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ABSTRACT Long non-coding RNA, also known as lncRNA, is a series of single-stranded polynucleotides
(no less than 200 nucleotides each), consisting of non-protein coding transcripts. LncRNA plays a crucial
role in regulating gene expression, during the transcriptional, post-transcriptional, and epigenetic processes.
This is achieved by lncRNA interacts with the corresponding RNA-binding proteins. It has been drawn to a
lot of attention that the reduction of the excessive laboratory cost and the increase in speed and accuracy
gains benefits from the employment of computational intelligence in lncRNA–protein interaction (LPI)
identification. Although numerous pertinent in silico studies of LPI prediction have been proposed, there
is still room for enhancing the accuracy of the existing LPI prediction methods. In this paper, we have
proposed a novel method for identifying LPI with kernel target alignment based on semi-supervised link
prediction (LPI-KTASLP), which adopts multivariate information to predict lncRNAs–proteins interactions.
To integrate the heterogeneous kernels, kernel target alignment has been applied to deal with kernel fusion.
We have calculated the low-rank approximation matrices of lncRNA and protein, where eigendecomposition
is used to reduce computing pressure. The prediction model has been obtained by producing the ultimate
LPI prediction matrix. Experimental results show that the prediction ability of the LPI-KTASLP algorithm
has surpassed many other LPI prediction schemes. Our method of lncRNA–protein interaction prediction
has been evaluated on a standard benchmark dataset of LPIs. We have observed that the highest AUPR of
0.6148 is obtained by our proposed model (LPI-KTASLP). This is superior to the integrated LPLNP (AUPR:
0.4584), the RWR (AUPR: 0.2827), the CF (AUPR: 0.2357), the LPIHN (AUPR: 0.2299), and the LPBNI
(AUPR: 0.3302). It is very encouraging that most of the LPI predictions have been confirmed to be close to
relevant concentrations.

INDEX TERMS LncRNA-protein interaction, kernel target alignment, low-rank approximation, multiple
kernel learning, semi-supervised link prediction.

I. INTRODUCTION
Long non-coding RNA, also known as lncRNA, is a series of
single-stranded polynucleotides (no less than 200 nucleotides
each), consisting of non-protein coding transcripts [1]. Since
the first group of lncRNAs were discovered two decades ago,
researchers who specialize in biological sciences have cor-
roborated the phenomenon, that non-coding RNAs can reg-
ulate ubiquitous gene expression during the transcriptional,
post-transcriptional, and epigenetic processes [2]–[6]. It is

realized by means of interactions between the corresponding
RNA-binding proteins and lncRNAs per se. For example,
a kind of lncRNA named lnc-Lsm3b, can refrain the activity
of the receptor RIG-I by the induction of viruses during the
regulation of immune response [7]. It has been drawn to a lot
of researchers’ attention that the reduction of the excessive
laboratory cost and the increase in speed and accuracy, gains
benefits from the employment of computational intelligence
in LncRNA-Protein Interaction (LPI) identification [8].
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FIGURE 1. Comparison between supervised learning and semi-supervised learning for the prediction of LPI in bipartite network.

Dissections about the 3D structures with respect to a por-
tion of microRNA genes are available. But currently, it is
still rare to retrieve the available resources about the 3D
structure of lncRNA. Consequently, several sequence-based
approaches for identifying LPI have appeared in the past
decade. Zhang et al. [9] have considered that all of these
approaches can be classified into two categories. The first cat-
egory has focused on viewing the prediction task as a binary
classification under supervised techniques without known
interactions [10]–[12]. For instance, Bellucci et al. [13] have
proposed the catRAPID computational method of LPI predic-
tion, which uses physicochemical properties and secondary
structure as compound information. Muppirala et al. [14]
have presented another well-known algorithm RPISeq,
adopted Support Vector Machine (SVM) and Random Forest
(RF) to reach the same goal. Wang et al. [15] have used both
Naive Bayes (NB) and Extended NB (ENB) to predict LPI.
Lu et al. [16] have encoded each LPI to a numeric code so
that can form a vector, then applied matrix multiplication.
Suresh et al. [17] have conceived RPI-Pred that builts an
SVMmodel with the structure and sequence data of lncRNAs
and proteins.

Different from the previous methods, another category
has taken advantage of known interactions to forecast
unknown lncRNA-protein interactions. Li et al. [18] have
raised LPIHN that not only builds a heterogeneous pro-
file, but also exploits a kind of random walk with a
restart mechanism (RWR) on lncRNA-protein association
network. Ge et al. [19] have developed LPBNI which makes
use of a two-step scheme on a bipartite network. Recently,
Hu et al. [20] have delineated a kind of Semi-Supervised
Link Prediction called LPI-ETSLP, which also achieves out-
standing performance. Also they have upgraded through the
RWR and matrix factorization [21], [22].

Semi-supervised learning, which constructs predictors
from datasets that contain both labeled and unlabeled sam-
ples, is a kind of an effective mechanism that can reduce
the need of labeled data. Fig. 1 presents a comparison
between supervised and semi-supervised learning. Because
of the effectiveness and efficiency of similarity measure-
ments, we introduce a semi-supervised learning approach
based on similarity matrices for the LPI identification.

In this paper, we try to identify the lncRNAs and
proteins that can interact with each other in statistical

analysis. By trawling the literature resources, we have noticed
that state-of-the-art models, such as Feature Extraction,
Recursive Least Squares (RLS), Sparse Representation based
Classifier (SRC), Multiple Kernel Learning (MKL), have
been employed by several scenarios to speculate Drug-
Target Interactions (DTIs) [23]–[25], Protein-Protein Inter-
actions (PPIs) [26]–[31], drug-side effect associations [32],
[33], MicroRNA-Disease [34] or LncRNA-Disease Associa-
tions [35], [36], and binding sites of biomolecules [37], [38]
with remarkable performance. Matrix decomposition or fac-
torization, is a popular technique in Machine Learning [39],
[40]. In our essay, the low-rank approximation matrices of
lncRNA and protein is computed, where eigendecomposition
is wielded to reduce computing pressure. Moreover, due to
cross validation is different from leave-one-out cross vali-
dation, we list the comparable methods to the best of our
knowledge.

Our contributions can be summarized in threefolds: (I) We
integrate a variety kinds of similarity matrices as kernels for
LPI prediction; (II) We integrate the heterogeneous kernels
from different molecular spaces through Kernel Target Align-
ment (KTA) to deal with kernels fusion; (III) In terms of the
performance about the above predictors, we combine their
advantages with Semi-supervised Link Prediction (SLP) [41],
which utilizesMKLwithmatrix factorization and approxima-
tion.

II. METHODS
Technical flow chart of LPI-KTASLP is shown in Fig. 2.
The multivariate information in predicting LPI which has
been leveraged in this research is derived from the lncRNA
expression, the local network and the sequence information.
Differing from the state-of-the-art predictors, we propose an
identification of LPI with Kernel Target Alignment based
on Semi-Supervised Link Prediction (LPI-KTASLP), which
utilizesmatrix factorization and approximation.What’smore,
we carry out MKL by deploying KTA.

A. PROBLEM DESCRIPTION
Given the lncRNA-protein interactions that include n lncR-
NAs and m proteins. Specifically, l = {l1, l2, · · · , li, · · · , ln}
and P = {P1,P2, · · · ,Pj, · · · ,Pm} indicate the lncRNAs
and proteins, respectively. Hence, the interactions between
lncRNAs and proteins can be represented as an adjacency
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FIGURE 2. Technical flow chart of the proposed LPI prediction model. a. LncRNA and protein are two separated and independent spaces;
b. Kernel Target Alignment (KTA) is applied in estimating the weight of each kernel for the corresponding space; c. Kronecker Sum is the
technique about fusing different spatial data; d. Semi-supervised Link Prediction (SLP) is implemented according to (24).

matrix F with n× m, which is formulated as follows:

F =



F1,1 F1,2 · · · F1,j · · · F1,m
F2,1 F2,2 · · · F2,j · · · F2,m
...

...
. . .

...
. . .

...

Fi,1 Fi,2 · · · Fi,j · · · Fi,m
...

...
. . .

...
. . .

...

Fn,1 Fn,2 · · · Fn,j · · · Fn,m


n×m

(1)

where Fi,j denotes the corresponding value of element in
matrix F, 1 ≤ i ≤ n, 1 ≤ j ≤ m, and m, n ∈ N∗. If lncRNA
li interacts with protein Pj, the value of Fi,j is marked as 1,
otherwise it is marked as 0.

The interactions between lncRNAs and proteins can be
abstractly represented as a bipartite network. Therefore, iden-
tification of new interactions between lncRNAs and proteins
can be viewed as a recommender task, which can automat-
ically seek out latent associated individuals. It needs to be
emphasized that partial known links are used to predict poten-
tial interactions in the architecture, which are shown in Fig. 2.
The recommender system for predicting lncRNA-protein
interactions is achieved by means of MKL.

B. LNCRNA KERNELS AND PROTEIN KERNELS
LncRNA and protein feature spaces are derived from
the interactions between two kinds of molecules. The
lncRNA expression, lncRNA sequence and known interac-
tions between one lncRNA and all proteins are examined in
our framework. The information of lncRNA interactions can
be extracted from training adjacency matrix Ftrain whereas
interactions for each lncRNA corresponds to each row
of Ftrain. In addition, the training adjacency matrix Ftrain is

obtained by masking the known information where partial
known elements in matrix are set to 0 as validation set.

1) GAUSSIAN INTERACTION PROFILE KERNEL
The information of the interactions is the connectivity behav-
ior in the subjacent network [23]. Due to the broad applica-
bility of the Gaussian kernel, we use the Gaussian Interaction
Profile kernel (GIP) to device interactions kernel defined for
lncRNA li and lk (i, k = 1, 2, · · · , n) and protein Pj and Ps
(j, s = 1, 2, · · · ,m) respectively. Each element value in GIP
is calculated as follows:

Klnc
GIP(li, lk ) = exp(−γlnc‖Fli − Flk‖

2) (2a)

Kpro
GIP(Pj,Ps) = exp(−γpro‖FPj − FPs‖

2) (2b)

whereFli andFlk are the information of interactions for vector
lncRNA li and lk , FPj and FPs are the information of interac-
tions for vector protein Pj and Ps. In practice, the Gaussian
kernel bandwidths γlnc and γpro are set to 1.

2) SEQUENCE SIMILARITY KERNEL
A sequence S with length q is an ordered list of characters.
Inspired by the notions of [25], we use the normalized Smith-
Waterman (SW) score to measure the sequence similarity
between two sequences according to the following func-
tions (3a) and (3b).

Klnc
SW (li, lk ) =

SW (Sli ,Slk )√
SW (Sli ,Sli )

√
SW (Slk ,Slk )

(3a)

Kpro
SW (Pj,Ps) =

SW (SPj ,SPs )√
SW (SPj ,SPj )

√
SW (SPs ,SPs )

(3b)

where SW (·, ·) is Smith-Waterman score; Sli and Slk represent
the information of sequences for vector lncRNA li and lk ,
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respectively; SPj and SPs refer to the information of sequences
for vector protein Pj and Ps, respectively.

3) SEQUENCE FEATURE KERNEL
Conjoint Triad (CT) [42] and Pseudo Position-Specific
Score Matrix (Pse-PSSM) [43] are used to describe lncRNA
and protein sequences, respectively. Both two Sequence
Feature (SF) kernels Klnc

SF and Kpro
SF are built by Radial

Basis Function kernel (RBF) with bandwidth value equal
to 1.

4) LNCRNA EXPRESSION KERNEL
We utilize expression profiles of lncRNAs in 24 cell types
which are gleaned from the NONCODE database [44].
Hence, each lncRNA can be represented as a 24-dimensional
expression profile vector. The kernel of the lncRNAs expres-
sionKlnc

EXP is produced by a RBF, and the kernel bandwidth is
also set to 1.

C. KERNEL TARGET ALIGNMENT
The MKL model, uses 4 kernels in the lncRNA space
including Klnc

GIP, Klnc
SW , Klnc

SF and Klnc
EXP, and 3 kernels of

protein space including Kpro
GIP, Kpro

SW , and Kpro
SF . Conse-

quently, we need to combine these kernels by means of
linear combination in order to achieve the optimal ones.
The optimal lncRNA kernel can be formulated according
to (4a) and (4b).

K∗lnc =
4∑

a=1

wlnca Klnc
a , Klnc

a ∈ Rn×n (4a)

K∗pro =
3∑

a=1

wproa Kpro
a , Kpro

a ∈ Rm×m (4b)

where w denotes the weight of each kernel, and a represents
the corresponding type of kernel.

In previous studies, both Qiu and Lane [45] and
Gereke et al. [46] have employed Kernel Target Align-
ment (KTA) to estimate the corresponding weights. It is a fact
that the score of KTA can be considered as the correlation
between two kernels. The main idea is that larger alignment
to Ftrain produces higher contribution to the combined kernel
of a kernel matrix and vice versa. In this study, wlnca that
corresponds to the score between Klnc

a and the ideal kernel
matrix Kideal , is calculated as follows:

Kideal = FtrainFT
train Ftrain ∈ Rn×m. (5)

The train set matrix Ftrain is obtained by masking the labels
of the test set F, setting all test labels to 0. Hence, we get the
alignment score according to (6).

wlnca =

〈
Klnc
a ,Kideal

〉
F

‖Klnc
a ‖F‖Kideal‖F

(6)

where
〈
Klnc
a ,Kideal

〉
F is Frobenius inner product

Trace(·).

FIGURE 3. The schematic diagram of Kernel Target Alignment(KTA).
The value of alignment score wa is calculated according to the (6).

Actually, the lncRNA kernel weights in Fig. 3 are given by
vector wwwlncRNA whose values of elements are normalized by
using (7).

wwwlnca =
wlnca∑4
a=1 w

lnc
a

(7)

Similarly, we can also obtain protein kernel weights vector
wwwprotein, so that wwwlncRNA and wwwprotein can be used to conflate
these kernels.

Finally, the SLP algorithm is used to estimate the link
strength between lncRNAs and proteins.

D. SEMI-SUPERVISED LINK PREDICTION WITH
APPROXIMATE LINK PROPAGATION
1) ORIGINAL MODEL
In order to extrapolate the link strength for the interac-
tions with undetermined link state, the elements of adja-
cency matrix F are temporarily set to 0, and adjacency
matrix F is treated as a training dataset in supervised
learning, which is positive and unlabeled. We also respec-
tively construct similarity matrices Klnc and Kpro for each
Fi,j in matrix F (a bipartite network). As a further par-
enthetical explanation, these matrices are non-negatively
symmetric.

Raymond and Kashima [41] developed a scenario of semi-
supervised learning, which can be applied in predicting the
link of a bipartite network. The basic assumption of SLP is
that there is a high probability to have equal link strength
when a pair of elements inF are similar. The general objective
function of SLP is defined in (8).

min
F∗

σ

2
vec(F∗)TLvec(F∗)+

1
2
‖vec(F∗)− vec(F)‖22 (8)

where vec(·) is a vectorization operator that can generate the
arrangement of elements in one column, and F∗ denotes the
new link strength of the adjacency matrix F which can be
estimated with SLP.

The first term of (8) is the similarity measurement that can
justify whether two selected link strength values F∗i,j and F

∗
p,q

for the corresponding two pairs can be viewed as neighbors.
The second term in this equation represents loss function that
aims to fit the predicting result F∗ (partial known links F in
network). Regularization parameter σ can balance two terms
in (8).
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2) GENERATE LAPLACIAN MATRIX
In this study, L represents Laplacian matrix of Kronecker
kernel matrix K, which can formulated as in (9).

L = D−K (9)

where D denotes a diagonal matrix with diagonal elements∑
j Kij. Thus we can naturally represent the Laplacian Matri-

ces Llnc and Lpro in a similar way.
In order to induce the statistical distribution of the uniform

samples, the Laplacian matrices Llnc and Lpro can be normal-
ized as follows:

Llnc = Ilnc − D
−

1
2

lnc KlncD
−

1
2

lnc , Klnc ∈ Rn×n (10a)

Lpro = Ipro − D
−

1
2

proKproD
−

1
2

pro , Kpro ∈ Rm×m (10b)

where Ilnc and Ipro denote identity matrices for lncRNA and
protein, respectively.

Suppose that X is an s× t matrix and Y is a u× v matrix.
The Kronecker sum is the su× tv block matrix. For the sake
of combining multiple kernels as a whole, we use the ⊕ to
surrogate Kronecker sum. Kronecker sum Laplacian can be
formulated as

L = Dpro ⊕ Dlnc −Kpro ⊕Klnc (11a)

L = (Dpro −Kpro)⊕ (Dlnc −Klnc) (11b)

where Dpro and Lpro are mutually similar matrices.
Meanwhile, to facilitate the dealing procedure, Raymond

and Kashima [41] have used the normalized versions of
the Laplacian matrices in (11a). The normalized Kronecker
Laplacian sum matrix is given in (12a).

L = 3I− (D
−

1
2

proKproD
−

1
2

pro ⊕ D
−

1
2

lnc KlncD
−

1
2

lnc ) (12a)

L = 3I− (K̃pro ⊕ K̃lnc) (12b)

3) LOW RANK APPROXIAMTION
We have mentioned that F∗ is the prediction score matrix.
Here we give its form as in (13).

vec(F∗) = ((1+ 3σ )I− σ K̃pro ⊕ K̃lnc)−1vec(F) (13)

Nevertheless, it will lead to O(nm × nm) that calculates
the inverse of matrix when using Kronecker sum. In order
to avoid occupying too much physical memory during the
accounting process, the SLP adopts the matrix approximation
manner [41] to reduce the computing load. Thus, we can
obtain the low-rank approximation of the kernel matricesKlnc
and Kpro as follows in (14a) and (14b).

Klnc ≈ GlncGT
lnc, Glnc ∈ Rn×r1 (14a)

Kpro ≈ GproGT
pro, Gpro ∈ Rm×r2 (14b)

where r1 and r2 are the parameters of the approximate matri-
ces with 0 < r1 < n and 0 < r2 < m, respectively.

In addition, the algebraic sum of each row in the approxi-
mate matrices for lncRNA can be obtained as in (15).

Dlnc = diag(GlncGT
lncl) (15)

And the formula ofDpro has similar formwhich only needs
to exchangeGlnc and its transpose matrix withGpro andGT

pro,
respectively. Therefore, normalized kernel matrices can be
represented as (16) and (17).

K̃lnc ≈ (D
−

1
2

lnc Glnc)(GT
lncD

−
1
2

lnc ) (16a)

K̃lnc ≈ G̃lncG̃T
lnc (16b)

K̃pro ≈ (D
−

1
2

proGpro)(GT
proD

−
1
2

pro ) (17a)

K̃pro ≈ G̃proG̃T
pro (17b)

4) EIGENDECOMPOSITION
The formulation of the diagonal matrices about lncRNA and
protein are represented by 3̄lnc and 3̄pro, so it is obvious that
the sizes of these two matrices are r1 and r2, respectively.
Therefore, the eigendecomposition of G̃T

lncG̃lnc and G̃T
proG̃pro

can be easily obtained according to the eigenvalues for con-
crete forms as (18a) and (18b).

G̃T
lncG̃lnc = Ūlnc3̄lncŪT

lnc (18a)

G̃T
proG̃pro = Ūpro3̄proŪT

pro (18b)

Hence, the eigenvectors of the approximate kernel matrix
K̃lnc and K̃pro can be obtained as (19a) and (19b).

V̄lnc = G̃lncŪlnc3̄
−

1
2

lnc (19a)

V̄pro = G̃proŪpro3̄
−

1
2

pro (19b)

In (13), ((1+ 3σ )I− σ K̃pro ⊕ K̃lnc)−1 can be written as

((1+ 3σ )I− σ V̄diag(vec(3̄))V̄T)−1

=
I

1+ 3σ
+

V̄
(1+ 3σ )2

(
diag(vec(3̄))

σ
−

I
1+ 3σ

)−1V̄T

(20)

where V̄ = V̄pro ⊕ V̄lnc, and each element of the matrix 3̄ is
defined as (21).

3̄i,j = λ̄
(i)
lnc + λ̄

(j)
pro, 1 ≤ i ≤ r1, 1 ≤ j ≤ r2 (21)

Therefore, an approximate solution of the link prediction
can be formulated as in (22).

vec(F∗)=
1

1+3σ
vec(F)+

1
(1+3σ )2

V̄diag(vec(D̄))V̄Tvec(F)

(22)

where each element in D̄ is defined as

D̄i,j = (
1

σ3̄i,j
−

1
1+ 3σ

)−1 =
σ (1+ 3σ )3̄i,j

1+ 3σ − σ3̄i,j
(23)

5) FINAL SEMI-SUPERVISED LINK PREDICTION FRAMEWORK
Recapitulating the aforementioned equations, F∗ can be effi-
ciently obtained as in (24).

F∗ =
1

1+ 3σ
F+

1
(1+ 3σ )2

V̄lnc(D̄� (V̄T
lncFV̄pro))V̄T

pro

(24)
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FIGURE 4. Grid search optimization for r1 and r2 on benchmark dataset.

Algorithm 1 Semi-Supervised Link Prediction
AlgorithmWith Approximate Link Propagation in Predicting
LPI
Input: Similarity matrices Klnc ∈ Rn×n and Kpro ∈ Rm×m;

the bipartite network F ∈ Rn×m.
Output: The new link strength of the bipartite network F∗.
1: Calculate the low-rank approximation matrices of Klnc

and Kpro by (14), and adjust the parameters of approxi-
mate matrices r1 and r2;

2: Calculate the normalized matrices G̃lnc and G̃pro by (16)
and (17), and also analyze the eigendecomposition of
G̃T
lncG̃lnc (18a) and G̃T

proG̃pro (18b), and then obtain the
eigenvectors V̄lnc and V̄pro by (19a) and (19b);

3: Calculate the elements of the matrix D̄ by (23), and adjust
the regularization parameter σ ;

4: Calculate the elements of F∗ by (24).

where � denotes the Hadamard product of two matrices,
i.e. element-wise multiplication, also known as the Schur
product [47].

The objective function about the SLP is illustrated by
elucidating in Algorithm 1.

III. RESULTS
Here we use the benchmark dataset to evaluate our approach,
in order to ensure fairness and objectivity and to conduct
an independent analysis of the single kernel performance.
Moreover, the way of KTA is not only compared with a
mean weighted model but also has been assessed in a paral-
lel comparison to well established algorithms. Additionally,
we utilize the case study to evaluate our method in predicting
unknown lncRNA-protein interactions. The results are avail-
able at https://github.com/6gbluewind/LPI_KTASLP.

A. BENCHMARK DATASET
NPInter database stores experimentally verified interactions
between non-coding RNAs and other biomolecules such as
genomic DNAs and proteins. In addition, NONCODE [44]
is an integrated knowledge database, which has collected
non-coding RNAs. Zhang et al. [9] obtained experimentally
determined lncRNA-protein interactions with 1114 lncRNAs

and 96 proteins from NPInter V2.0 [48]. The sequence infor-
mation of proteins is collected from the SUPERFAMILY
database [49]. To facilitate computation, Zhang removed
lncRNAs and proteins whose expression or sequence infor-
mation is unavailable. Those lncRNAs and proteins with only
one interaction were also removed. Finally, they collected a
dataset with 4158 lncRNA-protein interactions which con-
tains 990 lncRNAs and 27 proteins.

B. EVALUATION MEASUREMENTS
To test the stability of ourmodel, treatments such as randomly
selecting training set and test set, model-building and model-
evaluating, have been applied in five-fold Cross Validation
(5-fold CV). The Area Under ROC curve (AUC) and Area
Under the Precision-Recall curve (AUPR) measures have
been used to evaluate our method. Due to the sparsity of true
lncRNA-protein interactions, AUPR is more significant than
AUC as a quality measurement.

C. EXPERIMENTAL ENVIRONMENT
In this paper, our developed predictor has been imple-
mented by using MATLAB to carry out. All programs have
been validated on a computer with 3.8 GHz 4-core CPU,
20 GB memory and Windows operating system. The opti-
mal regularization parameter σ is set as 0.125, which is
obtained by enumerating the best value from number set
{2−5, 2−4, · · · , 20, · · · , 25}.

D. PARAMETER OPTIMIZATION
Grid search schema is adopted to get the optimized param-
eters of approximate matrices r1 and r2. The range of r1 is
from 20 to 980 and each step is 20. Similarly, r2 is from 2 to
27 and each step is 1. We have selected the optimal values of
r1 and r2 by the highest AUPR value and the lowest values of
r1 and r2, because the smaller the values of r1 and r2, the less
the running time of the algorithm. We find that r1 = 160 and
r2 = 17 are the best parameters (AUPR: 0.6148) as shown
in Fig. 4.

E. PERFORMANCE ANALYSIS
In this subsection we analyze the greatest contribution of
different kinds of kernel matrices, the use of a single ker-
nel, the mean weighted kernels and the weighted kernels
with KTA conducted, respectively. By testing these kernels
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FIGURE 5. The ROC and PR curve of different kernels in 5-fold CV on benchmark dataset.

FIGURE 6. The kernel weights of LPI-KTASLP on benchmark dataset.

on the benchmark dataset in Fig. 5, we have obtained the
following: The AUPRs of the GIP kernel, the sequence fea-
ture kernel and the sequence similarity kernel are 0.4576,
0.3624 and 0.4989, respectively. The AUPRs of the sequence
similarity kernel is higher than the AUPRs of other single
kernels. Moreover, the AUPR of the multiple kernels of
the mean weighted model has reached a value of 0.6070
that is better than all single kernels. Multiple kernels with
KTA weighted model, achieve AUPR equal to 0.6148, which
is an outstanding performance. In Fig. 5, we can see that
the KTA performs better than the other models. Obviously,
KTA is helpful for improving the performance of predicting
lncRNA-protein interactions.

In addition, Fig.6 shows the weight of each kernel, includ-
ing lncRNA space and protein space. Obviously, weights of
the GIP kernel obtain the largest values on the whole space.
It is clearly that lncRNA expression kernel has a lowweight in
lncRNA space which has been shown in Fig.6. It is illustrated
that the weighting strategy has reached its goal to select the
optimal combination of kernels. Expression information has
not played a significant role, but it indeed has a certain weight
to contribute the result as an advantage.

F. COMPARISON TO EXISTING PREDICTORS
Our approach is also compared with other existing methods
on the benchmark dataset, showed in Table 1. We observe
that the highest AUPR of 0.6148 is obtained by our
proposed method, which is superior to: Integrated LPLNP

TABLE 1. Comparison to the existing methods in 5-fold CV on benchmark
dataset.

(AUPR: 0.4584) [9], RWR (AUPR: 0.2827) [50], CF (AUPR:
0.2357) [51], LPIHN (AUPR: 0.2299) [18] and LPBNI
(AUPR: 0.3302) [19]. There are two possible reasons for
the satisfied performance. Firstly, the KTA effectively com-
bines multivariate information by exploiting Multiple Kernel
Learning. Simultaneously, LPI-KTASLP is an effective semi-
supervised link prediction algorithm which employs Kro-
necker sum to fuse lncRNA and protein feature spaces. Since
the imbalance of the number of lncRNAs and proteins can
lead to prediction difficulties, PRC is more effective than
ROC on highly imbalanced datasets. Therefore, under the
situation that we acquire competitive AUC value among
the state-of-the-art schemes, our method can be applied in
the extrapolation of LPI.

G. COMPARISON TO THE OTHER SEQUENCE FEATURE
EXTRACTION METHODS
We have extracted CT and PsePSSM as features to build
sequence feature kernel. Because we want to illustrate the
outcome of the comparison with respect to sequence feature
extraction methods, including CT, PsePSSM, Ngram [52],
HOG [53] and AVBLOCK [54], we show the results
in Table 2.We notice that CT-PsePSSMgets AUPR of 0.6148,
which is higher than the results of Ngram-HOG (AUPR:
0.5735) and Ngram-AVBLOCK (AUPR: 0.5869).

H. COMPARISON BETWEEN KTA AND OTHER KERNEL
FUSION METHODS
To compare KTA with other kernel fusion methods,
we also find several other weighted models, including

13492 VOLUME 7, 2019



C. Shen et al.: LPI-KTASLP: Prediction of LPI by Semi-Supervised Link Learning

FIGURE 7. The ROC and PR curve by local LOOCV on benchmark dataset.

TABLE 2. Comparison between CT/PsePSSM and other feature extraction
methods on benchmark dataset.

TABLE 3. Comparison between KTA and other kernel fusion methods on
benchmark dataset.

fast kernel learning (FastKL) [55], mas_UMKL [56] and
sparse_UMKL [57]. The outcome of the comparison are
listed in Table 3. We can see clearly that KTA achieves
the highest AUPR value, which gets 0.6148, and is
superior to FastKL (0.5418), mas_UMKL (0.4696) and
sparse_UMKL (0.6095). Simultaneously, we also notice that
KTA and sparse_UMKL have obtained competitive perfor-
mance both on AUPR and AUC.

I. CASE STUDY
Local Leave-One-Out Cross-Validation (LOOCV) used to
evaluate the predictive performance. The aim of local
LOOCV is to verify the capability of the algorithm that deals
the samples without any known associations, while global
LOOCV assesses the capability of a model that for predicting
a known specific association. Compared with global LOOCV,
local LOOCV is better for assessing a model. Consequently,
we adopt this kind of strategy to draw as the evaluation
scenario. Local LOOCV masks the relationships between
one protein and all lncRNAs. Our model is trained by the
rest of the known information, no matter whether they inter-
acted or not and whether they were tested on masked rela-
tionships. For a protein not appearing in trial, our method
can estimate the strength of interactions between this protein
and gross 990 lncRNAs in the experiment. Then, we rank

TABLE 4. Top 20 novel interactions on protein ENSP00000309558.

these strength of the interactions in a descending order, since
the high ranking with high interaction possibility. In Fig. 7,
we can see the performances of single kernel, the mean
weighted kernels and the weighted kernels with KTA. Mul-
tiple kernels with KTA weighted model also gain the best
performance with the AUPR value equal to 0.4406 and the
AUC value equal to 0.7407.

As it is shown in Tables 4 and 5, two cases including
proteins ENSP00000309558 and ENSP00000401371 of the
top 20 interactions are extrapolated by the LPI-KTASLP.
We have checked them up in the masked relationships
between one protein and all lncRNAs. Our approach
achieves identification ratio of 14/20 and 12/20 on proteins
ENSP00000309558 and ENSP00000401371, respectively.

J. EVALUATION ON ZHENG DATASET
In order to measure the stability of our model from
experimental point of view, we further employ another
dataset, which is mentioned in a recent publication of
Zheng et al. [58] to corroborate the capability of prediction.
The size of this dataset is bigger than the benchmark one,
especially the protein number, which illustrated in Table 6.
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TABLE 5. Top 20 novel interactions on protein ENSP00000401371.

TABLE 6. The information of two datasets in the experiment.

TABLE 7. The AUPR and AUC of different methods on Zheng dataset.

Homo sapiens lncRNA-protein interactions come from
NPInter (v2.0), while protein sequences are obtained from the
UniProt database and lncRNAdatabase is NONCODE (v4.0).
There are totally 4, 467 lncRNA-protein interactions in
the dataset of Zheng et al. [58], involving 1, 050 lncRNAs
and 84 proteins. We have adopted 5-fold CV on the the
Zheng dataset, and have compared LPI-KTASLP with the
results of Zheng et al. in Table 7. The value of AUC
in the LPI-KTASLP is 0.9152, which is higher than the
PPSNs. Moreover, the application on the Zheng dataset
(AUPR=0.7173) represents the stability of the LPI-KTASLP
on an imbalanced dataset.

IV. CONCLUSIONS AND DISCUSSIONS
In this paper, we have proposed a novel prediction method
of lncRNAs-protein interaction by using a semi-supervised
MKL learning approach. LPI-KTASLP employs the operator
of Kronecker sum to fuse lncRNA and protein spaces. Then,
semi-supervised learning is used to estimate the strength
of interactions between lncRNAs and proteins. Towards the
application of five-fold cross validation (5-fold CV) on
benchmark dataset, LPI-KTASLP can achieve better results
on the benchmark dataset. Furthermore, a comparison with
state-of-the-art methods, proves that LPI-KTASLP achieves
satisfactory performance and demonstrates the robustness of
our model.

Because the topic of ncRNA is so fashionable, that cur-
rently attracts a lot of people continuously pursue the cutting
edge. For instance, the AUPR of method IRWNRLPI [22],
which is higher than our result, is due to integration strategy.
IRWNRLPI combines random walk and neighborhood reg-
ularized logistic matrix factorization to avoid the unsatisfac-
tory result of using one of the two methods alone. Moreover,
IRWNRLPI adopts global LOOCV to assess the capability
of a model that for predicting a known specific association,
while local LOOCV in our experiment is used to verify the
capability of the algorithm that deals the samples without any
known associations.

In the future, we can further improve the prediction by
adding more related information, such as available 3D struc-
ture data, or take the integration strategy. More similarity
matrices can be constructed by employing various types of
classical distance measures. And we can also construct a
mini-repository for kernels, through considering the selec-
tions including of the RBF kernel subtypes and of the con-
ditional definition kernels.
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