rule (SWRL) is a proposed language com-
bining OWL and RuleML, which has the full power of OWL
DL at the price of decidability. In most cases, decidability
can be regained by restricting the form of admissible rules or
imposing suitable safety conditions. In order to enable SWRL
to describe the probability of events, this paper adds new nota-
tions and syntactic patterns for existing SWRL grammars.
Because the conversion between abstract syntax and concrete
grammar is too simple to address possibility deduction [18]
, this paper uses the abstract symbol as similar as Backus’s
BNF (Backus-Naur Form) to define the syntax of regular
language. In this study, the syntax of the scene evolution rule
language is consistent with the existing SWRL grammar. For
example, the syntax of atom, i-object, D-object and other
components in the context of the evolution rules language are
the same as that of the corresponding component in SWRL.
Therefore, this paper only lists the syntax of the SWRL spe-
cially designed for the scene evolution rule language, which
is as follows:

axiom::= rule
rule::= ’Implies(’ < URI_reference > {annotation}
antecedent consequent ’)’
antecedent::= ’Antecedent(’ {atom [probability] } ’)’
consequent::=’Consequent(’{atom[probability
CPT_path]}’)’
probability::= P-variable
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Among them, ‘‘rule’’ represents a rule set correspond-
ing to event scenario, ‘‘antecedent’’ is a preceding event
of the current event status, and ‘‘consequent’’ is a conse-
quent event of the current event status. URI_reference is an
optional item in the existing SWRL language, but it cannot
be omitted in the scenario evolution rules. URI_reference
will be used as an identifier for the current rule, and the
URI_reference value must be determined when the evolution
rules are declared to avoid conflict with the defined rules.
According to theURI_reference identity, the inference engine
can associate the scenario evolution rules with the predefined
conditional probability table CPT (Conditional Probability
Table). In the scenario evolution rule set, atom may follow
P-variable, which means that the probability of occurring is
as P-variable defined. The inference engine will calculate the
probability of the occurrence of the posterior atom according
to the probability table which is defined in advance and the
probability of the optional atom. CPT path means the file
path and the consequent event probability variables appear in
pairs, through which user-defined files can be accessed with
a conditional probability table. For example, the possibility
of the occurrence of a landslide in the range of an earthquake
zone can be described as the following:

Mountain(?m) ∧ Earthquake(?e) ∧ Rainstorm(?r)

∧Affect(?e, ?m)∗em ∧ Affect(?r, ?m)∗rm

⇒ HasLandslide(?m, true)∗ml@‘‘./DisasterCPTs.xml’’

(3)

The counterpart syntax of the context evolution rule lan-
guage can be expressed as follows:

Implies (‘http: //www.whu.edu.cn/Disaster/
LandslideRule’)

Antecedent (Mountain (I-variable (m))
Earthquake (I-variable (e))
Rainstorm (I-variable(r))
Affect (I-variable (e), I-variable (m)), P-variable(em)
Affect (I-variable(r), I-variable (m)), P-variable(rm))
Consequent (HasLandslide(I-variable(m), Boolean(true))
P-variable ((ml) ‘./DisasterCPTs.xml’ ))
In the ‘‘./DisasterCPTs.xml’’ file, the conditional proba-

bility table records the probability of a landslide when the
optional atom is in a different state. For example, when the
earthquake e and rainstorm r both affect the mountain m,
the probability of landslide in the mountain m is 0.9. When
only the earthquake e affects the mountain m, the probability
of the landslide of m is 0.7. After setting the probability of
landslides in different situations, the complete conditional
probability table can be described in the following form in
the ‘‘./DisasterCPTs.xml’’ file.

CPTs(‘http://www.whu.edu.cn/Disaster/LandslideRule’
Table{HasLandslide(ml)
Case( Effect(e,m) True Effect(r,m) True 0.9) ;
Case( Effect(e,m) True Effect(r,m) False 0.7) ;
Case( Effect(e,m) False Effect(r,m) True 0.6);
Case( Effect(e,m) False Effect(r,m) False 0.01);}

TABLE 1. Probabilistic interpretation of atom components in context
evolution rules.

B. BAYESIAN NETWORK BASED ON DISASTER HAZARDS
As for fuzzy semantic rule language, Guigno et al. proposed
P-SHOQ (D) [19] description logic, which can represent
and reason about uncertain knowledge about concepts and
instances. BayesOWL makes further the use of the OWL
language statement, which increases the description of prob-
abilistic constraints [20]. Because atoms in SWRL not only
include OWL description and data range but also contain
other components, such as built-in relations, Bayes-SWRL
needs more expressive capability than BayesOWL. In this
study, The scene in the semantic atom rule language evo-
lution is defined as three tuple I= (1I, 1D, .I), where the
individual domain 1I is a nonempty set of individuals, data
type domain 1D is a nonempty set of data values, .I is an
individual interpretation function. More detailed descriptions
about OWL DL interpretation can be found in reference [21].

In the scenario evolution rule language, atom interpretation
can be defined as two-tuple J= (1J, •J). The non-empty set
1J contains various types of atom, •J can be interpreted as
probability function, which maps 1J to the value in the range
of [0, 1]. Table 1 illustrates the probabilistic interpretation of
various types of atom in a scenario evolution rule language.
Assuming that C is an OWL DL description, D is an OWL
DL data range, Pr is an OWL DL individual valued property,
Q is an OWL DL data valued property, f is a built-in relation,
x and y are variables or OWL individuals, z is a variable or an
OWL data value, and P(F) figures out the probabilistic value
when the formula F is real.

When the probability of the posterior atom is calculated
by using the scene evolution rule and the conditional prob-
ability table, the inference engine of the scenario evolution
rule must obtain the probability value of each atom in the
rules in advance. There are three methods can be used to
obtain the probability value. The first method is to set the
probability value of each atom, which is applicable to various
types of atom. At this point, the inference engine can be
accessed directly. The second approach is to customize the
built-in relationship. Because the judgment of this kind of
relation is to be accomplished by the user-defined function,
the probability that the relation can be calculated by the
customer established function. For example, the formula (3)
Affect(?e, ?m) can be regarded as user-defined relationship,
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the probability value of the relationship can be established
according to the intensity of the earthquake, the distance
between the epicenter and the mountain, the geology of the
mountain. The third method is to use the equivalentClass
and equivalentProperty relations in the OWL from the results
which can be obtained previously in the declaration of the
probability value.

In the scenario evolution rules, the key atom is the neces-
sary condition for the establishment of the posterior atom;
therefore all key atoms in the rules must be established.
If there is a declaration of probability, the probability value
must be 1. If there is no probability statement, and then
the probability value is default to be 1. Relatively speaking,
the latter atoms on the rules of the optional atom requirements
are lower, which only need to have statements in knowledge
of the library, without the needs to determine whether there
is a probability statement. Assuming that R is a scenario evo-
lution rule, RI is a specific instance of the rule, which means
all variables in R have been replaced by OWL instances or
values. Ei, Oj and Ck (i, j, k∈N) were key atom, optional atom
and posterior atom respectively. The function inABox (a) is
used to determine whether the ABox of the knowledge base
contains a variable, if so it will return the value of True. Thus,
the conditions for the success of the deduction can be shown
in formula (4).

∀i(inABox(Ei) ∧ (EJ
i = 1)) ∧ ∀j(inABox(Oj)) (4)

Once the posterior atom in the decision rule is deducted,
the inference engine will calculate the probability value of
each atom. Assuming that n is the number of optional RI in
atom, RI rules among all optional atom are independent of
each other, Cm as a result of the performance of a RI atom,
then the scene deduction engine can be calculated by formula)
to obtain the probability of Cm.

P(Cm) =
∑

X1,...,Xn∈{T,F}
(P(Cm = T|O1 = X1, . . . ,On

= Xn)∗P(O1 = X1)∗ . . . ∗P(On = Xn)) (5)

In the formula (5), P(Oj = Xj) denotes the probabilistic
value when Oj is true or false, the conditional probability
Cm on Oj is arranged in the CPT file. The current ABox has
declared the earthquake e, rain storm r and mountain m, and
the probability of the mountain m affected by earthquake e
and rainstorm r is 0.8 and 0.4, respectively. When the above
examples are introduced into the formula (5), the rules of
the instantiation can satisfy the requirement of deduction,
the scenario evolution rule will deduct the possibility of land-
slide. At this point, according to the ‘‘./DisasterCPTs.xml’’
file in the conditional probability table, the probability of
the optional atom value can be calculated from the landslide
probability and quantitative description of the event develop-
ment trend can be further analyzed.

In this paper, we take the WenChuan earthquake for an
example to illustrate our deduction process. In order to testify
the effectiveness of our method, the scenario ontologies and

rules drawn from the historical emergencies were used to
deduce the earthquake. Before the task of scenario inference,
some instances in the effect area of the earthquake were
prepared and imported into the scenario evolution model.
Then, Pellet and the algorithm of scenario inference were
used to reason out the potential scenarios. The earthquake
affected areas have rainfall, the earthquake caused in build-
ing collapsed, landslides and other scenarios; landslides can
further lead to lake and road damage and other scenarios.
The formula (6) describes the evolution of the relationship
between earthquakes and rainstorms and landslides. The for-
mula describes the earthquake that may cause the collapse
of important buildings. Among them, Affect (e, im) can also
be used as user-defined function. According to the level of
the earthquake, the location of the building and the epicenter,
the probability of building damages can be reasoned.

ImportantBuilding(?im) ∧ Earthquake(?e)

∧Affect(?e,?im)∗eim

⇒ HasCollapsed(?im,true)∗imc@‘‘./DisasterCPTs.xml’’

(6)

The formula (7) describes a landslide that may cause a river
to flow through the mountains, creating a barrier. The Affect
(? m,? r), a built function estimates the probability of the river
being affected by landslides through the possible volume of
the landslide and the width of the river.

Mountain(?m) ∧ HasLandslide(?m,true)∗ml

∧River(?r) ∧ LATP(?r,?m) ∧ Affect(?m,?r)

⇒ BeBlocked(?r,true)∗rbb@‘‘./DisasterCPTs.xml’’ (7)

The formula (8) describes a landslide that could cause
damage to the road near the surrounding mountain. All of the
scenarios in this article are related to the ‘‘DisasterCPTs.xml’’
file, which means that the file contains all the relevant con-
ditional probabilities of the rules. Affect (?m,? rd) built in
function is used to evaluate the probability of the road affected
by the possibility of landslide and the distance between the
mountain and the road.

Mountain(?m) ∧ HasLandslide(?m,true)∗ml

∧Road(?rd) ∧ LATP(?rd,?m) ∧ Affect(?m,?rd)

⇒ BeDestroyed(?rd,true)∗rdbd@‘‘./DisasterCPTs.xml’’

(8)

The inference engine based on scenario evolution rules can
be realized by extending the existing SWRL inference engine.
According to the relevant literature, there are three ways to
implement SWRL inference engine. The first method is to
convert the rule based on SWRL into the first order predi-
cate logic. A typical representative of this method is using
Hoolet [21] to extend SWRL the rules, which adopt variables
with universal substitution in SWRL, and uses Vampire to
verify the compatibility of the axioms. The second method
is to convert the OWL DL description in the SWRL into
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FIGURE 5. Performance comparison between scenario evolution rules
and traditional SWRL rules.

rules, and uses the forward inference engine for processing.
For example, the Bossam inference engine based on RETE
algorithm can be used to inference the knowledge composed
of OWL and SWRL [22]. However, the method has obvious
some defects and the incompatibility between the description
logic and the Horn rules leads to not all OWL DL descrip-
tions can be converted into rules. The third approach is to
extend the existing OWL based DL inference engine based
on tableaux algorithm, such as Pellet. In view of simplicity
and realization, the third methods can cover all the descrip-
tions of the OWL DL. Hence, our research uses this method
to combine the probabilistic interpretation and the tableaux
algorithm to implement the inference engine.

V. EXPERIMENT AND EVALUATION
In our study, earthquake disaster is taken as an example to
testify the deduction abilities of extended SWRL rules. The
occurrence of earthquake disasters in different environments
usually produces secondary disasters. In the evaluation part,
we analyze both the efficiency and application potential of
our proposed method.

In order to test the efficiency of the algorithm, it is com-
pared with traditional SWRL rules deduction based on the
same statistics, using the same number of rule instances
size. Testing environment hardware is under the following
configuration: Intel Core i7-3520 processor (4∗2.9GHZ, 8GB
RAM), the software usesWindows 7 and Java 1.7.0, the infer-
ence engine uses a Pellet with open source codes. As there is
no complex built-in function in each rule, so we can ignore
the influence of the computation time of the built-in function
on the inference performance. Figure 5 shows that the number
of instances increases from 10 to 80 when the number of rules
is five, comparing with the performance of SWRL. The fig-
ure illustrates that the computation functions perform better
by extending the SWRL scenario evolution rules. Besides,
the time-consuming of deduction rate remained linear with
increased number of examples.

Our situational information model for emergencies can
be formally represented as a four-element ESModel:=<EK,

TABLE 2. Examples of hazards relationship from NFPA 1600.

SKR, RK, AK>. Among them, EK (Event Knowledge)
stands for the incident knowledge base, in which the knowl-
edge at the event level is described; SKR (Scenario Knowl-
edge Repository) is a set of situation knowledge bases,
each of which contains context knowledge, correspond-
ing to certain types of emergencies or event instances.
RK (Resource Knowledge) is a resource knowledge base
that contains various countermeasures, disaster preven-
tion/mitigation resources, and the relationships betweenmea-
sures and resources. AK (Association Knowledge) is a related
knowledge base and describes knowledge across knowledge
bases. For example, an emergent E1 causes the occurrence of
emergent event E2, which means that the scenario instance
has a hazardous impact in the context knowledge correspond-
ing to event E2. Events develop into different status often
triggered by newly occurred hazard natural, human or tech-
nologically caused, which is classified by the American Dis-
aster and Emergency Standard(NFPA 1600 R©) [23]. NFPA
1600 standard establishes and maintains crisis management
capabilities, which is dedicated to helping users prepare for
any type of crisis or disaster resulting from natural, human,
or technological events. A set of Events {E1, E2, E3,. . . , Ei}
evolves into a series of status due to the impact of hazards
and sometimes one event is simultaneously triggered by mul-
tiple hazards as there are associated hazards and secondary
hazards, some examples are offered in Table 2. In compli-
cated emergency situations, associated hazards relate to those
hazards that go along with the primary hazards and usually
happen at the same time, and secondary hazards are the
hazards that follow as a result of other hazard events. The
composition of the emergency scenario information model is
as shown in Figure 6.

Figure 6 illustrates the content of each component in the
scenario information model and the relationships between
them. Clearly, the ESModel model uses a partitioning module
to represent local knowledge, with the advantage of being
able to reuse knowledge and isolate conflict knowledge. EK is
a knowledge base of emergency events based on description
logic. It describes the classification of emergencies and the
relationship between emergencies. It should be noted that
Figure 6 lists only the classification of sub-Events of a certain
contingency. SKR contains a number of scenario knowledge
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FIGURE 6. The composition of the emergency scenario information
model.

bases based on description logic. Each type of unexpected
event or each instance of an emergency corresponds to a
scene knowledge base in SKR. In addition, the inheritance
relationship between event classes will have an impact on the
corresponding knowledge base scene interpretation, namely
situational knowledge base corresponding to sub class events
to explain the ‘‘parent’’ in the event of situational knowledge.
For example, mountain seismic scenario knowledge base
should be able to explain the incident scene corresponding to
the knowledge base, thus obtains the Mountain Scenario con-
clusion. Similarly, event instances should also be able to inter-
pret situational knowledge in such events. Similarly, RK is
also a knowledge base based on description logic, and uses
the various axioms of description logic to describe knowledge
about response measures, the relationship between action
measures and various resources, which can guide the decision
makers to obtain resources according to the countermeasures.
The AK library describes the association knowledge among
the knowledge bases, and it introduces new formal represen-
tations to describe situational knowledge.

In order to realize an efficient deduction, we also devel-
oped a Bayes-SWRL reasoning tool by adopting Protégé.
Figure 7 shows the analysis result of disaster evolution by
using Bayes-SWRL emergency scenario reasoning interface,
which can estimate the probabilistic value of secondary and
derivative disasters and explain the relationship between the
disasters. The preconditions such as mountain and rainstorm
are descripted with scaled values and the probabilities of
rivers being blocked by the impact of a certain earthquake
can be deduced by the Bayes-SWRL reasoning tool using
empirical or predefined Bayesian parameters.

By analyzing the earthquake disasters in the mountainous
region with our Bayes-SWRL reasoning tool, the key Event
scenarios commonly found in mountain earthquakes were

FIGURE 7. Emergency scenario reasoning interface.

FIGURE 8. The composition of the emergency scenario evaluation model.

verified, and their relationships were illustrated in Figure 8
with key event status description in Table 3. Due to the
limited rules in our prototype system, it does not list all
possible scenarios. For example, when an earthquake occurs,
the damage body might also include factories and hazardous
facilities within the impact range. As described in Figure 8,
people and mountains become disaster-bearing bodies when
an earthquake occurs in a mountainous area, and rainfall in
the earthquake-stricken areas may further lead to changes
in the state of the mountain safety. Mountains will cause a

TABLE 3. Event status of the earthquake evaluation example.
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landslide event when some preconditions are met. At this
time, the mountain is a hazard factor in the subsequent
incident. In our simulation experiment, changes in the state
of the disaster-bearing bodies (mountains, rivers and roads)
in landslides range can cause scenarios including dammed
lakes and traffic jams. Currently, the prototype system is able
to analyze specific emergency scenarios when all disaster
factors are predefined in Bayesian network with appropriate
expert’s involvement. We successfully verified its usability
in scenario deduction with real cases of ‘‘5.12 Wenchuan
Earthquake’’ and ‘‘8.3 Ludian Earthquake’’ in China.

VI. CONCLUSION
In this study, we propose a new method based on Ontol-
ogy cluster for the evolution reasoning of emergency sce-
narios, and extend the SWRL language rules to realize the
specific method of scenario deduction, which can further
apply Bayesian network to perform conditional probability
reasoning according the syntax and semantics of Bayes-
SWRL. We extend SWRL rule sets to enable possibility
calculation for uncertain event scenarios, through which deci-
sion makers can take measures to prevent the occurrence
of critical scenarios, deduce the probability of the occur-
rence of reference scenarios. A counterpart modeling and
modifying of the Bayesian network optimization is intro-
duced. At the meantime, probabilistic interpretation of atom
components in context evolution rules are described with
detailed query examples of emergency situation deducting
and reasoning. Consequently, some disaster preventions and
reductions can be done ahead of time to decrease losses in
the emergency. We will further improve a comprehensive
emergency scenario deduction tool by adopting Protégé in
our future researches, as well as integrate information from
linked open data resources and internet of things to support
emergency situation deductions.
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