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ABSTRACT This paper proposes a hybrid consensus-based square-root cubature information filter for target
tracking in camera networks in the case that the process and measurement noises are correlated with each
other at the same time. To the best of our knowledge, this is the first work that shows how to utilize the
square-root cubature information filter with correlated noise at the same time to track the target in camera
networks. This paper first decouples the correlation and rearranges the state transition equation to a new
one. Then, apply square-root cubature information filter based on the new state transition equation and
the original measurement equation to proposed a hybrid consensus-based square-root cubature information
filter with correlated noise (SCHF-CN). What’s more, it is proved that the proposed algorithm is stable via
the consistency of estimates. The simulation results demonstrate the superior performance of the proposed
SCHF-CN as compared to other algorithms via applications about the target tracking in camera networks.

INDEX TERMS Correlated noise, camera networks, distributed tracking, information filter.

I. INTRODUCTION
In the past few decades, more and more attention has been
paid to nonlinear recursive state estimation of discrete-time
systems because of its widespread applications such as tar-
get tracking [1], signal processing [2], etc. There are lots of
recursive algorithms for state estimation of nonlinear sys-
tems, such as the classical extended Kalman filter(EKF) [3],
unscented Kalman filter(UKF) [4], and recently proposed
cubature Kalman filters(CKF) [5], which are based on the
assumption that the process and measurement noises are
uncorrelated with each other. But in actual application the
process and measurement noises may be correlated with each
other [6]–[8], e.g. state estimation for camera networks with
non-synchronized communication between cameras. In this
paper, we will consider the target tracking problem with
correlated noise in camera networks. Usually, according to
the correlation time between the process and measurement
noises, the correlated noise is divided into cross-correlation
at the same time and cross-correlation one time step apart [9].
Because the cross-correlation at the same time is more com-
mon, most studies consider this kind of correlation [10]–[13].
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Of course, cross-correlation one time step apart also has been
studied [14]. Our work is deferent from [14] in the type of the
cross-correlation and the form of filter. It has been confirmed
in our previous article [15] that the square root cubature infor-
mation filter has a significant effect compared to the general
cubature information filter in handling the errors introduced
by arithmetic operations on finite word-length digital com-
puters. So we will discuss the problem of correlated noise in
the square-root cubature information filter. To the best of our
knowledge, this is the first work that shows how to utilize the
square-root cubature information filter with correlated noise
at the same time to track the target in camera networks.
The camera network considered in this paper is a set of

resource-constrained camera-equipped sensor nodes that are
spread over a large area. For target tracking in this network,
distributed state estimation (DSE) have obvious advantages
over corresponding centralized algorithms. When imple-
menting DSE in a distributed camera network, a consensus-
based algorithm is required to integrate the states from
each camera. The consensus-based methods for DSE can
be classified into several categories [16]. The first cate-
gory is called consensus on estimates (CE), which achieves
information exchange with cameras via spreading the avail-
able information on the network, and then performs an
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FIGURE 1. Overall system diagram depicting a framework for target-tracking in a camera network.

average consensus on state estimates from camera itself and
neighbors [17]–[19]. In this average consensus algorithm,
only using state estimations can reduce communication cost
of each camera and then the communication overhead of
the entire system. But covariance matrices also contain lots
of useful information to improve the system performance.
Consequently, the second category: consensus on measure-
ments (CM) is proposed, which performs the average con-
sensus on local measurements and innovation covariances.
It is shown that CM can approximate, in a distributed
way, the correction step of the centralized Kalman-like fil-
ter. The covariance intersection fusion rule [20] suggests an
another consensus approach, namely consensus on the infor-
mation (CI) [21], which performs a consensus among the
inverse covariance (information) matrix and the information
vector. CI algorithms can ensure boundedness of the estima-
tion error for any number of consensus steps (even a single
one) [21], but this kind of approach relies on the assumption
that the correlation between the estimates receiving from
different nodes to be completely unknown, which may lead to
a bad effect on its mean-square estimation error performance.
Although CM strategy does not make any assumptions about
the correlation between the estimates by fusing only the novel
information, it does not guarantee stability unless the number
of consensus steps is sufficiently high. Hence, in order to
combine the advantages and neutralize the disadvantages
of both CI and CM, a hybrid consensus approach called
HCMCI (Hybrid Consensus on Measurement and Consensus
on Information) is proposed [22], [23]. Different choices for
the combination weights lead to different properties. When
the combination weights choice 1/NC (NC is the total number
of cameras in the network), the HCMCI approach is equiva-
lent to the Information Consensus Filter (ICF) [24].

What’s more, one advantage of the information filter over
the cubature Kalman filters arises from its natural fit for
multi-agent problems. Because information filters often inte-
grate the information in an arbitrary order, with arbitrary
delays and in a completely decentralized manner [15].

Based on the above study, this paper proposes a dis-
tributed square-root cubature information hybrid consensus
filter with correlated noise for target tracking in the camera

network, its framework shown in Fig. 1. When the video
is captured from a camera, the following processes must
be accomplished. The first process is target detection using
existing algorithms, such as the target detection method
based on background subtraction [25]. The target detection
module in each camera takes its raw image and returns
the image plane positions of each target recognized in the
image, and then project the targets’ positions in different
image planes to the same ground plane. The second process
is distributed information fusion using a hybrid consensus
algorithm. Communication among cameras is allowed to
enhance the processes of information fusion and associa-
tion for target recognition. The third process is target state
estimation using square-root cubature information filter with
correlated noise. Using the prior information (information
vector ŷsk|k−1 information matrix Ssy,k|k−1) at time k and
the assumed target model, the prior information (ŷsk+1|k and
Ssy,k+1|k )) is computed as the tracking result and an input for

time k + 1.
The main contributions of this paper include: (1) a dis-

tributed nonlinear information filter with correlated noise
at the same time and hybrid consensus strategy has been
developed with the framework of square-root cubature infor-
mation filter; (2) the consistency of estimates for the proposed
algorithm has been proven with the help of the pseudo system
and a pseudo measurement matrix. The structure of this paper
is as follows. We introduce the system model for this paper in
Section II. In Section III, a square-root cubature information
hybrid consensus filter with correlated noise (SCHF-CN) is
proposed. The stability analysis of the proposed algorithm is
given in Section IV. The algorithm applies in experiments to
compare against others in section V. The simulation results
show that the proposed algorithm can efficiently track the
target in camera networks. Finally, we give conclusion of this
paper in section VI.

II. SYSTEM MODEL
In this paper, we consider a camera network with NC
cameras to monitor moving targets in overlapping field
of views (FOVs). The communication in the network can
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be represented using an undirected connected graph G =
(C,E,A) [26]. The sets of vertices C = {C1,C2, · · · ,CNC }
and edges E ⊆ C × C represent the cameras and available
communication channels between different cameras, respec-
tively. A = [asj]NC×NC is an adjacency matrix which is a sym-
metric 01−matrix. Because the graph has no loops, the diag-
onal entries of A are zero (ass = 0, s = 1, · · · ,NC ). (Cs,Cj)
represents the direct communication channel between node
Cs and node Cj. �s = {Cj ∈ C | (Cs,Cj) ∈ E} is the
adjacency set of node Cs. Ns = Cs ∪ �s is the set including
the node Cs and its direct neighbors. The degree of node Cs is
the number of its neighbors

a
s =

∑
j asj. The degree matrix

is a NC × NC matrix defined as 1 = diag{A · 1}.
The general nonlinear system model for camera networks

is the form

xsk+1 = f (xsk )+ v
s
k (1)

zsk = h(xsk )+ w
s
k (2)

where the system equation f (·) and themeasurement equation
h(·) are time-varying nonlinear functions. At time k , xsk ∈ R

nx

is the state vector of the target in the camera Cs, nx is the
dimension of the state vector. For a target, the state vectors
obtained by different cameras should be broadly consistent
in theory. zsk ∈ Rnz is the nonlinear measurement from the
target measured by the node Cs on time k , nz is the dimension
of the observation vector. vsk and wsk are process noise and
measurement noise in the camera Cs at time k , respectively.
They are both Gaussian white noise sequences with zero
mean and variances are Qsk and R

s
k , which satisfy

E
{(

vsk
wsk

) (
vsk
T wsk

T )}
=

[
Qsk Dsk
Dsk

T Rsk

]
δk,l (3)

where Dsk is covariance of process noise vsk and measure-
ment noise wsk . δk,l is the Kronecker delta, which is 1 if
the time l and time k are equal, and 0 otherwise. Many
researches [24], [27] assume that Dsk = 0, but in fact this
assumption is not reasonable. Therefore, this paper considers
the case where the covariance of these two noises is not zero,
i.e., Dsk 6= 0. That is to say, the system used in this paper is a
system with correlated noise.

III. SQUARE-ROOT CUBATURE INFORMATION HYBIRD
CONSENSUS FILTER WITH CORRELATED NOISE
Many previous researches on system modeling to assume
that the measurement noise of the system equation is uncor-
related with the process noise, but in fact, the two noises
may be related. In this section we will discuss the concrete
expressions of the hybrid consensus filter in the system with
correlated noise.

A. THE DECOUPLE METHOD FOR SQUARE-ROOT
CUBATURE INFORMATION FILTER WITH
CORRELATED NOISE
The cubature Kalman filter (CKF) [5] and the square-root
cubature information filter (SCIF) [28] were proposed by

Arasaratnam et al. at 2009 and 2013, respectively. However,
the classical cubature Kalman filter and square-root cubature
information filter do not take correlated noise into account
(i.e., Dsk = 0), which are not suitable for systems with
correlated noise. In addition, the information filter is more
suitable for the information fusion inmultisensor systems [3].
Therefore, this subsection will give the form of square-root
cubature information filter with correlated noise.

Since two noises in (1) and (2) are correlated, the state
estimation can not be calculated directly via the classical
square-root cubature information filter [28]. In this section,
we deal with the square-root cubature information filter with
correlated noise using a similar approach, which is proposed
for Kalman filter with correlated noise [9].

Using a matrix Tk , to be determined later, one can
rewrite (1) as follow (for the sake of brevity, the index s is
omitted in (1) and (2)).

xk+1 = f (xk )+ vk + Tk [zk − h(xk )− wk ]

= f (xk )+ Tk [zk − h(xk )]+ vk − Tkwk
= f ∗(xk )+ v∗k (4)

where f ∗(xk ) = f (xk ) + Tk [zk − h(xk )] and the new process
noise as v∗k = vk − Tkwk . zk is a known observation. Since
zk−h(xk )−wk = 0, then the (4) is equivalent to (1). In order to
use the framework of the classical SCIF, the cross-correlation
between the new process noise v∗k and the measurement noise
wk must be zero. That is,

E[v∗kw
T
k ] = E[(vk − Tkwk )wTk ] = Dk − TkRk = 0 (5)

where Dk and Rk are defined in (3). From (5), Tk = DkR
−1
k .

With the above, the covariance of the new process noise is

Q∗k = E[v∗k (v
∗
k )
T ]

= E[(vk − DkR
−1
k wk )(vk − DkR

−1
k wk )T ]

= Qk − DkR
−1
k DTk . (6)

By identity transformation, the modified nonlinear system
model for camera networks is the form

xsk+1 = f ∗(xsk )+ v
∗
k
s (7)

zsk = h(xsk )+ w
s
k . (8)

Now, the new state estimation in (7) and (8) can be calculated
directly via the classical square-root cubature information
filter [28].

B. DISTRIBUTED SQUARE-ROOT CUBATURE
INFORMATION HYBIRD CONSENSUS FILTER
WITH CORRELATED NOISE
Each camera in the camera network is distributed in different
locations in the observation area. If centralized management
is adopted, it will inevitably lead to difficulty in wiring, cause
a large communication cost and storage load to the central
node. At present, the emergence of Internet of things (IoT)
and cloud computing have made the rapid development of
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distributed processing technology, which technical advan-
tages have been highlighted. Therefore, this paper also uses a
distributed approach for information exchanging and process-
ing. The application scenario of this paper is the camera net-
work. In a camera network, each camera is regarded as a node,
each node only establishes communication and exchanges
the information with its neighbors. Because the cameras are
arranged in different locations in a large scale area, the FoV
of each camera is different. Thus, a distributed average con-
sensus algorithm is needed to make the information con-
sistent from each camera, so as to realize the information
fusion of the whole network. Because of benefits of HCMCI
approach, this paper chooses this consensus stratety as the
multi-source information fusion strategy. The input of the
hybird consensus algorithm in this paper is the information
vector ŷsk|k and square-root information matrix Ssy,k|k , where
s = 0, 1, · · · ,NC , Ssy,k|k is determined by information matrix

Y sk|k
(
= (Psk|k )

−1
= Ssy,k|k (S

s
y,k|k )

T
)
[28]. For simplicity, ŷsk|k

and Ssy,k|k are denoted by the information pairs (ŷsk|k , S
s
y,k|k ),

then make the following definition:
Definition 1: Given the information pairs in the form of

(ŷsk|k , S
s
y,k|k ),Cs ∈ C, it is said their hybird average consen-

sus is achieved if the following limit exists, that is

(ŷ∗k|k , S
∗

y,k|k ) = lim
l→∞

(ŷsk|k,l, S
s
y,k|k,l) (9)

In (9),
(
ŷsk|k,l, S

s
y,k|k,l

)
Cs∈C

denotes the information pair

of camera CS available at time step k after the l-th internal
iteration satisfying

ŷsk|k,l+1 =
∑
Cj∈Ns

π s,j ŷjk|k−1,l + ω
s
k

∑
Cj∈Ns

π s,jijk,l (10)

Ssy,k|k,l+1 = Tria
([√

π s,sSsy,k|k−1,l
√
π s,1S1y,k|k−1,l · · ·√

π s,Ns,E SNs,Ey,k|k−1,l

√
ωskπ

s,sSsi,k,l√
ωskπ

s,1S1i,k,l · · ·
√
ωskπ

s,Ns,E SNs,Ei,k,l

])
(11)

with weighting coefficients π sj ≥ 0, Ns is the set includ-
ing the node Cs and its neighbors Cj ∈ �s, i

j
k,l(Cj ∈

Ns) and Smi,k,l(m = 1, · · · ,Ns,E ) are the information con-
tribution vector and the square-root information matrix,
respectively [28]. Tria represents the QR decomposition [5].
Since

(
Cs,Cj

)
∈ E , it is easy to obtain the total number Ns,E

of Cj adjacent to Cs by the adjacency matrix A. In addition,∑
Cj∈Ns π

sj
= 1 and the initial conditions are assumed to be

ŷsk|k,0 = ŷsk|k , S
s
y,k|k,0 = Ssy,k|k . The (11) is the square root

form of following equation.

Y sk|k,l+1 =
∑
Cj∈Ns

π s,jY jk|k−1,l + ω
s
k

∑
Cj∈Ns

π s,jI jk,l (12)

where Y sk|k,l+1 is the information matrix at the lth + 1 inter-

nal iteration, i.e., Y sk|k,l+1 = Ssy,k|k,l+1(S
s
y,k|k,l+1)

T , I jk,l =

S ji,k,l(S
j
i,k,l)

T is the information contribution matrix [28].

Get more information about the equivalence between (11)
and (12) in [15, Sec. 4.3].
With the definition above, the following Theorem 1 guar-

antees the condition for the existence of the hybrid average
consensus. First, a lemma is needed.
Lemma 1 [29]: Let A ∈ Rn×n be nonnegative. If A is

row-stochastic primitive, then liml→∞ Al = 1vT , where v is
a n× 1 nonnegative column vector satisfying 1T v = 1.
Theorem 1: Consider a camera network with topology

G = (C,E,A). Suppose that the consensus weighted matrix
5 =

(
π sj
)
NC×NC

is primitive, then, each information pair(
ŷsk|k , S

s
y,k|k

)
can reach a hybrid average consensus.

Proof: The proof of this theorem is provided in
Appendix A.
By Theorem 1, it is ready to introduce distributed

square-root cubature information hybrid consensus filter with
correlated noises (SCHF-CN) as Algorithm 1.

It is important to note that Algorithm 1 needs to choose
the scalar weights ωsk . A reasonable choice consists in setting
ωsk = NC , meanwhile the consensus weights are chosen so
that π s,jL → 1/NC as L → ∞, where π s,jL denotes the

(s, j)-th element of 5L , i.e., 5L
=

(
π
s,j
L

)
NC×NC

and 5L

denotes the L-th power of the consensus matrix 5. In this
way, the distributed algorithm converges to the centralized
algorithm when L tends to infinity. It is worth noting that,
when such a choice is adopted, the results of Algorithm 1 are
equivalent to SCWF proposed in [27].

While asymptotically optimal, the choice ωsk = NC may
have some drawbacks. For example, theremay be some nodes
that do not reach the consensus, when the choice of multipli-
cation by NC may lead these nodes to an overestimation of∑

Cj∈C I
j
k [16]. This situation needs to be avoided in order to

preserve the consistency of each local filter. An alternative
solution is to use consensus to calculate, in a distributed
way, a normalization factor, which can improve the filter
performance while preserving consistency of each local filter.
For example, Not all cameras can observe all the targets in
the area due to the limited of FoVs. For a target, when using
the distributed consensus filter to estimate its state vector,
it is necessary to consider whether the camera can observe
the target or not. It requires us to treat the observations
from different cameras differently. Now, the value of ωsk can
be computed in the following way. It is first necessary to
determine the value of bsk (L), which means that the ratio of
the number of cameras that can observe the target to the total
number of cameras.

bsk (l + 1) =
∑
Cj∈Ns

π s,jbjk (l) , l = 0, 1, · · · ,L − 1 (13)

with the initialization bsk (0) = 1 if the cameraCs can observe
the target, and bsk (0) = 0 otherwise. Then, it can be seen that
the choice

ωsk =

{
1/bsk (L) if bsk (L) 6= 0
1 otherwise

(14)
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Algorithm 1 Distributed Square-Root Cubature Information
Hybrid Consensus FilterWith Correlated Noises (SCHF-CN)
Input: ŷsk|k−1 and S

s
y,k|k−1

1) Get measurements: zsk ,Cs ∈ C ;
2) Compute the information contribution vector isk

and square-root information matrix Ssi,k using (26)
and (23) in [28]; isk = 0 and Ssy,k|k−1 = 0 if the
camera does not detect the target;

3) Initialized consensus data isk,0 = isk , S
s
i,k,0 = Ssi,k ,

ŷsk|k−1,0 = ŷsk|k−1, S
s
y,k|k−1,0 = Ssy,k|k−1;

4) For l = 0, 1, · · · ,L − 1, implement following con-
sensus steps.
a) Broadcast information isk,l , Ssi,k,l , ŷsk|k−1,l ,

Ssy,k|k−1,l to its neighbors Cj ∈ �s;

b) Receive the messages ijk,l , S ji,k,l , ŷjk|k−1,l ,

S jy,k|k−1,l , Cj ∈ �s;

c) Fuse the information ijk,l and S
j
i,k,l ,

isk,l+1 =
∑

Cj∈Ns
π s,jijk,l

Ssi,k,l+1 = Tria
([√

π s,sSsi,k,l
√
π s,1S1i,k,l · · ·√

π s,Ns,E SNs,Ei,k,l

])
d) Meanwhile fuse the information ŷjk|k−1,l and

S jy,k|k−1,l ,

ŷsk|k−1,l+1 =
∑

Cj∈Ns
π s,j ŷjk|k−1,l

Ssy,k|k−1,l+1 = Tria
([√

π s,sSsy,k|k−1,l√
π s,1S1y,k|k−1,l · · ·√
π s,Ns,E SNs,Ey,k|k−1,l

])
5) Compute the updated information vector ŷsk|k and the

square-root of the updated information matrix Ssk|k ,

ŷsk|k = ŷsk|k−1,L + ω
s
k i
s
k,L

Ssy,k|k = Tria
([
Ssy,k|k−1,L

√
ωskS

s
i,k,L

])
6) Compute the predicted information vector ŷsk+1|k and

the square-root of the predicted information matrix
Ssy,k+1|k [28].

Output: ŷsk+1|k and S
s
y,k+1|k

has the desirable property of preserving the consistency
of each local filter. In fact, the terms ijk and I jk , for
Cj ∈ C , are multiplied by a weight ωskπ

s,j
L = π

s,j
L /b

s
k (L)

which is guaranteed not to exceed 1 since, by construction,
bsk (L) =

∑
Cj∈C π

s,j
L .

IV. STABILITY ANALYSIS
In this section, the stability of the proposed SCHF-CN
algorithm is analyzed from the estimation consistency.

In addition, the square-root filter and the standard filter are
mathematically equivalent, and the square-root filter is used
to solve the numerical difficulties due to the finite-word-
length of the processor, especially in embedded systems.
It is thus proved that the stability of the square-root filter
algorithm can be exactly equivalent to the stability of the
corresponding standard filter [30]. In order to facilitate the
stability analysis of SCHF-CN, we adopt the statistical linear
error propagation methodology [31]–[33] to derive a pseudo
system matrix F s

k and pseudo measurement matrixHs
k in (7)

and (8),for each camera.

A. LINEARIZATION APPROXIMATION
By the error propagation notion, the cross-covariance matrix
can be obtained as follows:

Psxz,k|k−1 = E
[(
xsk − x̂

s
k|k−1

) (
zsk − ẑ

s
k|k−1

)T
|Z k−1

]
1
= (Y sk|k−1)

−1Hs
k (15)

where Z k−1 is all measurements obtained before time k ,
Y sk|k−1 is the predicted information matrix in camera Cs, and
x̂sk|k−1 and ẑ

s
k|k−1 are predicted state and predicted measure-

ment, respectively. Then, the pseudo measurement matrixHs
k

can be calculated by

Hs
k = Y sk|k−1P

s
xz,k|k−1 = Y sk|k−1

×

[
1
m

m∑
i=1

X si,k|k−1(Z
s
i,k|k−1)

T
− x̂sk|k−1(ẑ

s
k|k−1)

T

]
(16)

where m = 2nx , Xi,k|k−1 and Zi,k|k−1, (i = 0, · · · ,m), are
the cubature points and propagated cubature points in mea-
surement update step of algorithm, respectively [5]. In order
to obtain the pseudo system matrix F s

k , it is necessary to
introduce the cross-covariance between the current predic-
tion and latest previous estimate, which is calculated as
follows [34], [35]:

Psxk−1,xk|k−1 = E
[(
xsk−1 − x̂

s
k−1|k−1

)
×

(
xsk − x̂

s
k|k−1

)T
|Z k−1

]
1
= Y−1s,k−1|k−1

(
F s
k−1

)T
. (17)

Via cubature calculation rules [36],

Psxk−1,xk|k−1 =
1
m

m∑
i=1

(
X si,k−1|k−1 − x̂

s
k−1|k−1

)
×

(
X∗si,k|k−1 − x̂

s
k|k−1

)T
(18)

where X si,k−1|k−1 and X∗si,k|k−1 are the cubature points and
propagated cubature points in time update step of algorithm,
respectively [5]. So F s

k−1 can be approximated by

F s
k−1 = (Psxk−1,xk−1|k−1 )

TY sk−1|k−1. (19)

VOLUME 7, 2019 17911



Y. Chen, J. Wang: SCHF-CN and Its Applications in Camera Networks

According to [37], in order to compensate the approxima-
tion error caused by F s

k−1 andH
s
k , we introduce the compen-

sation instrumental diagonal matrix

αsk = diag(αsk,1, α
s
k,1, · · · , α

s
k,nx )

and

βsk = diag(βsk,1, β
s
k,1, · · · , β

s
k,nz ).

Then, we can rewrite (7) and (8) as (at time k)

xsk = α
s
k−1F

s
k−1x

s
k−1 + v

∗s
k−1 (20)

zsk = β
s
kH

s
kx

s
k + w

s
k . (21)

By the above linear approximation equations, and based on
the standard information filter expression [3], the correspond-
ing modified cubature information filter is rewritten by the
following:

Y sk|k−1 =
[
αsk−1F

s
k−1

(
Y sk−1|k−1

)−1
×
(
αsk−1F

s
k−1

)T
+ Q∗s,k−1

]−1
ŷsk|k−1 = Y sk|k−1

(
αsk−1F

s
k−1

)
ŷsk−1|k−1

Y sk|k = Y sk|k−1 +
(
βskH

s
k
)T (Rsk)−1βskHs

k

ŷsk|k = ŷsk|k−1 +
(
βskH

s
k
)T (Rsk)−1zsk . (22)

B. CONSISTENCY OF ESTIMATES
Consistency is one of the most basic and important properties
in data fusion processes [22], [35], [37], [38]. In the follow-
ing, the consistency of the proposed SCHF-CN algorithm in
this paper is proved based on the linear approximation model
in (20) and (21).
Definition 2 [22]: Consider a random vector x. Further,

let x̂ and P be unbiased estimate of x and an estimate of the
corresponding error covariance, respectively. Then, the pair
(x̂,P) is said to be consistent if E

{(
x − x̂

) (
x − x̂

)T}
≤ P.

Note that the inequality relationship between two matrices
in this paper is used to indicate whether the matrix is semi-
definite or not, for example, A ≥ B if and only if A − B is a
semi-definite matrix.

In words, according to Definition 2, consistency amounts
to requiring that the estimated error covariance P be an upper
bound (in the semi-definite sense) of the true error covariance.
If one considers the information pair (ŷ,Y ) = (P−1x̂,P−1),
the pair (ŷ,Y ) is said to be consistent if

Y ≤ E−1
{(
x − Y−1ŷ

) (
x − Y−1ŷ

)T}
(23)

Lemma 2 [22]: The function ψ (·) is monotone non-
decreasing, i.e., give two positive semi-definite matrices Y1
and Y2 with Y1 ≤ Y2 one has 0 ≤ ψ (Y1) ≤ ψ (Y2),
where the function ψ (·) is determined by the first equa-

tion in (22), i.e., Y sk|k−1 = ψ
(
Y sk−1|k−1

)
with ψ (Y ) =[

αsk−1F
s
k−1Y

−1
(
αsk−1F

s
k−1

)T
+ Q∗s,k|k−1

]−1
.

Theorem 2: If the initial predicted estimates {x̂s1|0}
NC
s=1 sat-

isfies the following equation:

Y s1|0 ≤ E
−1
{(
x1 − x̂s1|0

) (
x1 − x̂s1|0

)T}
, (24)

then, for each time step k and Cs ∈ C,

Y sk|k ≤ E
−1
{(
xk − x̂sk|k

) (
xk − x̂sk|k

)T}
.

That is, Algorithm 1 preserves consistency.
Proof: The proof of this theorem is provided in

Appendix B.

V. EXPERIMENTAL EVALUATION
Considering the two aspects of the system with correlated
noise and consensus algorithm, a distributed square-root
cubature information hybrid consensus filter with correlated
noises called SCHF-CN is proposed in this paper. This algo-
rithm not only considers the correlation between measure-
ment noise and process noise, but also takes the advantages
of hybrid consensus algorithm into account.

In order to evaluate the performance of the proposed
algorithm, we compare it with other methods: DUKF [34]
and DCIF [35]. Our experiments are performed on an Intel
i7-7700k 4.7GHz PC with 16G memory and implemented in
Matlab R2017a.

A. SIMULATION ENVIRONMENT
A target moving in a 500m × 500m area where is under
observation of nine cameras (NC = 9) with overlapping
FOVs is considered. To simplify the simulation, the FOV of
each camera is assumed to be a square region of 200m ×
200m around the camera. At discrete time instant k , the state
vector consists of the target’s position (xk , yk ), its velocity
(vx , vy) and the time interval δk between the two consecutive
measurements. That is: xk = [xk yk vx vy δk ]T .

The motion model of the targets is described by the
nonlinear equation [39]:

xk+1 =


xk + vx,kδk + ax

δ2k
2

yk + vy,kδk + ay
δ2k
2

vx,k + axδk
vy,k + ayδk
δk + e

 (25)

where the target acceleration (ax , ay) is modelled as Gaussian
noise. To account for synchronisation errors among cameras,
we consider a time uncertainty e, which is also assumed to be
a Gaussian variable. We consider the vector (ax , ay, e) as the
Gaussian noise vector with zero mean and covariance Q =
diag([20 20 0.2]). In order to facilitate the calculation,
it needs to be independent of the process noise vk as the (1).
Here, computing the Jacobian matrix Jv,k of (25) with respect
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to (ax , ay, e), one get the Jv,k as (26),

Jv,k =


1
2δ

2
k 0 0

0 1
2δ

2
k 0

δk 0 0
0 δk 0
0 0 1

 (26)

Then, vk = Jv,k (ax , ay, e)T and its variance is calculated by
Qk = E

(
vkvTk

)
= Jv,kdiag ([10 10 0.1]) JTv,k . The initial

speed is randomly got from the range 10 ∼ 50 units per time
step and with a random direction uniformly chosen from 0
to 2π , and then the trajectory required for the simulation can
be obtained according to the (25). The initial prior covariance
P−1,s = diag ([100 100 25 25 0.01]). In addition, the initial
prediction state information x̂−1,s is composed of the initial
value of the real trajectory with a the zero mean Gaussian
white noise by P−1,s as its covariance.
The measurement model can be defined as

zsk =
(
γ sk
φsk

)
=


H s
11xk + H

s
12yk + H

s
13

H s
31xk + H

s
32yk + H

s
33

H s
21xk + H

s
22yk + H

s
23

H s
31xk + H

s
32yk + H

s
33

+ wk (27)

where (γ sk , φ
s
k ) is the pixel coordinates of the target in the

image plane of cameraCs at time k . The valuesH s
11, · · · ,H

s
33

are the elements of Homography, wk is the measurement
noise, which is considered to be white Gaussian noise. Since
theHomographymatrix is used to convert the different obser-
vation planes of cameras to the reference plane. It can be seen
from the literature [27] that the same Homography matrix
using in different cameras does not affect the simulation
results. To simplify the experimental design, theHomography
matrix values of each camera are taken from the camera C6
of the APIDIS dataset [40] whose values are:

Hs =

1930.8939 −89.8033 −2393800
117.2530 91.8121 1022700
0.3485 −0.8720 1971.8862

 (28)

According to III-A, rewrite the system equation as

xk+1 = f (xk)+ vk + T sk
[
zsk − h (xk)− w

s
k
]

=


xk + vx,kδk
yk + vy,kδk

vx,k
vy,k
δk

+ T sk
zsk −

 H s
11xk+H

s
12yk+H

s
13

H s
31xk+H

s
32yk+H

s
33

H s
21xk+H

s
22yk+H

s
23

H s
31xk+H

s
32yk+H

s
33


+ vk − T skw

s
k

= f ∗ (xk)+ v∗k (29)

At time step k+1, the observed value zsk from the cameraCs is
a known value, so all items of the function f ∗(xk ) are known.
Note that the second term f ∗(xk ) will be set to zero when
the camera does not detect the target, i.e. f ∗(xk ) = f (xk ).
In addition, the process noise v∗k = vk − T skw

s
k in (29) is not

related to the measured noise wsk .

Let ϕsk (s = 1, · · · , 9) are the correlation matrix between
vk and wsk , i.e. w

s
k = ϕ

s
kvk . Thus,

Dsk = E
{
vk (wsk )

T
}
= Qk (ϕsk )

T (30)

The covariance of the measured noise Rsk is

Rsk = E
{
wsk (w

s
k )
T
}
= ϕskQk (ϕ

s
k )
T (31)

In addition, according to (6), the covariance of the new
process noise is

Q∗k = E
{
v∗k (v
∗
k )
T
}
= Qk − Dsk

(
Rsk
)−1(Dsk)T (32)

In order to establish a uniform simulation environment,
we set ϕsk = 0.7 × [1, 0, 0, 0, 0; 0, 1, 0, 0, 0]. In addition,
according to (5), (31) and (32), one can know T sk =

(
ϕsk

)−1.
It should be noted that ϕsk is not a square matrix, so the
superscript -1 in the previous equation is the pseudo-inverse
operation.

In this paper, we perform the experiments for a sparse
connectivity network with a low average network degree
equal to 2 (dotted lines indicate network links in Fig. 2).
To facilitate the display, Fig. 2 only shows the Fovs ofC1,C3,
C5, C7, C8, the other are similar. The consensus weight π sj

can be calculated through a well-known Metropolis weights
rule

π sj =


1

1+ max
{
1s,1j

} , if
{
Cs,Cj

}
∈ E

1−
∑
{Cs,Cj}∈E π

sj, if Cs = Cj
0, otherwise

(33)

FIGURE 2. Sparse connectivity of the network.

B. SIMULATION RESULTS
In the following, we will compare the proposed SCHF-CN
algorithm with DUKF and DCIF in two scenarios: with-
out correlation noise (Dsk = 0) and with correlation noise
(Dsk 6= 0). The simulation results are averaged over 50
Monte Carlo simulation runs.
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1) WITHOUT CORRELATION NOISE
If the process noise is not correlated with the measurement
noise, then Dsk = 0. In this experiment, the measurement
noise is considered to be Gaussian with zero mean and vari-
ance R = diag([5 5]), and ϕsk ∈ R

2×5 is an all-zero matrix.
The simulation results are shown in Fig 3 (Fig 3(b) zooms
in Figure 3(a) with focus on SCHF-CN and DCIF.). It can
be seen from the figure that the performance of the hybrid
consensus algorithm proposed in this paper is better than
CI consensus-based algorithms (DCIF, DUKF). From the
previous theoretical analysis, we can see that the SCHF-CN
algorithm combines the advantages of CM and CI algorithms,
so the performance of this algorithm is improved. In addition,
in the experiment, the tracking error of the DUKF algorithm
is too large, which is not suitable for the target tracking
in camera networks. Although the SCHF-CN algorithm can
get the best tracking results, the communication cost in
each iteration is more than the DCIF algorithm. Because the
SCHF-CN needs to broadcast 5 vectors (ijk,l , S

j
i,k,l , ŷ

j
k|k−1,l ,

S jy,k|k−1,l , ω
s
k ), while the DCIF only needs to broadcast 2 vec-

tors (ŷjk|k−1,l , Y
j
k|k−1,l). But the proposed algorithm has high

tracking accuracy. Therefore, it needs to be considered com-
prehensively about the algorithm which is adopted within a
specific scenario.

FIGURE 3. The mean errors and the variation of the estimation errors
about three algorithms without correlation noise.

2) WITH CORRELATION NOISE
If the process noise is correlated with the measurement noise,
then Dsk 6= 0. At this time, only the SCHF-CN algorithm
can handle the correlation noise. The final simulation results
are shown in Fig.4. As shown in Fig.4(a), when correlated
noise is present, the performance of SCHF-CN algorithm is
the best. Although the SCHF-CN algorithm can deal with
the correlation noise, due to the limited FoV of the camera,
the target may not be observed by camera Cs, i.e., zsk is
unknown in (29), which affects the implementation of the
algorithm. And then it can destroy the performance of the
algorithm.

3) DIFFERENT CORRELATION MATRICES
In above experiments, in order to make the experimental
method simple, the correlation matrix ϕsk is taken a fixed
value. In order to verify the stability of each algorithm with
different ϕsk , 10 random correlation matrices are randomly

FIGURE 4. The mean errors and the variation of the estimation errors
about three algorithms with correlation noise.

FIGURE 5. The mean errors and the variation of the estimation errors
about three algorithms with correlation noise.

generated using the ϕsk = rand(2, 5) function, and then
20 trajectories are randomly generated via (25) for each
correlation matrix, meanwhile 10 observations are randomly
generated via (28) for each trajectory. In this experiment,
the number of iterations of the consensus algorithm is fixed to
5. Finally the mean error of each algorithm under each corre-
lation matrix is calculated, the results shown in Fig. 5(a). The
abscissa of Fig.5(a) is the sequence number of the correlation
matrix. Since the correlation matrix is randomly generated,
its sequence number is independent of the value of the cor-
relation matrix. In addition, because the final mean error is
the result of averaging the simulation results, the mean error
of each algorithm is basically same at different ϕsk . In order
to verify the change rule of mean error with the increase
of correlation noise, the simulation is designed as follows:
set ϕsk = 5 × [1, 0, 0, 0, 0; 0, 1, 0, 0, 0], then multiply it by
1 to 10. The results shown in Fig.5(b). In the figure, the the
abscissa is the multiplying factor. It can be seen that the mean
error of the three algorithms increases with the increase of
the correlation noise, and trend of change is basically same.
What’s more, the SCHF-CN algorithm proposed in this paper
has the best results in most cases.

VI. CONCLUSION
This paper presents a square-root cubature information
hybrid consensus filter with correlated noise and its appli-
cation in camera networks. Firstly, a de-correlation oper-
ation for the system with correlation noise is carried out,
which makes the measurement noise and process noise irrel-
evant in the new system equation. Then, according to the
classical square-root cubature information filter, a hybrid
consensus-based filter with correlated noise is proposed.
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What’s more, the stability of the proposed algorithm is proved
by the consistency of estimates. Finally, it is verified that the
proposed algorithm in this paper is superior to other algo-
rithms via the applications about the target tracking in camera
networks. The final simulation results show that the proposed
algorithm can achieve best results whether the measurement
noise and process noise are correlated or not.

In our future work, we will consider to apply the proposed
algorithm to other applications, e.g., bearings-only tracking
system, and investigate new consensus approaches to make
the performance of estimation more accurate.

APPENDIX A
PROOF OF THEOREM 1

Proof: By (13), (14) and CI algorithm, it is fairly easy
to get that all ωsk (Cs ∈ NS ) tend to a average value ω∗k as
l →∞. Then, the (10) can be rewritten as

ŷsk|k,l+1 =
∑
Cj∈Ns

π s,j(ŷjk|k−1,l + ω
∗
k i
j
k,l)

Now, denote ŷsk|k = ŷsk|k−1 + ω∗k i
s
k . In addition, all the

vectors can be vertically concatenated into a single column
vector, i.e.,

ŷk|k = col
(
ŷsk|k−1 + ω

∗
k i
s
k

)
with Cs ∈ Ns. Hence, (10) can be written as

ŷk|k,l+1 =
(
5⊗ Inx

) (
ŷk|k,l

)
=
(
5⊗ Inx

)
· · ·
(
5⊗ Inx

) (
5⊗ Inx

)
ŷk|k,0

=

(
5l+1

⊗ Inx
)
ŷk|k,0.

As defined before, π sj ≥ 0 and
∑

Cj∈Ns π
sj
= 1, hence,

it is naturally matrix 5 is row-stochastic, and 5 is assumed
as primitive. According to Lemma 1, we have

lim
l→∞

5l+1
= 1vT

where v is a column vector with with v =
[
v1, v2, · · · , vNC

]T .
When l →∞, ŷk|k,l+1 =

(
1vT ⊗ Inx

)
ŷk|k,0, that is to say,

ŷk|k,l+1 = v1ŷ1k|k,0 + v2ŷ
2
k|k,0 + · · · + vNC ŷ

NC
k|k,0

= ŷ∗k|k

In addition, Ssy,k|k is the square-root form of Y sk|k , and (11)
and (12) are equivalent. In the same way, when l →∞, Ssy,k|k
has the similar result. The proof is now completed.

APPENDIX B
PROOF OF THEOREM 2

Proof: The proof process is given by mathematical
induction. To this end, assume that at time k the following
equation holds,

Y sk|k−1 ≤ E
−1
{(
xk − x̂sk|k−1

) (
xk − x̂sk|k−1

)T}
(34)

for any node Cs ∈ C .

The choice suggested in (14) for the weight ωsk gives
following result:
There exist a positive scalar

¯
ω such that

1 ≤
¯
ω ≤ ωsk , (35)

with,Cs ∈ NC . By recalling the identity in (12), it can be seen
that (35) implies that

Y sk|k,1 =
∑
Cj∈Ns

π s,j
[
Y jk|k−1,0 + ω

s
k I
j
k,0

]
≥

∑
Cj∈Ns

π s,j
[
Y jk|k−1,0 +

¯
ωI jk,0

]
(36)

Now, denote

Y sk|k,0 = Y sk|k−1,0 + ω
?
k I
s
k,0 (37)

with Cs ∈ NC and ω?k ≥
¯
ω.

By the initialization of Algorithm 1 and (36), (34) implies,

E−1
{(
xk − x̂sk|k,0

) (
xk − x̂sk|k,0

)T}
= E−1

{(
xk − x̂sk|k−1

) (
xk − x̂sk|k−1

)T}
+ ω?k I

s
k

≥ Y sk|k−1 +
¯
ωI sk ≥ Y

s
k|k−1 + I

s
k = Y sk|k,0

with Y sk|k−1,0 = Y sk|k−1 and I
s
k,0 = I sk = Ssi,k × (Ssi,k )

T .
Because the HCMCI approach is applied to Algorithm 1

and I sk = Y sk|k−1P
s
xz,k|k−1(R

s
k )
−1(Y sk|k−1P

s
xz,k|k−1)

T [28], we
can carried out a CI approach with the noise covariance
matrices Rsk replaced by Rsk/ω

?
k . Then, Algorithm 1 also has

the nature of CI approach, that is satisfied Covariance Inter-
section fusion rule. Since the Covariance Intersection fusion
rule preserves the consistency property [41], i.e.

E−1
{(
xk − x̂sk|k,l

) (
xk − x̂sk|k,l

)T}
≥ Y sk|k,l

implies

E−1
{(
xk − x̂sk|k,l+1

) (
xk − x̂sk|k,l+1

)T}
≥ Y sk|k,l+1

for any l = 0, 1, · · · ,L − 1, that is to say, at time step k ,

E−1
{(
xk − x̂sk|k

) (
xk − x̂sk|k

)T}
≥ Y sk|k holds with x̂sk|k =

x̂sk|k,L and Y sk|k = Y sk|k,L . Further, according Lemma 2, it is
immediate to see that

Y sk+1|k = ψ
(
Y sk|k

)
≤ ψ

{
E−1

{(
xk − x̂sk|k

) (
xk − x̂sk|k

)T}}
= E−1

{(
xk+1 − x̂sk+1|k

) (
xk+1 − x̂sk+1|k

)T}
The proof is completed since the initial predicted estimates
{x̂s1|0}

NC
s=1 are consistent.
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