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ABSTRACT The separating behavior defines the division of a crowd from a single flow into two distributary
flows due to the different pedestrians’ destinations. Nevertheless, in the existing literature on pedestrian
flow, there is a lack of simulation research on the separating crowd behavior in a T-shaped channel.
By conducting a series of controlled experiments, we analyzed the moving trajectories and the spatial and
temporal distribution characteristics of pedestrians in the separation process. Based on an analysis of the
controlled experiments, we proposed an improved social force model that fully considers the characteristics
of pedestrians’ swapping locations, and refines the directions of pedestrians’ expected speeds in three stages
of the pedestrian separation process. During the simulation, we applied the improved model to explore
the effects of the pedestrians’ swapping locations on the macroscopic phenomena, microscopic individual
behavior, and traffic efficiency within a T-shaped channel. The simulation results show that if pedestrians’
swapping locations are concentrated in a certain area close to the entrance, the traffic efficiency in the
T-shaped channel will be higher than that if the pedestrians’ swapping locations are dispersed. Moreover,
as the flow rate at the entrance increases, the swapping location becomes more concentrated closer to the
entrance, the mean speed increases, and fewer conflicts occur between the pedestrians.

INDEX TERMS Crowd safety, pedestrian dynamics, swapping location, traffic optimization.

I. INTRODUCTION
With increases in the size and frequency of mass events,
studies of crowd disasters and simulations of pedestrian
flows have become important research areas [1]. Pedestrians
exhibit complex movement behaviors during various maneu-
vers, including turning, crossing, merging and separating,
and these complex movements directly affect the efficiency
of building evacuations and the safety of pedestrians. As an
effective means of analyzing the characteristics of pedestrian
movement behaviors, crowd simulations can synthetically
reproduce the individual movement behaviors of pedestrians,
the interactions among pedestrians and the influences of the
walking environment on pedestrians. Accordingly, research
involving simulations of pedestrian flow has tremendous sig-
nificance for evacuation analysis, passenger transport hub
design and traffic optimization [2].

Researchers have conducted targeted research on the
behavioral characteristics of pedestrians according to differ-
ent real dynamic scenarios; the corresponding studies can
be divided into the following representative research cate-
gories. One category involves counter flow within a bidi-
rectional channel [3]–[7]; this kind of research focuses on
the behaviors and decision-making processes associated with
counter flow during the crossing process and the influencing
factors of the lane formation phenomenon. For this purpose,
researchers have modeled a variety of behaviors, includ-
ing those associated with walking sideways, the following
behavior, and the right-preference behavior of counter flow.
Another category involves pedestrian flow in a narrow bot-
tleneck [8]–[11]; this research focuses on organizing the
movements between two groups of pedestrians so that
they can efficiently pass through a bottleneck in opposite
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directions [12]. Accordingly, researchers have modeled the
spatial and temporal separation rules of pedestrian flow in
a narrow bottleneck and analyzed the influencing factors on
oscillatory flow and the lane formation phenomenon in a
narrow bottleneck. The evacuation flow in a room consti-
tutes another research topic [13]–[15] that focuses on the
evacuation flow in a room under emergency conditions. For
this category, researchers have considered the influences of
panic, smoke, fire evacuation and emergency signs on the
movements of pedestrians with the ambition of finding ways
to improve the evacuation efficiency based upon changes in
the room structure and the design of guidance schemes. The
final category of research involves the flow of pedestrians in a
T-shaped channel [16]–[22]; this kind of research focuses on
the merging and separating behaviors of crowds of pedestri-
ans in T-shaped channels. The merging behavior represents
the movements of a crowd of pedestrians joining together
from multiple directions to form a single streamline based on
the samemoving pedestrian target; by contrast, the separating
behavior constitutes the movements of a crowd of pedestrians
from a single streamline into two different directions based on
different moving pedestrian targets. Researchers investigat-
ing the merging crowd behavior in a T-shaped channel obtain
empirical data through organizing a series of controlled labo-
ratory experiments to analyze the phase transformationmech-
anism and the cause of blockages during the merging process
of pedestrian flow. As a result of these experiments, a series
of basic graphs that reflect the macroscopic features of merg-
ing crowd behaviors in T-shaped channels and a large num-
ber of simulation models reflecting the interactions between
pedestrians during the aggregation of pedestrian flows have
been established. In our opinion, the research on the merging
crowd behavior in a T-shaped channel is very mature.

Compared with the studies that have been reported on the
merging crowd behavior, little research has been conducted
on the separating crowd behavior in a T-shaped channel.
When a pedestrian transitions from the main flow to one of
the two destinations of the opposite branches in a distributary
flow, conflicts between pedestrians and even congestion can
arise. In the process of pedestrian separation, the individual
decision-making mechanism and the interaction mode of
pedestrians are also of great research value. In the existing
research on the separating crowd behaviour in a T-shaped
channel, the research performed by Fu et al. [21] is very
representative, as it provides a valuable basis for subse-
quent research; in particular, they proposed a modified floor
field cellular automaton (CA) model with a corresponding
probability and studied the effect of the entrance density
and the left-moving probability on the passing efficiency of
pedestrians within a T-shaped channel through a simulation.
In a follow-up study based on the research performed by
Fu, Jia et al. considered the use of guide signage to improve
the separation efficiency of pedestrian flow in a T-shaped
channel and established a modified CA model considering
the impact strength of the guide signage [22]. Nevertheless,
the research on the separating crowd behavior in a T-shaped

channel is still in its infancy due to a lack of support from
controlled laboratory experiments and the fact that the simu-
lation models lack validation with empirical data. In addition,
the existing models do not fully consider the impacts of per-
sonality factors such as pedestrian preferences for swapping
locations and their surroundings on the pedestrian decision-
making process during the separating of pedestrian flow.
These impacts cause certain deviations between the simula-
tion results and real dynamic scenarios.

In our opinion, among the studies conducted heretofore
on the simulation of pedestrian flow, relatively little simu-
lation research has been performed on the separating crowd
behavior in T-shaped channels, and even fewer simulation
models have been developed with regard to the separating
crowd behavior in T-shaped channels based on the social
force model. In addition, the existing models also lack con-
siderations of the differences in the walking habits of pedes-
trians and lack practical controllable experimental data to
guide the simulation modeling. Consequently, we hope to
contribute to this research field through the findings of this
article. Here, we conduct a series of controlled experiments
regarding the separating crowd behavior in a T-shaped chan-
nel, obtain experimental data on the walking trajectories and
swapping locations of pedestrians moving during the process
of separation. Based on the practical data, we propose an
improved social force model to study the separating crowd
behavior, and we analyze the influencing factors on the traffic
efficiency within a T-shaped channel with the help of the
improved model.

The key contributions of this paper are summarized as
follows:
• We conduct a series of controlled experiments on the
separating crowd behavior in a T-shaped channel. Based
on the experimental results, the distribution of pedes-
trians’ swapping locations moving during the process
of separation is analyzed. We also make a comparison
of the spatial and temporal distributions characteristics
and macroscopic phenomena of pedestrians flow in two
sets of controlled experiments in which the pedestrians’
swapping locations are either dispersed or concentrated.

• Based on the data of real-world scenarios and pedes-
trians’ behavior characteristics obtained by controllable
experiments, we improve the social force model by
refining the desired speed direction of each pedestrian.
Our improvedmodel fully considers the behavioral char-
acteristics of pedestrians at different stages in the pro-
cess of separation, and clearly reflects the influence of
swapping location on pedestrians’ movement.

• We conduct a series of simulation experiments regarding
the separating crowd behavior in a T-shaped channel.
The experimental results show that our improved model
can well restore the motion characteristics of pedestrians
in three different stages of the separation process in
T-shaped channel. We also analyze the impact of the
swapping location on the traffic efficiency in a T-shaped
channel, and find ways to improve the traffic efficiency.
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The remainder of this paper is organized as follows.
In Section 2, we provide an overview of related work.
In Section 3, we design controlled laboratory experiments
regarding the separation of pedestrian flow within a T-shaped
channel and obtain relevant empirical data. In Section 4,
we revise the social force model to simulate the separating
crowd behavior in a T-shaped channel. In Section 5, we verify
the accuracy of the improved social force model and use the
improved model to analyze the influencing factors on the
evacuation efficiency of a separating pedestrian flow within
a T-shaped channel. In Section 6, we conclude our work.

II. RELATED WORK
At present, there are many microscopic models that are suit-
able for simulation research on the moving behaviours of
pedestrians. Overall, these models can be divided into two
categories: discrete space models represented by lattice gas
(LG) [23]–[25] and CA models [26]–[28] and continuous
space models represented by the social force model [29]–[31]
and VO-based (Velocity Obstacles ) model [32]–[34].

Discrete space models divide the pedestrian space into
small fixed cells and allow pedestrians to move at or within
a fixed node or grid, and the pedestrian positions are updated
at discrete time intervals [35]–[37]. In discrete space models,
an approximate actual pedestrian behavior can be described
by assigning simple rules to each individual, and the pedes-
trian movement rules can be intuitively represented by the
probability of inhabiting a node or grid. This simple structure
is known to be effective for reproducing collective phenom-
ena observed in real pedestrian flow. Because of the dis-
cretization of both time and space, it is not necessary to use
complex numerical methods to simulate the movements of
pedestrians when using discrete space models; as a result,
discrete space models exhibit a high simulation efficiency.
However, some researchers have noted that the walking space
in a discrete space model is discretized into square lattices,
and thus, the choices for the speed and direction are limited;
moreover, some drawbacks are encountered when represent-
ing multidirectional flow, especially for diagonal movements,
and it is difficult to represent interactive cases in the real
world [38]–[40].

In contrast to discrete space models, continuous space
models such as the social force model [29], [30], [41] allow
pedestrians to move continuously within a predefined geom-
etry [7]; in addition, the speed of a pedestrian can be moved
from 0 to the maximum continuously, and the movement
directions in continuous space models are more flexible than
those in discrete space models. Additionally, due to the con-
tinuity of the space, the social force model can effectively
reproduce the interactions between the pedestrians andmove-
ment rules during a simulation of multidirectional pedes-
trian flow. Hence, the social force model constitutes a good,
basic model for microscopic pedestrian simulations, but it is
necessary to improve the social force when we restore the
pedestrian walking rules or behavioral characteristics under
some special conditions, and some practical factors need to be

integrated into the model to improve the simulation accuracy,
which cannot otherwise be guaranteed.

Follow-up simulation research has been carried out
on more realistic dynamic scenarios by using the con-
tinually improving social force model. For instance,
Helbing et al. [42] studied the herding behavior of pedestrians
during a panicked situation in a smoky room; they considered
the influence of the movement directions of surrounding
pedestrians on their desired directions. In addition, Guo [12]
studied the spatial and temporal separation of pedestrians
moving in a counter flow through a bottleneck using the
improved social forcemodel and carefully defined the desired
directions of the pedestrians, through which he described the
spatial and temporal separation rules and moving character-
istics of pedestrians within a counter flow moving through
a narrow bottleneck; he also analyzed the effects of these
separation rules on the traffic efficiency using the improved
model. Furthermore, Yuan et al. used the improved social
force model to study the crossing process of pedestrians in
a bidirectional channel [43], [44] and proposed a new force
model based on the social force model in consideration of
individual moving preferences and following behaviors; sub-
sequently, they used the improvedmodel to study the merging
and separation processes of pedestrian flow and analyzed the
effects of individual and mass pedestrian behaviors on the
self-organization of pedestrian flow.

Reciprocal Velocity Obstacles model (RVO model) pro-
posed by Van Den Berg et al. [32], [33] is a kind of VO-based
model for real-time multi-agent navigation. RVO model can
simulate the collision-free motion of a large number of
pedestrians in dense and complex scenes. Van Den Berg et al.
introduced the concept of Velocity Obstacle to generate
collision-free locomotion of agent based on velocity space
sampling, transforms complex individual evacuation prob-
lems into low-dimensional linear planning problems, and in
their simulation can add dynamic obstacles. Different from
the social force model, the collision avoidance process is
realized by the interaction force between pedestrians and
pedestrians’ desired speed are rarely changed, in the RVO
model, the collision avoidance process between pedestrians
is completely determined by the speed and available space
between them. In order to prevent collisions between pedes-
trians, the new desired speed is calculated every time step, and
the continuous new desired speed generated can ensure that
pedestrians will not collide for a foreseeable time, resulting
in a collision-free local navigation path. And different from
the social force model, in the RVO model, the displacement
and speed of the next time step do not need to be solved by
complex numerical methods (e.g., the Euler method or the
Runge-Kutta method), so the simulation efficiency of RVO
model is more efficient than that of social force model.

There also exist many models based on agent simulation,
in which motion trajectories are computed for each indi-
vidual agent in a crowd [45]–[48]. The agent-based simu-
lation model produces a detailed simulation result for each
agent in the simulation for each simulation step. Each agent
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represents a pedestrian in a real-life scene, the agent-based
simulation model can perceive environmental information,
such as obstacles and crowd distribution, and analyze the
location of candidate path nodes, so that it can build a knowl-
edge base of environmental information. In a recent study of
agent-based simulation model, Luo et al. [48] identify two
inter-related proactive steering behaviors, gap-seeking and
following behaviors and proposed the detailed behavior mod-
els by considering the detected gap as a dynamic moving
object. Their results show that the performance of the new
agent-based model is better or at least comparable to the
comparedmodels(e.g. DSmodel [49] ) in terms of the realism
at both individual and crowd levels.

III. EXPERIMENTS
A. EXPERIMENTAL SETUP
Controlled experiments involving a separating pedestrian
flow within a T-shaped channel were performed in a gym-
nasium in Changchun, China, in January 2018. A total
of 60 participants (34 males and 26 females with a mean
age of 20 years) were selected from different departments
of the local institute. Referring to the preparation details of
Shi et al. [19] for the setup of the experiment, some indi-
vidual attributes of the participants were investigated. The
average height of the male participants was 1.74 ± 0.1 m,
and that of the female participants was 1.62 ± 0.12 m.
Because the experiment was conducted in the winter, the par-
ticipants were heavily dressed; the average shoulder width
was 0.51 ± 0.03 m. The participants’ individual desired
walking speed (i.e., the average free walking speed) was
v0i (t) = 1.0 m/s ± 0.2 m.

FIGURE 1. The experimental scenario of free motion.

As shown in Fig. 1, in the experimental scenario, the width
of the inlet channelW1 is 4 m, the length of the inlet channel
L1 is 10 m, the width of the outlet channelW2 is 2 m, and the
length of the outlet channel L2 is 8 m. In the experiment, all of
the participants entered from the entrance of the inlet channel
with an average flow rate of 1.25 persons/m/s. The destination
of the participants dressed in red with a red hat was exit B on
the right side of the outlet channel, and the destination of the
participants dressed in blue with a blue hat was exit A on the
left side of the outlet channel. The numbers of red pedestrians
and blue pedestrians were the same, and the positions of

the red pedestrians and blue pedestrians entering the channel
were random. Sixty participants walking within this limited
space was sufficient to create a stable flow situation.

FIGURE 2. The experimental scenario of induced motion.

The controlled experiment consisted of two parts. In the
first part, the participants moved freely 5 times in the scene
shown in Fig. 1. In the second part, as shown in Fig. 2,
we requested that the participants who were not on the same
side of the inlet channel as their target direction to move
through the pedestrian flow to the exit at a particular location;
in other words, the blue pedestrians who were on the right
side of the inlet channel were requested to move to the left
side, and the red pedestrians who were on the left side of the
inlet channel were requested to move to the right side to the
same, concentrated position. In this experiment, the induced
swapping location was set at 2 m from the entrance, and
the experiment was repeated 5 times. As shown in Fig. 2.a,
the green dotted line represents the induced swapping loca-
tion, and Fig. 2.b shows a video screenshot of the experiment.

B. EXPERIMENTAL DATA ANALYSIS
First, we focused on the individual walking trajectories of
pedestrians in free motion without induction. We choose two
sets of representative motion trajectories for the analysis;
their positions are taken every second starting from the time
at which the pedestrians enter the channel. Fig. 3 shows a
video screenshot of the movement of the blue pedestrian,
and Fig. 4 shows a video screenshot of the movement of
the red pedestrian. Fig. 5.a displays the walking trajecto-
ries of both types of pedestrians, where the red line is the
red pedestrian’s walking trajectory, and the blue line is the
blue pedestrian’s walking trajectory. We observe significant
differences in their walking trajectories. The blue pedestrian
consciouslymoves towards her/his destination (the left side of
the outlet channel) upon initially entering the channel. After
entering the inlet channel, there is a continuous leftward dis-
placement in the trajectory of the blue pedestrian, and she/he
passes through the center line of the inlet channel at a distance
between 3 and 4 m from the entrance. In contrast to the blue
pedestrian, the red pedestrian prefers to move initially along
the direction of the inlet channel; at this stage, the walking
trajectory of the red pedestrian is similar to a straight line.
Then, the red pedestrian moves to the right side of the channel
by passing the center line of the inlet channel at a distance
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FIGURE 3. The video screenshots used to obtain the walking trajectories of the blue pedestrians.

FIGURE 4. The video screenshots used to obtain the walking trajectories of the red pedestrians.

between 6 and 7 m from the entrance. By comparing these
trajectories, there are significant differences in the swapping
locations of these two types of pedestrians.

Next, we collected the walking trajectories of all partici-
pants in the free movement experiment. As shown in Fig. 5.b,
we find that the swapping locations of the pedestrians are
not concentrated in a certain area; rather, due to the person-
ality factors of the pedestrians, the swapping locations are
scattered throughout the whole inlet channel. To research the
pedestrians’ swapping characteristics and crossing processes
in a T-shaped channel, we use Li to indicate a pedestrian’s
swapping location, that is, the initial position that produces
a leftward or rightward displacement continuously in her/his
walking trajectory. Taking the two pedestrians in Fig. 5.a as
an example, the Li of the red pedestrian is 3 m, and the Li
of the blue pedestrian is 0 m. As shown in Fig. 6, we analyze
and count the Li values of all participants in the 5 experiments

and obtain the distribution of Li accordingly. We discover
that most pedestrians tend to move through the pedestrian
flow to the exit at a distance of approximately 6 m from
the entrance (77% of participants start changing lanes in the
interval [0,6 m)); moreover, fewer pedestrians change their
lanes the closer they are to the outlet channel (only 8% of
participants change their lanes in the interval [8,10 m)).

To further analyze the impacts of the differences in the
swapping location on the pedestrian flow in a T-shaped chan-
nel, we compared the experimental data before and after
the induction. Fig. 7.a and Fig. 7.b are video screenshots
of the free movement experiment; the time in Fig. 7.a is
10 seconds, and the time in Fig. 7.b is 20 seconds. Sim-
ilarly, Fig. 7.c and Fig. 7.d are video screenshots of the
induced movement experiment; the time in Fig. 7.c is 10 sec-
onds, and the time in Fig. 7.d is 20 seconds. By comparing
the video screenshots, the pedestrians are more dispersed
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FIGURE 5. A comparison of the pedestrians’ walking trajectories.
(a) displays the walking trajectories of both types of pedestrians;
(b) shows the walking trajectories of all participants in the free motion
experiment.

FIGURE 6. The distribution of the pedestrians’ swapping locations.

throughout the inlet channel before the induction in the
free movement experiment, and the locations of the two
distributary flows are closer to the outlet channel. After
the induction, the swapping locations of the pedestrians are
limited to within a certain region, and the main flow from
the induced swapping location is directly divided into two
distributary flows. This difference in the macroscopic phe-
nomena becomes more apparent during the walking process.
As shown in Fig. 7.b, when the duration of the free move-
ment experiment reaches 20 seconds, the pedestrians are still
changing lanes in the middle of the inlet channel. In contrast,
as shown in Fig. 7.d, when the duration of the induced move-
ment experiment reaches 20 seconds, two distinct distributary
flows have formed within the channel, and almost all of the
pedestrians have completed the process of changing lanes.

We also compared the spatial and temporal distribution
characteristics of the pedestrians in the free movement and
the induced movement experiments. As shown in Fig. 8,
we record the variations in the numbers of pedestrians with
both time and space in the left half of the T-shaped channel.
Fig. 8.a and Fig. 8.b represent the changes in the number of

blue pedestrians and red pedestrians, respectively, in the free
movement experiment, while Fig. 8.c and Fig. 8.d represent
the changes in the number of blue pedestrians and red pedes-
trians, respectively, in the induced movement experiment.
As shown in Fig. 8, due to the random locations of the pedes-
trians entering the inlet channel, no obvious difference in the
quantities of blue pedestrians and red pedestrians is observed
at the entrance of the channel (channel lengths between 0 m
and 2 m) at the beginning of the free movement experiment.
However, during the course of the experiment, since the blue
pedestrians’ destination is the left side of the outlet channel,
the blue pedestrians gradually move towards the left side
of the inlet channel, and the number of blue pedestrians on
the left side of the channel increases significantly beyond
the number of red pedestrians. When the experiment reaches
20 seconds, only a few (i.e., 1 or 2) red pedestrians are still
within the channel at distances between 6 and 10 m, and the
outlet channel (channel lengths between 10 m and 12 m) is
entirely inhabited by blue pedestrians. During the induced
movement experiment, the numbers of blue pedestrians and
red pedestrians change faster than those in the free movement
experiment; moreover, when the induced experiment reaches
17 seconds, no red pedestrians are within the channel between
4 and 12 m. In addition, comparing the average times used in
the two sets of experiments, the duration of the freemovement
experiment is 34 seconds, and the duration of the induced
movement experiment is 32 seconds.

This series of controlled experiments provides the follow-
ing important implications:
1. There are obvious differences in the swapping locations of
pedestrians in a T-shaped channel. Therefore, during simula-
tion modeling, we need to design attributes for each pedes-
trian to reflect these differences in the swapping locations.
2. Different swapping locations can generate different macro-
scopic phenomena, and differences in the spatial and tempo-
ral distributions of pedestrian flow will also cause variations
in the traffic efficiency within a T-shaped channel. We can
thus use induction to change the swapping locations within
the pedestrian flow so that the flow can be moved more effi-
ciently, thereby improving the traffic efficiency in a T-shaped
channel.

In the following work, we will construct a new simulation
model that considers the differences in the swapping location
based on the social force model; then, through simulation
experiments, we will analyze how the swapping location
affects the channel traffic efficiency and find ways to improve
the traffic efficiency within a T-shaped channel.

IV. MODEL
The social force model for pedestrian flow is as follows [42]:

mi
dvi
dt
= fwill +

∑
j(6=i)

fij +
∑
W

fiw (1)

fwill = mi
v0i (t)e

0
i (t)− vi(t)

τi
(2)
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FIGURE 7. A comparison of the video screenshots before and after the induction.

FIGURE 8. Comparison of the spatial and temporal distributions of pedestrians before and after the
induction.

In the social force model, the movement of a pedestrian
is affected by three types of forces: the will force fwill that
reflects the influence of a moving target on the pedestrian,
the interaction force fij between a pedestrian and nearby
pedestrians, and the interaction force fiw between a pedestrian
and nearby walls or obstacles.

The equation (2) for the will force fwill indicates that a
pedestrian i ofmassmi likes tomove at a certain desired speed

v0i in a certain direction e
0
i , which is generally the destination

direction; therefore, a pedestrian tends to correspondingly
adapt her/his actual velocity vi with a certain characteris-
tic time τi. The function of fwill enables a pedestrian to
achieve her/his desired speed v0i and to shift her/his actual
direction of motion towards her/his destination direction e0i .
However, the direction of fwill is not the destination direc-
tion; rather, the direction is v0i (t)e

0
i (t) − vi(t), which shows
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that the actual effect of this force represents a corrective
action.

The change in the movement speed of a pedestrian is
influenced by not only the will force but also the interaction
forces

∑
j(6=i)

fij and
∑
W

fiw. A pedestrian i tends to maintain

a velocity-dependent distance from another pedestrian j and
from wallsW . To include this tendency, the interaction forces
fij and fiw are added into the social force model as follows:

fij = {Aiexp[(rij − dij)/Bi]+ kg(rij − dij)}nij
+ κg(rij − dij)1vjitij (3)

where Ai and Bi are positive constants, rij is the sum of the
radii ri and rj, dij = ‖di − dj‖ denotes the distance between
the centers of two pedestrians, nij is the unit vector pointing
from pedestrian j to i, and tij is a tangential direction. The
function g(x) equals zero if the pedestrians do not touch each
other (dij > rij) and otherwise equals the argument x.

fiw = {Aiexp[(ri − diw)/Bi]+ kg(ri − diw)}niw
+ κg(ri − diw)(vi · tiw)tiw (4)

where Ai and Bi are positive constants, diw denotes the dis-
tance between a wall and pedestrian i, niw is the unit vector
pointing from the wall to pedestrian i, and tiw is a tangential
direction. The function g(x) equals zero if the pedestrians
do not touch the wall (diw > ri) and otherwise equals the
argument x.

The change in the position pi(t) at time t is determined by
the following velocity equation:

dpi(t)
dt
= vi(t) (5)

By using Euler’s method, the velocity and the position
of pedestrian i are updated at each time step 1t with the

following system of equations:

vi(t +1t) = vi(t)+
dvi(t)
dt

1t (6)

pi(t +1t) = pi(t)+ vi(t)1t +
1
2
dvi(t)
dt

1t2 (7)

In the social force model, fij and fiw reflect the passive behav-
iors of pedestrians when their free movement is limited, and
fwill reflects the willingness of pedestrians to walk according
to their own initiative. In the fwill model, the desired direction
e0i (t) can significantly affect both the movement pattern and
the walking trajectory. However, the present study lacks an
actual investigation into the characteristics of pedestrians’
swapping and crossing locations; because the swapping loca-
tion is subjectively confined to a region close to the outlet
channel, research based on the swapping location will be
biased against reality. To replicate the actual situation of
separating crowd behavior, we introduce the parameter Li,
which reflects the pedestrian transposition personality factor,
into the social force model to refine the desired direction e0i (t)
shown in (8), as shown at the bottom of this page.

Where L1 and W1 are the length and width, respectively,
of the inlet channel, L2 and W2 are the respective length and
width of the outlet channel, ri is the radius of pedestrian i,
pxi (t) and p

y
i (t) are the components of the pedestrian displace-

ment pi(t) along the X and Y axes, respectively, and Li ∈
[0,L1] is a characteristic parameter reflecting the pedestrian’s
swapping location. Formula (8) reflects the change in the
desired direction (e0i (t)) with the position of the pedestrian
(pi(t)(pxi (t), p

y
i (t))) whose destination is the left side of the

outlet channel (i.e., the blue pedestrian in the controlled
experiment). As shown in Fig. 9a, Formula (8) indicates
that the change in the desired direction can be divided into
three stages. In the first stage, the pedestrian walks along the
direction of the inlet channel, and pedestrians who are not

e0i (t) =



(pxi (t),L1)− pi(t)
‖(pxi (t),L1)− pi(t)‖

1
2
(L2 −W1)+ ri < pxi (t) <

1
2
(L2 −W1)+W1 − ri and p

y
i (t) < Li + ri

(
1
2
(L2 −W1),L1 + 1

2W2)−pi(t)

‖(
1
2
(L2 −W1),L1+ 1

2W2)−pi(t)‖

1
2
(L2 −W1)+ ri < pxi (t) <

1
2
(L2 −W1)+W1 − ri and Li+ri≤p

y
i (t) < L1+ri

(0, pyi (t))− pi(t)

‖(0,pyi (t))− pi(t)‖
otherwise

(8)

e0i (t) =



(pxi (t),L1)− pi(t)
‖(pxi (t),L1)− pi(t)‖

1
2
(L2 −W1)+ ri < pxi (t) <

1
2
(L2 −W1)+W1 − ri and p

y
i (t) < Li + ri

(
1
2
(L2 +W1),L1+

1
2
W2)−pi(t)

‖(
1
2
(L2 +W1),L1+

1
2
W2)− pi(t)‖

1
2
(L2 −W1)+ri < pxi (t)<

1
2
(L2 −W1)+W1−ri and Li+ri≤p

y
i (t) < L1+ri

(L2, p
y
i (t))− pi(t)

‖(L2, p
y
i (t))− pi(t)‖

otherwise

(9)
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TABLE 1. Parameters in this simulation.

FIGURE 9. The changes in the pedestrians’ desired directions.

affected by other pedestrians will not produce a significant
leftward or rightward displacement. In the second stage, after
the pedestrian walks to a specific position Li ∈ [0,L1], she/he
begins to adjust her/his movement direction to consciously
move towards the left side of the outlet channel. In the third
stage, after the pedestrian enters the outlet channel, her/his
desired direction is towards the left exit (−1,0 m). Similarly,
as shown in Fig. 9b for each pedestrian i whose moving
target is towards the right side of the outlet channel (i.e., the
red pedestrians in the controlled experiment), the desired
direction e0i (t) is computed by Formula (9), as shown at
the bottom of the previous page. Using the above formula,
we can set the swapping position for each pedestrian so that
the distribution of swapping locations within the pedestrian
flow can be established according to the proportion obtained
by the controlled experiment; we can also set the swapping
positions of all pedestrians within a certain range so that a
simulation analysis of the induced movement experiment can
be performed. Accordingly, it is also possible to study the
effect of the degree of convergence of the swapping position
on the traffic efficiency within a T-shaped channel.

In addition to this, we have to explain that the purpose of
our model is to be able to fully consider the differences in
pedestrians’ swapping location in the simulation, of course,
this is not the only way to achieve this goal, the swapping

locations and target locations can be determined as the way
points by the path planer and the agents navigate to these way
points with the original social force model in the agent-based
simulation for T-shaped Channel. The computing method of
these way points can also refer to the formulas we put forward
above. Under the same parameters and experimental design,
the simulation results will be the same.

V. SIMULATION AND DISCUSSION
Referring to the experimental data and the research of
Guo [12], we take the parameters shown in Table 1 for the
simulation.

In this section, wewill describe some phenomena and qual-
itative results through simulating the movement processes of
pedestrians in the scenarios shown in Fig. 1 and Fig. 2 by
applying the improved social force model. The size of the
area is defined as follows: the width of the inlet channel W1
is 4 m, the length of the inlet channel L1 is 10 m, the width
of the outlet channel W2 is 2 m, and the length of the outlet
channel L2 is 8 m.
First, we illustrate that the improved social force model can

reflect the impact of the swapping location on the movement
process of pedestrians. We use the Longest Common Subse-
quence (LCSS) metric for evaluating the trajectory similarity
between the ground truth trajectory and simulated trajectory.
In the simulation experiments, the flow rate at the entrance,
the positions at which pedestrians enter the channel is the
same as that in the controlled experiment. The LCSS metric
is efficient techniques to accurately compute the similarity
between trajectories of moving objects [48], [50], [51]. The
LCSS similarity metric is calculated as Equation(10).

SLCSS (Trreal,Trsim) =
LCSS(Trreal,Trsim)

min(m, n)
(10)

where Trreal = ((ax,1, ay,1), ...(ax,n, ay,n)) and Trsim =
((bx,1, by,1), ...(bx,n, by,m)) are ground truth trajectory and
simulated trajectories with size m and n respectively.
LCSS(Trreal,Trsim) is define as Equation (11), as shown at the
bottom of the next page. In Equation (11), δ is a user-defined
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integer which controls how far in time we can go in order to
match a given point from the ground truth trajectory to a point
in simulated trajectory, the user-defined constant 0 < ε < 1
is the matching threshold, Head(Trreal) and Head(Trsim) are
the first points in trajectory Trreal and Trsim respectively,
dE (an − bm) is the Euclidean distance between the nth point
in Trreal andmth point Trsim. This similarity function is based
on the LCSS and the idea is to allow time stretching. Then,
objects that are close in space at different time instants can
be matched if the time instants are also close [50]. Referring
to the research of Luo et al. [48], we set δ = 20% and
ε = 0.4 for LCSS, and select 30 pedestrians’ trajectories for
evaluating, in order to ensure the universality of similarity
analysis, there are differences in these pedestrians’ swapping
locations. We obtain the average SLCSS in 20 independent
simulations. The average SLCSS in our improved social force
model which considering the differences of swapping loca-
tions is 74.16 ± 2.13, we can also find that if we make all
the pedestrians’ swapping locations concentrated in a certain
range in the simulation without considering the differences
of swapping locations the SLCSS will be much reduced, for
example, if we make all the pedestrians’ Li equal to 6m,
the SLCSS is 32± 1.07, and if Li equal to 8m the SLCSS is only
21.65± 1.51.

FIGURE 10. A comparison of the screenshots obtained between both sets
of simulation experiments.

We also analyzed the effect of swapping location on the
separating crowd behaviour in a T-shaped Channel from
a microscopic perspective. In the simulation experiments,
the flow rate at the entrance is the same as that in the con-
trolled experiment, the proportion of pedestrians in different
destinations is the same, and the positions at which pedes-
trians enter the channel are random. In Fig. 10, the blue
circles represent the pedestrians whose destination is the left
side of the outlet channel, while the red circles represent
the pedestrians whose destination is the right side of the
outlet channel, and the short lines extruding from the cir-
cles represent the movement directions of the pedestrians.

In Fig. 10.a, the swapping locations of the pedestrians are
dispersed, and the distribution of swapping locations Li is
consistent with that shown in Fig. 6; in contrast, in Fig. 10.b,
the swapping locations of all pedestrians are concentrated
(Li is 2 m). From a microscopic perspective, the separation
behavior of pedestrians is dispersed throughout the inlet
channel in Fig. 10.a, and some red or blue pedestrians are
still starting to adjust their movement directions to their cor-
responding destinations near the outlet channel. In Fig.10.b,
all of the pedestrians are beginning to adjust their movement
directions after passing the swapping location in advance;
furthermore, there are almost no red pedestrians on the left
side of the inlet channel near the outlet channel, and similarly,
there are no blue pedestrians on the right side of the inlet
channel. From a macroscopic perspective, at the same time,
the two distributary flows shown in Fig. 10.a are not as
obvious as those in Fig. 10.b; in Fig. 10.b, the pedestrians
are more concentrated within the distributary flows. These
findings are in accordance with the phenomena we observed
in the controlled experiments.

FIGURE 11. A comparison of the pedestrians’ moving trajectories
between both sets of simulation experiments. In Fig. 11.a, the swapping
locations of the pedestrians are different; in Fig. 11. b, the swapping
locations of the pedestrians are the same.

We also obtained the pedestrians’ moving trajectories in
both sets of simulation experiments. In Fig. 11.a, the swap-
ping locations of the pedestrians are dispersed; in contrast,
in Fig. 11.b, the swapping locations of the pedestrians are
concentrated. There are significant differences in the pedes-
trian trajectories between the two sets of simulation exper-
iments; the pedestrian trajectories in Fig. 11.a are closer to
the pedestrians’moving trajectories obtained in the controlled
experiment shown in Fig. 5.b. These results also verify the
necessity and feasibility of our improved model.

Next, we analyzed the impact of the swapping location on
the traffic efficiency in a T-shaped channel. In these simula-
tion experiments, we use a continuously increasing flow rate
at the entrance Pin, and the size of the experimental area is the


0 if Trreal or Trsim is empty
1+ LCSSδ,ε(Head(Trreal),Head(Trsim)) dE (an − bm) < ε andn− m < δ

max(LCSSδ,ε(Head(Trreal),Trsim),LCSSδ,ε(Trreal,Head(Trsim))) otherwise

(11)
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FIGURE 12. The fundamental diagram of the simulation experiments.

same as that in the previous simulation experiment. Similarly,
the simulation experiment is divided into two sets. In the first
set, we assume that the swapping locations of the pedestrians
are also dispersed under different flow rate conditions, and the
distribution of the swapping locations Li is consistent with
that shown in Fig.6. In the second set, we assume that the
swapping locations of all pedestrians are concentrated, and
we set the concentrated swapping locations as Li = 2 m, 4 m,
6 m, 8 m,and 10 m. The simulation results are averaged over
20 independent simulations. The fundamental diagram of the
simulation experiments is shown in Fig. 12, which demon-
strates that the mean speeds of the pedestrians in both sets of
simulation experiments decrease with an increase in the flow
rate at the entrance; however the flow rates that generate con-
gestion (mean speed=0 m/s) in each experiment are not the
same. In the first set of simulation experiments, when the flow
rate at the entrance Pin is 2.25 persons/m/s, congestion occurs
in the T-shaped channel. In the second set of simulation exper-
iments, the swapping locations Li are concentrated; when
Li = 2 m, 4 m, 6 m, 8 m, and 10 m, the thresholds of the flow
rate are 2.5 persons/m/s, 2.25 persons/m/s, 2 persons/m/s,
1.75 persons/m/s, and 1.25 persons/m/s, respectively.
In the second set of simulation experiments, the closer
the concentrated swapping location Li is to the entrance,
the higher the mean speed; moreover, if the concentrated
swapping location Li is relatively close to the outlet chan-
nel (Li = 8 m or 10 m), the traffic efficiency in the
T-shaped channel is low, even under relatively small flow rate
conditions. Comparing both sets of experiments, the traffic
efficiency in the T-shaped channel is better in the second
set of simulation experiments than in the first set when the
concentrated swapping location Li is either 2 m or 4 m
and the flow rate at the entrance Pin ≥ 2 persons/m/s;
however, when the concentrated swapping location Li ≥4 m,
the traffic efficiency within the T-shaped channel in the
first set of simulation experiments is better than that in
the second set. The simulation results also remind us that as
the flow rate at the entrance increases, the influence of the
swapping location on the traffic efficiency in the T-shaped
channel becomes gradually enhanced. In addition, the closer
the pedestrians’ swapping location is to the outlet channel,
the lower the traffic efficiency within the T-shaped channel;

in contrast, the closer the pedestrians’ swapping location is to
the entrance, the higher the traffic efficiency in the T-shaped
channel.

FIGURE 13. A plot of the mean speed versus the time.

To study the effect of the swapping location on the traffic
efficiency within the T-shaped channel, we also compared
the changes in the mean speeds in both sets of simulation
experiments. In the simulation, the flow rate at the entrance
Pin is 2 persons/m/s, and the time to generate pedestrians
is 60 seconds; the results are shown in Fig. 13. Evidently,
the completion time of the simulation with a dispersed
swapping location Li is 25 seconds longer than that of the
simulation with Li = 2 m; furthermore, the mean speed
in the simulation with a dispersed swapping location Li is
substantially lower than that in the simulation with a con-
centrated swapping location Li = 2 m after 38 seconds.
In addition, the change in the mean speed during the sim-
ulation with Li = 2 m is more stable that those during
the simulations with dispersed values of Li, and the range
of changes in the mean speed in the simulation with dis-
persed values of Li is greater than that in the simulation with
Li = 2 m.

To further explore the reasons why the swapping location
affects the traffic efficiency in a T-shaped channel, we com-
pared the simulation screenshots at the same time. Accord-
ing to the previous simulation results, different congestion
conditions will be observed during the simulation with a
flow rate at the entrance of Pin = 2 persons/m/s. Fig. 14.a
shows a screenshot of the simulation in which the pedestri-
ans’ swapping locations are dispersed; in Fig. 14.b through
Fig. 14.f, the swapping locations are concentrated, and the
concentrated swapping locations Li are 2 m, 4 m, 6 m, 8 m,
and 10 m. Comparing Fig. 14.a with Fig. 14.b, the for-
mer demonstrates that there are significant conflicts between
the pedestrians in the area despite the absence of complete
congestion within the T-shaped channel, and some red/blue
pedestrians are forced to go to the opposite sides of their cor-
responding destinations in the outlet channel (the parts of the
figure denoted by dotted circles). In Fig. 14.b, there are fewer
conflicts among the pedestrians, and two distributary flows
have formed before the pedestrians begin entering the outlet
channel; thus, no pedestrians are forced to move towards
the opposite side of her/his destination in the outlet channel.
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FIGURE 14. A comparison of simulation screenshots. With dispersed swapping location for pic.(a) and
concentrated Li = 2m, 4m, 6m, 8m, and 10m for others, respectively.

A comparison of the screenshots of the experiments in which
the swapping locations of all pedestrians are concentrated
shows that the range of conflicts among pedestrians grows
as the lag in the swapping location increases; moreover, when
the pedestrians’ swapping locations are closer to the entrance,
the formation of distributary flows is more favorable, and
there are fewer conflicts between pedestrians.

To further corroborate our assertion that we can reduce
conflicts between pedestrians by adjusting the swapping loca-
tion, we analyzed the number of conflicts among pedestrians
under different flow rates at the entrance; the time used to
count the number of conflicts is 60 seconds. In this article,
a conflict is defined by physical contact between two pedestri-
ans with opposite destinations. Fig. 15 shows the simulation
results regarding the number of conflicts between pedestrians
throughout the T-shaped channel. Overall, as the flow rate
at the entrance increases, the number of pedestrian conflicts
increases in every set of simulation experiments, but there are
still significant differences in the number of conflicts among
the different simulation sets. Comparing the number of con-
flicts in the simulation with dispersed swapping locations
with those in the simulations with concentrated swapping
locations, the number of conflicts in the simulation with a
dispersed swapping location is higher than that in the simula-
tion with Li = 2 m, and this difference becomes increasingly
obvious with an increase in the channel flow rate; when the

FIGURE 15. The number of conflicts between pedestrians under different
flow rates at the entrance.

flow rate at the entrance is Pin = 2 persons/m/s, the number
of conflicts in the simulation with Li = 2 m is 707, and that
in the simulation with dispersed swapping locations is 1943.
Upon comparing the numbers of conflicts in the simulations
with concentrated swapping locations, we discover that fewer
conflicts occur when the pedestrians’ swapping locations are
closer to the entrance under the same flow rate at the entrance.
Moreover, the number of conflicts increases with later lags in
the swapping location; for instance, the number of conflicts
in the simulation with Li = 10 m is 637, and that in the
simulation with Li = 2 m is only 124 when the flow rate
is Pin = 1 persons/m/s.
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FIGURE 16. Proportion of misplaced pedestrians under different flow rates at the entrance.

We also analyzed the situations in which the pedestrians
are forced to move towards the side of the channel opposite
their outlet channel destinations. Examining the simulation
screenshots reveals that some red/blue pedestrians are forced
to move towards the side of the channel opposite their outlet
channel destination (the pedestrians in the parts of Fig. 14
denoted by dotted circles). When such misplaced pedestrians
move towards their own destination, they inevitably collide
with other pedestrians moving in the opposite direction; we
consider this situation to be the main cause of congestion in
the T-shaped channel, and thus, we counted the proportion of
misplaced pedestrians. The method used to count the num-
ber of misplaced pedestrians is as follows: if a pedestrian
walks towards the side of the channel opposite her/his des-
tination, we regard such a pedestrian as a misplaced pedes-
trian. In the simulations, we counted misplaced pedestrians
for 60 seconds under different flow rates at the entrance;
the results are shown in Fig. 16. Before reaching the flow
rate that generates congestion, the proportions of misplaced
pedestrians increase in every simulation set as the flow rate
at the entrance Pin increases. The proportion of misplaced
pedestrians in the simulation with dispersed Li is higher than
that in the simulation with Li = 2 m under different flow
rates at the entrance; for example, the proportion ofmisplaced
pedestrians in the simulation with dispersed Li reaches 15.4%
when the flow rate at the entrance is Pin = 2 persons/m/s, and
the proportion in the simulation with Li = 2 m is only 4%.
Furthermore, similar to the situation involving conflicts
between pedestrians, the closer the pedestrians’ swapping
location Li is to the entrance, the lower the proportion of mis-
placed pedestrians under the same flow rate at the entrance;
for example, there are no misplaced pedestrians in the simu-
lation with Li = 2 m, but the proportions in the simulations

with Li = 8 m and 10 m are 14% and 37%, respectively,
when the flow rate at the entrance is Pin = 1.25 persons/m/s.
An increase in the number of misplaced pedestrians will
exacerbate the conflicts between pedestrians in a T-shaped
channel; concentrating the pedestrians’ swapping locations
and moving the swapping locations closer to the entrance can
help pedestrian flows complete the separation process earlier,
thereby reducing the proportion of misplaced pedestrians and
the number of conflicts between pedestrians.

VI. CONCLUSIONS
I. We conducted a series of controlled experiments on the
separating crowd behavior in a T-shaped channel. The exper-
imental results show that pedestrians’ swapping locations
are dispersed in the inlet channel rather than concentrated
in a certain area. We also find significant differences in the
macroscopic phenomena and spatial and temporal distribu-
tion characteristics of pedestrians in two sets of controlled
experiments in which the pedestrians’ swapping locations are
either dispersed or concentrated.
II. We proposed an improved social force model for the sepa-
rating crowd behavior in a T-shaped channel that fully consid-
ers the characteristics of pedestrians’ swapping locations and
refines the directions of pedestrians’ expected speeds in three
stages of the pedestrian separation process. Confirmed by
simulation experiments, this improved model can effectively
reflect the differences in pedestrians’ separating behaviors,
and a simulation result obtained in the controlled experiment
shows that applying the improved model replicates the pedes-
trians’ moving trajectory.
III. We conducted a series of simulation experiments regard-
ing the separating crowd behavior in a T-shaped channel.
The experimental results show that if pedestrians’ swapping
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locations are concentrated in a certain area that are rela-
tively close to entrance, the traffic efficiency in the T-shaped
channel will be higher than that if the pedestrians’ swapping
locations are dispersed. Furthermore, as the flow rate at the
entrance increases, the swapping location becomes more con-
centrated and closer to the entrance, the mean speed becomes
higher, and fewer conflicts occur between pedestrians.

In future work, we will study the influences of other fac-
tors, for example, the size of the channel and the herding
behavior, on the traffic efficiency within a T-shaped channel.
Moreover, we will carry out more controllable experiments
on pedestrian flow to accumulate video data for different
sports scenarios, and we hope to calibrate the parameters in
the social force model and improve the model. In order to
expand our research ideas, we also want to carry out simu-
lation research based on multi-agent model and RVO-based
model, and extend our existing research content to the field
of multi-agent based simulation research.
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