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ABSTRACT A novel method for inertia determination of a permanent magnet synchronous
machine (PMSM) drive is proposed and analyzed, which employs a sinusoidal perturbation torque with
a dc offset to drive the PMSM, and the amplitudes of reference sinusoidal torque and sinusoidal speed
response are used to compute the system inertia. Compared with other methods, it is robust and fast to
obtain the accurate quantity of the inertia. First, the inverter measures the resistances and inductances of a
PMSM through a static voltage vector and stand-still frequency response experiments. The parameters are
adopted to design the current proportion and integral controller and make both dq-axes currents to perform
the first-order response. Second, the results of constant torque experiment employing the current controller
are applied to get the friction coefficient and no-load torque. Third, a sinusoidal torque with a dc offset is
applied and the response performs a sinusoidal speed with a constant offset. All the above experimental
results and other preinstalled parameters are employed to get the system inertia, and the accuracy is verified
by another experiment. As compensation for a position signal from a hall sensor, a corresponding method is
also proposed to compute the sinusoidal speed response amplitude, which is the key in the procedure.

INDEX TERMS Inertia identification, sinusoidal motion torque with offset, first-order response, position
hall sensor, PMSM.

I. INTRODUCTION
Recently, the developments of power electronics and perma-
nent magnet synchronous machines (PMSMs) make PMSM-
based drive system more and more popular. Proportion and
integral (PI) regulator is widely applied in the occasions
where the requirements for control performance are not
so demanding. Generally, detailed and precise parameters
information of a PMSM-drive system is of vital impor-
tance for the design of a PI controller or any other con-
trollers [1]–[7], [23]–[26]. Electrical parameters, such as
resistances and inductances of armature windings, are easy
to measure by respective tools and methods (Resistance can
be measured by an electric bridge and dq-axes inductances
by Stand-Still Frequency Response (SSFR) experiments [8]).
Since the relationship between steady speed and electromag-
netic torque performs a linear function, the friction coefficient
and no-load torque can be measured by a constant torque
experiment that will be introduced later. In addition to the
mentioned parameters, the inertia of the whole drive sys-
tem including the PMSM and the load is so important for
speed control loop design, meanwhile it is usually difficult
to measure.

Numerous efforts have been made to try to get a precise
identification of the inertia [3], [5], [7], [9]–[20], [23]–[26].
Among them, there is a very simple and convenient onewhere
the curve of speed acceleration or deceleration is regarded
as a straight line. With this assumption, the inertia can be
calculated using the slope of the speed curve recorded by
a controller [9]. Definitely, the method based on the speed
curve is a good way, especially for the applications where the
accuracy of control is not so strict.

For some high-precision control applications, a method
based on disturbance observer which employs the orthogo-
nal relation among the torque components of the estimated
disturbance torque to get real torque values is presented
in [5], [10], and [11]. This method requires a series of
complex procedures, but the accuracy and robustness are
very good. It is necessary to point out that the procedure of
integral in this method is time-consuming and the observer
pole needs detailed design, which will consume much time,
too. The inertia measurement is the first step for a PMSM
controller design, and the design procedure of the observer
should be simple and fast. In addition, the pole of the observer
that is used to measure inertia in this method needs to be
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calculated for each motor system individually, and a com-
mon way is unavailable. Obviously, it will complicate the
design procedure of the controller. On the other hand, all
the other observers, such as model reference adaptive sys-
tem (MRAS) [7], [12], [13], full-order state observer [14],
Extended Kalman Filter [15], etc., have to face the same
problems those exist in [10], namely detailed pole design and
complicated procedures.

Recursive least square (RLS) method is another method
for inertia measurement, which employs the acceleration or
deceleration process to finish a RLS analysis, and then the
inertia value can be obtained [16]–[18]. The noise suppres-
sion and successful convergence to the actual inertia value
can be assured in the RLS method. However, the measure-
ment process requires the motor to be controlled in a steady
state in advance. If the motor parameters cannot be pre-
determined, it will take lots of time to tune parameters of the
controller. Also, the procedure of the product development
will be slowed down, as the foregoing mentioned.

In addition, a fast inertia measurement method is proposed
recently, where a sinusoidal torque is applied to drive the
testing motor [19]. The phase angle of the sinusoidal torque
can be caught when the speed is zero. If no-load torque can
be neglected, the friction torque component and the inertia
torque component in the motion equation will perform an
orthogonal relationship, which can be used to calculate the
inertia. This method is very fast and has an excellent adap-
tion for most occasions because it employs the basic motion
equation rather than observers. Therefore, it barely needs few
tuning procedures. But the condition that this method works
well is that the no-load torque should be small enough when
compared to the motion torque and friction torque. However,
when the no-load torque cannot be ignored, this method does
not work well. For example, if the motor is used to motivate
a robot arm, the no-load torque includes a considerably non-
negligible component, which comes from the gravity of the
products lifted by the robot arm.

In [10] and [19], periodical signals were employed to
obtain the inertia, but they face some difficulties, i.e. complex
data processing, non-commonalities, and too much time of
tuning. In order to address these problems, in this paper a
novel method is proposed for these special occasions with
the features of decreasing complexities and increasing robust-
ness, based on the method of periodical actuation coming
from [10] and [19]. A periodically sinusoidal electromagnetic
torque with a dc offset is used to drive the tested motor, and
the relationship between the amplitudes of sinusoidal torque
and sinusoidal speed response is utilized to get the inertia
value. It can avoid the problem of ‘‘no-load torque’’ that exists
in [19] and the problem of complex integral process that exists
in [10]. In addition, this method requires no observers and
consequently, no tuning procedures.

This paper is organized as follows. Firstly, the basic prin-
ciples of the proposed method are derived in section II. Then,
the design of current loop and the measuring of parame-
ters except for the inertia value are realized in section III.

Thereafter, in section IV the inertia ismeasured by themethod
proposed in section II and its accuracy is verified based on
classical automation control theory. Especially, for some spe-
cial occasions where a low-precision hall sensor is equipped
into the PMSMs, a method for computing the sinusoidal
speed amplitude that plays a key role in the procedure of iner-
tia measuring is presented in section V. Finally, conclusion is
given in section VI.

II. CONCEPT OF THE NEW INERTIA
IDENTIFICATION METHOD
The motion equation of a PMSM-based drive system is
given as:

Te − Tl = J
dωm
dt
+ Bωm (1)

where, Te is the electromagnetic torque produced by the
interaction between the open-circuit air-gap PM flux-density
due to magnets and the synthesized armature reaction due to
armature winding currents; B is the friction coefficient; Tl is
the no-load torque due to cogging torque, friction between
the shaft and the bearing, etc.; and J is the inertia of the
whole system including the inertias of the PMSM itself and
the coupling load rotating synchronously. Equation (1) is a
first-order homogeneous linear differential equation, where
Te−Tl is defined as motion torque. There are three unknown
parameters in this equation, namely, Tl , J , and B.

It’s supposed that Te − Tl = T0cos(ωt), thus equation (1)
can be rewritten as:

T0cos(ωt) = J
dωm
dt
+ Bωm (2)

where T0 is the amplitude of the motion torque, which sat-
isfies a pure sinusoidal distribution with an angle frequency
of ω.

Applying Laplace Transform to equation (2), the speed
response can be expressed concisely as:

ωm (s) =
T0s(

s2 + ω2
)
((sJ + B))

(3)

It is supposed that ωm = 0 when t = 0. If Te − Tl =
T0cos(ωt), the speed response of the PMSM turns out to be

ωm (t) =
T0√(

B2 + J2ω2
) cos (ωt − β)+ T0B

B2 + J2ω2 e
−
B
J t

(4)

The first term of equation (4) is a sinusoidal speed response
and the second term is a transient response that will disappear
after several time constants. Obviously, with the disappear-
ance of the second term, the inertia can be computed by two
paths, one from the sinusoidal speed amplitude ω0 which is
T0/

√
B2 + (Jω)2 in equation (4), and the other from the phase

angle βof the steady state response of speed. The two paths
will be analyzed in sub-sections A and B as follows.
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A. BASED ON PHASE ANGLE β
From equation (4), it can be found that the phase angle β
is equal to arctan(ωJ/B), where B can be achieved from
the constant electromagnetic torque experiment. So, J can
be computed if β that is phase angle delay between two
sinusoidal signals is known. The phase-locked technology
can be applied to get the phase shift β. However, the speed
needs to be measured precisely at any instant using this
technology. Generally, when the motor is equipped with a
resolver or a photoelectric encoder which have a resolution
higher than 1024, the speed signal is precise enough to be
applied in the computation of the phase delay. However, some
motor drive systems only have a hall sensor for rotor positions
with very low precision, which cannot instantly offer a precise
speed signal. Besides, the computing process using the delay
angle β needs a step of arctangent computation which is
very time-consuming. Therefore, the method based on β to
compute inertia is not a practical choice.

B. BASED ON SINUSOIDAL SPEED AMPLITUDE
The sinusoidal speed amplitude can also be used to compute
the inertia since the steady sinusoidal speed amplitude is easy
to measure by an encoder or a resolver using Fast Fourier
Transform [21]. Under circumstances where the position sen-
sor is a hall sensor, a precise speed amplitude computing
method is proposed and will be presented in section IV.

According to equation (4), the inertia can be expressed as:

J =

√(
T0
|ω0|

)2
− B2

ω
(5)

where ω0 is the amplitude of sinusoidal speed response under
a sinusoidal motion torque, namely Te − Tl = T0cos(ωt).
If the speed amplitude can be measured precisely, the inertia
can be computed by equation (5) since all other parameters
have been predetermined.

As foregoing analyzed, it is required that Te − Tl =
T0cos(ωt). However, Tl will reverse its polarity and conse-
quently, the sign as the speed sign changes. Therefore, the real
electromagnetic torque should be set as:

Te =

{
|Tl | + T0sin (ωt) , when ωm < 0
− |Tl | + T0sin (ωt) , when ωm > 0

(6)

Fig. 1 illustrates an approximate relationship among elec-
tromagnetic torque Te (the bold red line), motion torque
Te − Tl (the thin golden line), speed response ωm (the dashed
black line), and no-load torque Tl (the dotted blue line). It can
be seen that due to the sign reversion of the no-load torque
versus the speed sign, the resultant electromagnetic torque
cannot be continuously produced if an ideally sinusoidal
speed response is desired.

If Te−Tl = T0cos(ωt) is applied, Te needs to be produced
as the bold red line in Fig. 1, whichmeans the electromagnetic
torque needs a double Tl variation in a very short time. There-
fore, the current flowing into the armature winding needs

FIGURE 1. Sinusoidal speed response due to corresponding motion
torque, electromagnetic torque, and no-load torque waveforms.

to change very fast. However, it is almost impossible for an
inverter-fed PMSMdrive system, since although the electrical
time constant is far less than the mechanical motion time con-
stant, the required current change needs the inverter equipped
with a considerably large capacitance. Another problem is
that the instant is very hard to be caught when the speed is
equal to zero, which can be found in [19]. Therefore, it is not
an optimal solution, either.

According to the problems analyzed above, this paper
proposes a new method that applies a sinusoidal electromag-
netic torque with a dc offset component to drive the motor,
where from the blending speed response, the inertia can be
computed easily.

The basic concept of the proposed new method is intro-
duced as follows. The discontinuity of ideal electromagnetic
torque comes from the changeable speed sign. If the speed
sign remains positive, the sign of no-load torque will be
unchangeable. Considering the motion system is a linear
system, we recognize that if a sinusoidal electromagnetic
torque with a dc offset is applied to drive the motor, the speed
response should be a sinusoidal response with a dc offset,
as long as the sum response is not less than zero. And this can
be assured only if the dc offset torque Tdc is larger than the
no-load torque Tl . Finally, in this way, two electromagnetic
torque components (one sinusoidal component and one dc
offset component) and the respective speed response can be
separated. The detailed computation is as follows.

The modified motion equation is rewritten as:

Tdc + T0 cos (ωt) = J
dωm
dt
+ Bωm + Tl (7)

Since the response of only a sinusoidal electromagnetic
torque component is obtained in equation (4), the calculation
of the speed response due to the dc offset torque is given by:

Tdc = J
dωmdc
dt
+ Bωmdc + Tl (8)

where ωmdc is the speed response of offset dc torque.
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Based on the superposition theorem, the speed response
due to the dc torque component ωmdc can be expressed as:

ωmdc(t) =
Tdc − Tl

B
−
Tdc − Tl

B
e−

B
J t (9)

Hence, the whole speed response can be expressed as:

ωm (t) =
T0√(

B2 + J2ω2
) sin (ωt − β)+ T0B

B2 + J2ω2 e
−
B
J t

+
Tdc − Tl

B
−
Tdc − Tl

B
e−

B
J t (10)

When several mechanical time constants pass, these two
transient terms in equation (10) will disappear, and the final
steady speed response can be derived as:

ωmdc (t) =
T0B√(

B2 + J2ω2
) sin (ωt − β)+ Tdc − Tl

B
(11)

From equation (11), it can be found that the final speed
response includes a sinusoidal speed component and a con-
stant speed component. Consequently, the inertia can be com-
puted from the sinusoidal speed response as presented above.
The approximated relationship between the electromagnetic
torque and the speed response is shown in Fig. 2.

FIGURE 2. Speed response and electromagnetic torque with a constant
torque offset.

III. CURRENT LOOP TUNING AND
PARAMETERS MEASUREMENTS
This section will present the detailed concept and the imple-
mentation process of the proposed new method based on
combined electromagnetic torque, which is composed of a
sinusoidal torque component and a dc torque offset. The
method requires the motor to produce the actual electromag-
netic torque tracking the referenced torque signal. To achieve
this goal, a PI current controller is normally functioned as an
electromagnetic torque controller. Although there are some
disadvantages with the PI current controller, it’s still widely
used. There are many techniques to tune the parameters
of the PI controller. Since the measurement of inertia only
needs an electromagnetic torque controller, and all electrical
parameters can be measured, the parameters of a PI current
controller can be designed by dq-axes frame and classical
control theories.

Equations (12) and (13) are the voltages equations in
dq-axes frame of a PMSM.

Ud = Ld
did
dt
− ωeLqiq + rid (12)

Uq = Lq
diq
dt
+ ωeLd id + ωeψm + rid (13)

where, Ud/Uq, id/iq, Ld/Lq are the voltages, armature
currents, winding inductances in the dq-axes, respectively;
ψm, ωe, and r is the d-axis PM flux-linkage, electrical
angle frequency (rad/s), and armature resistance per phase,
respectively.

FIGURE 3. The basic scheme of vector control loop for a PMSM.

Fig. 3 illustrates the basic principle of vector control for
a PMSM.With the measured speed, the d- and q-axis voltage
compensations can be accomplished by adding the compo-
nents of ωeLqiq and−ωe(Ld id +ψm) to d- and q-axis current
PI controller outputs, respectively. After the compensation,
equations (12) and (13) can be simplified as

Udo = Ld
did
dt
+ rid (14)

Uqo = Lq
diq
dt
+ riq (15)

where Udo and Uqo are the combined dq-axes voltages exist-
ing in the winding inductance and resistance, respectively.

Based on equations (14) and (15), it can be seen that the
dq-axes current responses can be designed as a first-order
response. However, the inverter power devices delay and the
sampling delay demand specific attentions to the design of a
PI current controller. Under different circumstances, different
methods should be adopted, and the key judgment rule is
whether both the delays as a result of inverter and sam-
pling can be neglected compared with the system bandwidth.
When the delays can be neglected, method A will be chosen,
otherwise, method B.

A. DESIGN OF CURRENT LOOP PARAMETERS
WITHOUT DELAYS
When the delays are small enough compared to the system
control bandwidth, the current loop is illustrated in Fig. 4.

After compensation, the transfer function of dq-axes
current responses can be deduced as:

id (s)
Udo (s)

=

1
r(

1+ sLd
r

) (16)

iq(s)
Uqo(s)

=

1
r(

1+ sLq
r

) (17)
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FIGURE 4. Current loop under compensation without considering delays.

FIGURE 5. Current loop under compensation considering delays.

From the PI control loop scheme in Fig. 4, the open loop
function can be figured out as:

PI (s)
idq(s)
Udqo(s)

=
kipkii(1+s/kii)

s
1/r(

1+ sLdq/r
) (18)

where, kip is proportional coefficient, kii is integral coef-
ficient, and idq, udqo, Ldq are dq-axes currents, combined
dq-axes voltages, and dq-axes inductances, respectively.
Obviously, the open loop transfer function includes a zero

and a pole. Thus, it can be simplified to

PI (s)
idq(s)
Udqo(s)

=
kipkii
s

1
r

(19)

under 1+ s/kii = 1+ sLdq/r and kii = r/Ldq, and the closed
loop function is described as:

idq (s)
idqref (s)

=
1

Ldq
kip
s+ 1

(20)

According to equation (20), the current loop can be designed
as a first-order response, and ωci = kip/Ldqis satisfied. The
system bandwidth can be designed using kip. Additionally,
it should be noted that the maximum value of ωci is limited
by DC voltage and protection requirements.

B. DESIGN OF CURRENT LOOP PARAMETERS
CONSIDERING DELAYS
When the delays, including the inverter delay ti and the
current sampling delay tw, cannot be ignored, the modified
current loop design considering delays is depicted as Fig. 5.

Taking these two delays into consideration, the open loop
transfer function is given as:

G (s) =
kipkii(1+ s/kii)

s
1/r(

1+ sLdq/r
) 1
(tis+ 1)

(21)

The feedback function is

H (s) =
1

(tws+ 1)
(22)

Similar to method A, kii is set as r/Ldq. When kii is deter-
mined, the current close loop transfer function is expressed
as:

idq (s)
idqref (s)

=

(
kip/Ldq

)
(tws+ 1)(

kip/Ldq
)
+ s (tws+ 1) (tis+ 1)

(23)

In equation (23), (tws+1)(tis+1) can be simplified to
(tsums+1), where tsum = ti + tw. In Fig. 5, there is only a
first-order delay between idq and i∗ dq, and the delay is small
enough that the difference between these two signals can be
neglected in the current response. For the design convenience,
i∗ dq can be used as the torque response instead of idq.
Therefore, (23) is transformed as:

i∗dq (s)

idqref (s)
=

1

tsum
Ldq
kip
s+ Ldq

kip
s+1

(24)

Equation (24) is a second-order homogeneous system.
According to basic control theory, to keep the response steady
and fast, the damp is set as

√
2, and kip should be Ldq/(2tsum).

Whether to use a second-order system or not depends on
the comparison between the delay length and the motor elec-
trical time constant. But a practical method is implemented
as follows:

(1) Setting r/Ldq for kii, and one tenth of Ldq/(2tsum)
for kip.

(2) Increasing the value of kip gradually, meanwhile
observing a step signal response of current loop until a vibra-
tion appears.

(3) The final kip can be adjusted based on the value of kip in
step (2) according to the response requirements of the motor
drive system.

This method is used by authors inmany PMSMcontrollers,
and it always performs well.

C. ELECTRICAL PARAMETERS MEASUREMENTS
The current loop design has been previously introduced
including two cases, namely with and without considerations
of the influence of delays. The necessary electrical parame-
ters used in the inertia identification procedure, such as the
resistance per phase and dq-axes winding inductances, are to
be measured.

To acquire the phase resistances of a PMSM, the sim-
plest way is to use a universal meter. However, for a prac-
tical PMSM-based drive system, in addition to the winding
resistances from the machine itself, the resistances due to
the switched-on IGBTs should also be considered since the
voltage vector is based the duty of pulse width modula-
tion (PWM) and the DC voltage quantity [21], [22].

Hence, a static voltage vector (SVV) technology to get the
real resistance based on space vector pulse width modula-
tion (SVPWM) is proposed, where SVV means the angle of
the voltage vector is maintained with a constant quantity, and
then the voltage vector length is adjusted. Thus, the voltage
vector divided by the current vector is the resistance quantity
and the experiment can be carried on many different angles
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FIGURE 6. The current directions and paths in a SVV method.

FIGURE 7. The measured dq-axes inductances of the PMSM by SSFR.

of the voltage vector considering many statuses of IGBTs.
The final result can be a mean value using different voltage
vector lengths and angles. The experimental result of the
phase resistance of the PMSM-based system discussed in this
paper is about 0.41�. Fig. 6 illustrates a current-flowing chart
of a static voltage vector with an angle of zero degree.

Stand still frequency response (SSFR) method is used
to obtain the quantities of dq-axes inductances [8]. If the
tested motor doesn’t rotate, namely ωe is zero, equations
(12) and (13) are simplified as:

Ud = Ld
did
dt
+ rid (25)

Uq = Lq
diq
dt
+ rid (26)

Moreover, if Ud is a sinusoidal quantity, id should be a
sinusoidal response, and that works at q-axis current as well.
It is well-known that the surface-mounted PMSM satisfies

Ld = Lq. Therefore, it is not necessary to separate id and iq.
Let the inverter output a circled voltage vector, so equations
(25) and (26) can be seen as a circuit composed of an inductor
in series with a resistor. With this simplified model, Ld and Lq
are easy to be computed. The experimental results are shown
in Fig. 7. Even the applied amplitudes of the injected armature
current vectors are different, the measured inductance quan-
tities keep an almost stable value of 0.40mH with acceptable
variations.

D. MECHANICAL PARAMETERS MEASUREMENTS
Apart from the motor inertia J , the friction coefficient B and
the no-load torque Tl are unknown. In part A and part B, a sta-
ble current controller is designed. Let the controller output

FIGURE 8. Constant electromagnetic torque motor speed vs
electromagnetic torque.

TABLE 1. Key electric specifications of the PMSM.

different iq, and the steady speeds at different iq are recorded.
Meanwhile, the output torque of the motor with different iq
can be calculated by

Te =
3
2
pψmiq (27)

where p is the pole pairs of the motor and ψm is PM flux
linkage coming from back-EMF experiment.

The constant electromagnetic torque experimental results
are shown in Fig. 8, where the speed and the electromag-
netic torque perform as a linear function, which agrees
well with theoretical analysis. Due to the excellent linear-
ity of the curve, it is unnecessary to apply a complex fit-
ting algorithm. Based on fitting result from Microsoft office
excel, Te = 4.145e−5ω + 0.0316, B ≈ 4.145e−5N·m·s, and
Tl ≈ 0.0316N·m.
The key specifications of the tested PMSM is listed

in Table 1.

IV. INERTIA IDENTIFICATION AND
SPEED LOOP EXPERIMENTS
Based on the acquisitions of parameters as presented in Tab. 1
in Section III, the implementation and verfication of the
proposed new inertia identification method will be conducted
in this section.

Fig. 9 is the experiment platform for a 60W PMSM drive.
The motor platform consists of four parts, including the load
motor, the PMSM, the position senor, and the controller. The
load machine is a DC motor whose power rating is 100W.
There are two position sensors, i.e., a hall sensor equipped
into the PMSM and a photoelectric encoder in the right part
of the platform.

According to sections II and III, the inertia measuring
experiment can be performed by a universal AC motor
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FIGURE 9. The experiment platform for the PMSM drive system.

FIGURE 10. The speed response of the PMSM with iq = 1+0.6sin(2πt)(A).

FIGURE 11. The speed response of the PMSM with iq = 1+0.6sin(4πt)(A).

controller. The q-axis reference current is composed of a
sinusoidal current component and a dc current offset. The
q-axis current amplitude should not be too small to be accu-
rately measured, and the maximum value of q-axis current
should be limited by DC voltage and protection requirements.
The q-axis current is controlled as iq = 1+0.6sin(2π t)(A),
and the resultant sinusoidal speed amplitude is about 750rpm,
as shown in Fig. 10. Consequently, according to equation (5),
the calculated inertia is about J =1.227e−4 kg·m2. Another
experiment is conducted using iq = 1+0.6sin(4π t)(A), and
the speed response is shown in Fig. 11, where the correspond-
ing inertia J =1.231e−4 kg·m2.

Further, randomly varying amplitude and frequency of the
sinusoidal torque in an appropriate range where the motor
can work smoothly and the experimental results are shown
in Fig. 12. As can be seen, the result varies slightly, which
verifies the robustness of the proposed inertia identification
method.

FIGURE 12. The calculated inertia under random experiment conditions.

FIGURE 13. The PMSM-based control scheme for speed loop design and
inertia accuracy verification.

To evaluate the accuracy of the inertia measured by the
method above, a speed PI controller is employed to realize a
first-order speed response, and the control principle is showed
in Fig. 13.

Considering the first-order speed response under a step sig-
nal is very hard to record and analyze, we let the input signal
of the first-order system perform as a sinusoidal quantity with
a dc offset. The cut-off frequency of the first-order system is
set the same as the frequency of sinusoidal reference speed
signal. If the resultant phase delay and speed amplitude ratio
are 45 degrees and

√
2 respectively, it can be verified that the

inertia measured using this method is precise and the speed
controller design is correct completely.

For the first-order speed system response, all the param-
eters involved in the motion equation, i.e., the friction coef-
ficient, the inertia of PMSM system, and the no-load torque,
have been determined. Generally, themechanicalmotion time
constant of a PMSM system is far larger than the electrical
time constant. For this PMSM system, J/B is much bigger
than Ld/r or Lq/r . From the above experimental results,
J/B is 2.96 and L/r is 1e−4. (The experimental motor is a
surface-mounted PMSM, namely Ld = Lq. For convenience,
we assume L stand for Ld or Lq.)

Under this condition, for speed loop design, the current
loop can be equivalent to 1 in the transfer function for the
whole system, and the speed open loop function can be
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written as

Gω (s) =
kωpkωi (1+ s/kωi)

s
1/B

1+ sJ/B
(28)

Just like the method in current loop design, and the speed
open loop transfer function can be simplified as

Gω (s) =
kωp
Js

(29)

with kωi = B/J . The system transfer function is given as:

ωm

ωref
=

1
J
kωp
s+ 1

(30)

To verify the accuracy of the inertia quantity measured by
the proposed method, experiments are done in the followings.
The first experimental result is shown in Fig. 14, where the
reference speed is 2000+ 500sin(2π t). The purple line is the
reference speed, and the red line is speed response. Speed1
denoted by dashed blue line is 2000+500/

√
2sin(2π t), and

speed2 which is the result of 45 degrees shift of speed1
denoted by dotted black line is 2000+500/

√
2sin(2π t−π /4).

These two lines are used to take a transformation from the ref-
erence speed to theory response speed (denoted by speed2).
If the inertia is accurate and the PI design is reasonable,
the speed response should be 2000+500/

√
2sin(2π t − π /4).

In Fig. 14, the practical speed response (the red line) agrees
well with the black-dotted line, speed2.

FIGURE 14. The speed response vs. referenced speed (ωe = 2π).

FIGURE 15. The speed response vs. referenced speed (ωe = 4π).

When the reference signal becomes 2000 + 500sin(4π t),
the experimental result is shown in Fig. 15. Similarly, the
result is accurate enough to demonstrate that the inertia

measurement method is useful and accurate. Like the exper-
iments on inductance measuring and resistance measuring,
we test many groups of speed reference signals, the method
keeps a staple performance.

V. HALL POSITION SENSOR SPEED SIGNAL PROCESSING
Except the sensorless ACmotor drives, most of drive systems
that needs the ability of smoothly adjusting speed have a
position sensor, such as a resolver, a photoelectric encoder,
or a hall sensor. For a photoelectric encoder and a resolver,
it’s convenient to get accurate speed if the resolution is high
enough. However, a hall sensor featuring with low cost is
widely used in various industrial circumstances, where it can-
not offer an accurate speed (Finite number of halls and long
measuring period lead to the low precision of measurement),
especially when the speed is varying all the time. The new
inertia identification method proposed in this paper needs the
amplitude of the sinusoidal speed, and hence we propose a
solution to address this problem as follows.

Although there are many installation styles of hall position
sensor, the signal sent into a CPU is identical as depicted
in Fig. 16. The signals are three pulses with a duty of 50 per-
cent and the phase shift angles among them is same as that of
the back-EMF of a PMSM, namely 120electrical degrees.

FIGURE 16. The signals from hall position sensors.

Usually, the hall signals are processed by a capture module
in MCU, such as eCap module in C2000 series MCU of
Texas Instrument or General Timer in STM32 or STM8S
of STMicroelectronics. The operation principle is so simple,
namely every rising edge or trailing edge gives an interrupt
to the CPU, and the consuming time of every 60 electrical
degrees can be measured using the internal CPU timer. The
frequency of a general CPU is high enough to get an accurate
time length of every interval of hall signals. The time between
two edges can be used to acquire the mean speed of this time
interval, which is a common speed computing process.

It’s easy to understand that the speed gained from above
method is not accurate enough, especially under the condition
that the speed is always varying very fast. But if the speed
is a constant number, it’s accurate enough. In the aforemen-
tioned method for inertia measurement, the sinusoidal speed
amplitude is very critical, and it means the common process
method mentioned doesn’t work in the measurement of iner-
tia. To solve this problem, a new process way is proposed as
follows.
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The requirements of the measurement of friction parame-
ter B and no-load torque Tl is satisfied using a hall position
sensor, since the speed from the hall position sensor is accu-
rate when the speed of the motor is constant. The sinusoidal
characteristic of the speed and the interval time length of
a constant angle are used to compute the sinusoidal speed
amplitude. The detailed illustration is as follows.

FIGURE 17. The relationship between the sampling time and motor
positions.

Fig. 17 shows a diagrammatic sketch of the positions that
be recorded and the interval time of every two edges. The
electrical angle distance is π /3 between two edges, and the
speed is given as:

ωmdc (t) =
T0B

√
B2 + J2ω2

sin (ωt − β)+
Tdc − Tl

B
(31)

For convenience, set (Tdc − Tl)/B as v0 and T0B/√
B2 + J2ω2 as v1, so the speed can be written as ωm =

v0 + v1sin(ωt − β).
If an integral is applied on equation (31), the position signal

function can be defined as:

d = v0t − v1 cos (ωt − β)+ C (32)

where d is the motor position andC is a constant that depends
on the initial integral time. We selected three time point t0, t1,
and t2. Therefore, the interval time length can be written as

d1 − d0 == v0 (t1 − t0)− v1 cos (ωt1 − β)

+v1 cos (ωt0 − β)

d2 − d1 = v0 (t2 − t1)− v1 cos (ωt2 − β)

+v1 cos (ωt1 − β) (33)

For equation (33), the left terms are the distances between
two edges which is constant quantity of π /3 and can be set
as1d1 and1d2, respectively. For the right terms, t1− t0 and
t2− t1 can be replaced by1t1 and1t2 offered by a CPU. For
convenience, β can be written asω(β/ω), and t0−β/ω can be
represented astb. Therefore, equation (33) can be rewritten as

1d1 = v0 (1t1)− v1 cos (ω (tb +1t1))+ v1 cos (ωtb)

1d2 = v0 (1t2)− v1 cos (ω (tb +1t1 +1t2))

+v1 cos (ω (tb +1t1)) (34)

In equation (34), there are only two unknown variables,
tb and v1. A system with as many equations as unknowns will
be consistent. First step, (34) is transformed as

1d1 − v0 (1t1) = −v1 cos (ω (tb +1t1))+ v1 cos (ωtb)

1d2 − v0 (1t2) = −v1 cos (ω (tb +1t1 +1t2))

+v1 cos (ω (tb +1t1)) (35)

Applying the first part of equation (35), i.e., (1d1−v01d1),
divided by the second part, (1d2 − v01t2), the result can be
derived as:
1d1 − v0 (1t1)
1d2 − v0 (1t2)

=
− cos (ω (tb +1t1))+ cos (ωtb)

− cos (ω (tb +1t1 +1t2))+ cos (ω (tb +1t1))
(36)

In equation (36), there is only one unknown variable tb.
Obviously, we can use the Newton-Raphson method to get
this independent variable. It is simple to obtain v1 by equa-
tion (34) with a known tb, which should be a mean result after
many experiments.

By using this method, the amplitude of the sinusoidal speed
can be measured accurate for inertia identification. We have
finished the experiments, and the result is considerable pre-
cise compared to the result from a photoelectric encoder.

VI. CONCLUSION
A new inertia measurement method for PMSMs is pro-
posed in this paper. This method employs the characteristic
of mechanic motion equation that performs as a first-order
system. The relationship between the speed response and
electromagnetic torque are used to obtain an accurate inertia
result. To verify the performance of this method, an experi-
ment using the first-order response of the cut-off frequency
sinusoidal signal of the system is performed. The experiment
result shows the effectiveness, robustness and accuracy of
the proposed method. For a kind of special position sensor,
hall sensor, an easy way to get the accurate sinusoidal speed
amplitude is presented, and the experiment result is satisfy-
ing. Although this inertia measurement method is presented
on a PMSM-based drive, it can almost be used in all kinds
of rotating machine as long as the electromagnetic torque is
controllable, and the torque response is fast enough.
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