
SPECIAL SECTION ON SMART CACHING, COMMUNICATIONS, COMPUTING AND
CYBERSECURITY FOR INFORMATION-CENTRIC INTERNET OF THINGS

Received December 12, 2018, accepted January 11, 2019, date of publication January 23, 2019, date of current version February 12, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2894337

Differential Cryptanalysis of Round-Reduced
SPECK Suitable for Internet of Things Devices
ASHUTOSH DHAR DWIVEDI 1,2, PAWEL MORAWIECKI1, AND GAUTAM SRIVASTAVA 2,3
1Institute of Computer Science, Polish Academy of Sciences, 01-248 Warsaw, Poland
2Department of Mathematics and Computer Science, Brandon University, Brandon, MB R7A 6A9, Canada
3Research Center for Interneural Computing, China Medical University, Taichung 40402, Taiwan

Corresponding author: Ashutosh Dhar Dwivedi (ashudhar7@gmail.com)

The work of A. D. Dwivedi and P. Morawiecki was supported by the Polish National Science Centre under Grant
DEC-2014/15/B/ST6/05130.

ABSTRACT In this paper, we focus on differential cryptanalysis of a lightweight ARX cipher. These ciphers
use three simple arithmetic operations, namely, modular addition, bitwise rotation, and exclusive-OR, and
therefore, are designed very well to perform over the Internet-of-Things (IoT) devices. We choose a very
well-known ARX cipher designed by the National Security Agency (NSA) of the United States of America
in June 2013, named SPECK. SPECKwas subjected to several years of detailed cryptanalytic analysis within
NSA and has been subjected to academic analysis by researchers worldwide. SPECK is specially optimized
for low-cost processors like those used in the IoT devices. We first find the differential paths for all the
variants of SPECK, and based on that differential path, we attack the round-reduced variant of the cipher.
Finding differential paths in ARX is one of the most difficult and time-consuming problems due to the huge
state space. We use a nested-based heuristic technique to find a differential path which is inspired by the
nested Monte Carlo search (NMCS) algorithm. NMCS was successfully applied before for different games:
Morpion Solitaire, SameGame, and 16×16 Sudoku, but the use of such heuristic techniques in cryptography
is entirely new and time-saving.

INDEX TERMS Differential path, ARX ciphers, nested Monte-Carlo search, IoT ciphers, differential
cryptanalysis, SPECK.

I. INTRODUCTION
ARX(Addition/Rotation/XOR) is a class of cryptographic
algorithms which use three simple arithmetic operations:
namely modular addition, bitwise rotation and exclusive-OR.
In both industry and academia, ARX cipher has gained a lot
more interest and attention in the last few years. By using
combined linear (XOR, bit shift, bit rotation) and non-
linear (modular addition) operations and iterating them for
many rounds, ARX algorithms have become more resistance
against differential and linear cryptanalysis. ARX lacks a
look-up table, associated with S-box based algorithms, and
therefore has an increased resistance against side-channel
attacks. Due to the simplicity of operations, ARX algorithms
exhibit excellent performance, especially for software plat-
forms used for IoT devices. After mobile internet technolo-
gies and the World Wide Web, the time has come for Internet
of Things (IoT). IoT consists of devices responsible for gen-
erating, processing and exchanging privacy-sensitive infor-
mation. It has a broad range of applications including health

management, smart homes, traffic, agriculture, weather mon-
itoring just to name a few. IoT devices are lightweight and
also have shallow energy footprints. This small amount of
available energy is generally used to execute core application
functionality and therefore supporting other challenges of
security and privacy is quite challenging. Due to lightweight
encryption methods, ARX ciphers are well suited for IoT
devices.

In our analysis, we focus on SPECK [1]. SPECK is a
secure, flexible and lightweight block cipher designed by
researchers from the National Security Agency (NSA) of the
United States of America (USA) in June 2013. It is known
for great performance both in software and hardware applica-
tions. Its design is similar to Threefish - the block cipher used
in the hash function Skein [2]. SPECK is a pure ARX cipher
with a Feistel-like structure in which both branches are mod-
ified at every round. SPECK consist of 5 variants SPECK32,
SPECK48, SPECK64, SPECK96 and SPECK128 with block
sizes 32, 48, 64, 96 and 128 bits, respectively.

16476
2169-3536
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 7, 2019

https://orcid.org/0000-0001-8010-6275
https://orcid.org/0000-0001-9851-4103

A. D. Dwivedi et al.: Differential Cryptanalysis of Round-Reduced SPECK

The cryptanalysis of ARX design is more difficult. Since
a typical S-box consists of 4 or 8-bit words, the differen-
tial or linear properties can be evaluated by computing its
difference distribution table (DDT) or linear approximation
table (LAT) respectively. But with regards to ARX, for a
32-bit word it is clearly infeasible to calculate these tables.
However, a partial difference distribution table (pDDT) con-
taining just a few fractions of all differentials that has a proba-
bility greater than some fixed threshold is still a viable option.
This becomes possible due to the fact that the probabilities
of XOR (respectively ADD) differentials through the modu-
lar addition (respectively XOR) operation are monotonously
decreasing with the bit size of the word.

In this paper, we propose a method for finding good dif-
ferential paths in ARX ciphers. Finding a differential trail
becomes a problem since a huge state space exists and there
is no clear and obvious way to take the next ‘‘step’’. This
kind of problem exists in different areas, but our inspiration
comes from single-player games such as Morpion solitaire,
SameGame and Soduku. The heuristics called NestedMonte-
Carlo Search works very well for these games as shown
in [3]. We can treat a search for good differential paths also
as a single-player game and argue that this approach could
be a base for more sophisticated heuristics. However, our
modified algorithm depends on the technical complexity of
this problem, but it is also strongly inspired by NestedMonte-
Carlo Search.

In [4] and [5], we applied a naive approach algorithm to
all variants of SPECK and found good results only for one
variant with the smallest state size in SPECK32. For bigger
variants, our algorithm was demanding to reduce the search
space to enhance the random decision process and therefore
we used the partial difference distribution table (pDDT) [6] to
reduce the search space of our algorithm. In another work [5],
we applied this advance method to ARX cipher LEA and
found differential path for 13 rounds.

Besides the concept of pDDT our inspiration is drawn
from the highways and country roads analogy proposed by
Biryukov and Velichkov [6] and Biryukov et al. [8]. We relate
the problem of finding high probability differential trails in a
cipher to the problem of finding fast routes between two cities
on a roadmap, then differentials that have high probability
(with respect to a fixed threshold) can be thought of as
highways and conversely differentials with low probability
can be viewed as slow roads or country roads. Therefore, our
algorithm first tries to find a probability above the threshold
probability and if such a probability does not exist, then it uses
the low probability values. Using this concept, the algorithm
does not take a completely random decision in iterations and
hence improves the random decision process by using a much
smaller search space.

II. RELATED WORK
Biryukov and Velichkov [6] published a paper where they
analyzed ARX cipher SPECK and by introducing the concept
of partial difference distribution table (pDDT) they extend

Matsui’s algorithm, originally proposed for DES-like ciphers,
to the class of ARX ciphers. They found differential trails of
9, 10 and 13 rounds for 3 variant SPECK32, SPECK48 and
SPECK64, respectively.

Biryukov et al. [7] again presented a paper where they
propose the adaptation of Matsui’s algorithm for finding the
best differential and linear trails to the class of ARX ciphers.
It was based on a branch-and-bound search strategy which
does not use any heuristics and returns optimal results. They
report the probabilities of the best differential trails for up to
10, 9, 8, 7 and 7 rounds of SPECK32, SPECK48, SPECK64,
SPECK96 and SPECK128, respectively.

Song et al. [8] presented a paper where they develop
Mouha et al.’s framework for finding differential characteris-
tics by adding a new method to construct long characteristics
from short ones. They report the probabilities of the best
differential trails of SPECK for up to 10, 11, 15, 17, and 20
rounds of SPECK32, SPECK48, SPECK64, SPECK96 and
SPECK128, respectively.

In the context of security of IoT devices data, we have seen
some strong work recently by Wu et al. [10]–[13]. They have
been able to focus on security of IoT and Big Data. Both of
which are important factors going forward with Smart City
design and implementation.

The SIMON and SPECK families of block ciphers were
designed specifically to offer security on constrained devices,
where simplicity of design is crucial [13]. The NSA devel-
oped the SPECK as an aid for securing applications in very
constrained environments where AES may not be suitable,
such as IoT [14]. Specifically, in [15], results brought some
new insights into the question of howwell lightweight ciphers
like SPECK are suited to secure the Internet of things.

III. DESCRIPTION OF SPECK
SPECK is a family of lightweight block ciphers with the
Feistel-like structure in which each block is divided into
two branches, and both branches are modified at every
round. It has 5 variants, SPECK32, SPECK48, SPECK64,
SPECK96 and SPECK128, where a number in the name
denotes the block size in bits. Each block size is divided into
two parts, the left half and right half.

ROUND FUNCTION
SPECKuses 3 basic operations on n-bit words for each round:
• bitwise XOR, ⊕,
• addition modulo 2n,�
• left and right circular shifts by r2 and r1 bits, respec-
tively.

Left half n-bit word is denoted by Xr−1,L and right half
n-bit word is denoted by Xr−1,R to the r-th round and n-bit
round key applied in the r-th round is denoted by kr . Xr,L and
Xr,R denotes output words from round r which are computed
as follows:

Xr,L = ((Xr−1,L ≫ r1)� Xr−1,R)⊕ kr (1)

Xr,R = ((Xr−1,R≪ r2)⊕ Xr,L) (2)

VOLUME 7, 2019 16477

A. D. Dwivedi et al.: Differential Cryptanalysis of Round-Reduced SPECK

TABLE 1. SPECK parameters.

FIGURE 1. The round function of SPECK.

We can clearly visualize the round function of SPECK
in Figure 1. Different key sizes have been used by several
instances of the SPECK family and the total number of rounds
depends on the key size. The value of rotation constant r1
and r2 are specified as: r1 = 7, r2 = 2 for SPECK32 and
r1 = 8, r2 = 3 for all other variants. Parameters for all
variants represented in Table 1.

IV. CALCULATING DIFFERENTIAL PROBABILITIES
Lipmaa and Moriai [17] studied the differential properties
of addition. Let xdp+(a, b → c) be the XOR-differential
probability of addition modulo 2n, with input differences a
and b and output difference c. Lipmaa andMoriai [17] proved
that the differential (a, b→ c) is valid if and only if:

eq(a� 1, b� 1, c� 1)∧(a⊕ b⊕ c⊕ (b� 1))=0 (3)

where

eq(p, q, r) := (¬p⊕ q) ∧ (¬p⊕ r) (4)

For every valid differential (a, b → c), we define the
weight w(a, b→ c) of the differential as follows:

w(a, b→ c) = − log2(xdp
+(a, b→ c)) (5)

The weight of a valid differential can then be calculated as:

w(a, b→ c) := h∗(¬eq(a, b→ c)), (6)

where h∗(x) denotes the number of non-zero bits in x, not
counting x[n− 1].

A differential characteristic defines not only the input and
output differences but also the internal differences after every
round of the iterated cipher. In our analysis, we follow a
common assumption that the probability of a valid differential
characteristic is equal to themultiplication of the probabilities
of each addition operation. The XOR operation and bit rota-
tion are linear in GF(2), therefore for these two operations
for every input difference there is only one valid output
difference.

V. PARTIAL DIFFERENCE DISTRIBUTION TABLES (PDDT)
Partial difference distribution table (pDDT) proposed by
Biryukov and Velichkov [6] is a table that contains all XOR
differentials (a, b→ c) whose differential probabilities (DP)
are greater than or equal to a pre-defined threshold pthres.

(a, b, c) ∈ pDDT ⇔ DP(a, b→ c) ≥ pthres (7)

To compute pDDT efficiently, we will use the following
proposition: The differential probability (DP) of XOR of
addition modulo 2n is monotonously decreasing with the
word size of differences a, b, c.

pn ≤ ≤ pk ≤ pk−1 ≤ ≤ p1 ≤ p0 (8)

where pk = DP(ak , bk → ck), n ≥ k ≥ 1, p0 = 1 and xk
denotes the k LSB’s of the difference x that is xk = x[k − 1 :
0]. In our algorithm, we start from least-significant (LS) bit
position k = 0 and recursively assign the values to a[k], b[k]
and c[k]. For each bit position k : n > k > 0 check if
probability of partially constructed (k + 1)− bit differential
is greater than the threshold. If yes, then move to next bit,
otherwise go back and assign different values to a[k], b[k]
and c[k]. Repeat the process until k = n and once k = n
add (ak , bk → ck) to the pDDT. Initial value of k is 0 and
a0, b0, c0 = φ.
In our nested algorithm. shown in Algorithm 1, we set the

threshold value equal to 0.1 and therefore the size of our

16478 VOLUME 7, 2019

A. D. Dwivedi et al.: Differential Cryptanalysis of Round-Reduced SPECK

Algorithm 1 Computation of a pDDT for XOR
Input: n, pthres, k, pk , ak , bk , ck .
Output: pDDT D : (a, b, c) ∈ D : DP(a, b → c) ≥
pthres.
function computepddt(n, pthres, k, pk , ak , bk , ck)

if n==k then
Add (a, b, c)←− (ak , bk , ck) to D

end if
return
for x, y, z ∈ 0, 1 do

ak+1←− x|ak , bk+1←− y|bk , ck+1←− z|ck
pk+1 = DP(ak+1, bk+1→ ck+1)
if pk+1 ≥ pthres then

computepddt(n, pthres, k + 1, pk+1, ak+1,
bk+1, ck+1)

end if
end for
return

end function

TABLE 2. Timings of pDDT for XOR on 32-bit words using algorithm 1.

algorithms search space is equal to 3951388 from Table 2.
If we decrease the value of threshold the size of search
space will increase depending on the threshold value and the
differential path computational speed of our algorithm will
decrease in equal proportion.

VI. NESTED MONTE CARLO SEARCH
Our algorithm is inspired by Nested Monte Carlo Search
(NMCS) algorithms. The Monte Carlo method is a heuris-
tic based random sampling method. Coulom [19] proposed
an application to game-tree search based on Monte Carlo
method in 2007 named as Monte Carlo Tree Search (MCTS).
This algorithm was useful to games where it is hard to for-
mulate an evaluation function, such as the game of Go. Later
for a single player game, a variant called Nested Monte Carlo
Search has been proposed in [3].

Let us take a tree-like structure to understand the Nested
Monte-Carlo Search algorithm. At each step, the NMCS
algorithm tries all possible moves and memorizes the move
associated with the best score of the lower level searches.
In other words, a nested move of level 1 makes a playout for
every possible move and chooses to play the move of the best
playout. A nested move of level 2 does the same thing except
that it replaces the playout by a nested move of level one.

During the first iteration the initial state (root) is selected,
and for the selected state all legal moves are determined

FIGURE 2. Nested Monte Carlo search.

(Figure 2). Therefore at level 0 it plays the random game
for all possible moves valid for selected state (root). Then
it moves one step ahead to the next level with the greatest
associated score.

Therefore, we changed the original NMCS algorithm to
eliminate this problem for our cipher and presented a new
algorithm based on NMCS with an example in the next
paragraph. Instead of trying all possible moves, we try
only one random move.

The problem of finding a differential path in a cipher with
high probability could be treated as the problem of finding
fast routes between two cities on a roadmap. Let us try to
understand the algorithm in this context. Our goal is to find
the shortest path from one city to another city. We represent
all possible paths as a tree, as shown in Figure 3. The root
of the tree is considered as the starting point, and all leaves
are end points reached by different paths (nodes). Each edge
between nodes is associated with a number which represents
the distance between the two nodes. Initially, we have two
lists named BestPath and CurrentPath. They represent the
best available path from previous searches and a random path
which is under investigation, respectively. The last element in
both lists represents total distance traveled. Both the lists are
initially empty.

FIGURE 3. Different paths from the root (base node) to the destination
(leaf nodes).

Initially, the algorithm takes a random move from the base
node to the leaf node and saves the path in the Current Path
list. Let us say that the random path selected by the algorithm
is {a, b, d, i} with distance score 18. Since initially there was

VOLUME 7, 2019 16479

A. D. Dwivedi et al.: Differential Cryptanalysis of Round-Reduced SPECK

FIGURE 4. Random path from the base node to the leaf node.

FIGURE 5. A random path from the b node to the leaf node.

no better path available (BestPath is empty), then we save the
current path and its distance as BestPath (See Figure 4).
Again we move one level down in BestPath and start a new

random move from the node. Therefore in our example we
will start from node b, and we found a new random path
{b, e, k}. The new path score (including the distance above
b) is 10, which is better than the previous best path score.
Therefore we update BestPath by CurrentPath a, b, e, k and
update the score also (See Figure 5).

Again in the BestPath we go one step down and repeat the
same process. We play a random move from e and find the
new path is {e, j}(See Figure 6.) The score for CurrentPath
is 15, which is not better than the previous best path. Hence,
we do not update BestPath.

Once we reach the leaf node, we repeat the whole process
from the base node. This time BestPath would not be empty,
as there would be some result from the previous search.

FIGURE 6. Random path from node e to leaf node.

In this kind of problem, we often face the exploration
versus exploitation dilemma when searching for a new
path. In our algorithm, by letting it investigate entirely new
paths (starting randomly from the base node), the algorithm
‘‘cares’’ about exploration. On the other hand, by investigat-
ing BestPath on the subsequent levels of the tree, we exploit
BestPath and hope to improve it.

VII. FORMAL DESCRIPTION OF OUR ALGORITHM
BASED ON NMCS
To formally describe the algorithm, let us first define two
functions, which are the main building blocks of the algo-
rithm. The first function RandomPath(node_position) is the
function, which for a given node walks a random path in
the search tree until it reaches the leaf node. The function
RandomPath returns a list of nodes (from the base node to
the leaf) and the cost corresponding to the path.

Algorithm 2 A Basic Function to Generate a Random Path
1: function randomPath(node_position)
2: while node_position 6= leaf do
3: go randomly to the next node
4: end while
5: return path, cost
6: end function

The second function Nested(node_position) is a recursive
function, which calls itself on every level of the tree search
until it reaches the leaf node. The pseudo-code of the function
is given in Algorithm 2. In the given pseudo-code we use two
global variables, which keep a list of nodes in the best path
(best_path) and its corresponding cost (best_cost). Initially,
best_path is empty and best_cost is initialized with some
big value. (Here we assume that a lower cost means a better
solution.)

Algorithm 3 The Recursive Function Nested
function Nested(node_position)

while node_position 6= leaf do

path, cost = RandomPath(node_position)
if (cost < best_cost) then

best_cost = cost
best_path = path

end if

update node_position
by going a level below in best_path

if node_position 6= leaf then
Nested (node_position)

end if
end while

end function

16480 VOLUME 7, 2019

A. D. Dwivedi et al.: Differential Cryptanalysis of Round-Reduced SPECK

Algorithm 4 Iterative Calls to the Function Nested
1: best-score = 9999999, node_position = base node
2: while i < number_of _iterations do
3: Nested (node_position)
4: i = i+ 1
5: end while

Algorithm 5 Function to Find Differential Path
1: function int FIND-BEST-PATH(st0, st1, rounds)
2: while not end of the rounds do
3: if (st0 and st1) ∈ pDDT then
4: Add differential output and the weight to the
5: path and weight list, respectively
6: else
7: op = st1 ⊕ st0
8: wt = weight(st0, st1, op) (Calculate the
9: weight using method described in section IV)
10: Add differential output op and the weight wt
11: to the path and weight list, respectively
12: end if
13: SPECK Encryption operations
14: end while
15: return path,weight
16: end function

The Nested function can be called iteratively in a loop
until we meet our criterion as shown in Algorithm 3. The
criterion could be, for example, a number of iterations, time
limit or the maximum cost of the best path. The algorithm
could also be easily run in parallel. We can do this either with
completely independent instances or with a small overhead to
communicate best solutions between instances.

VIII. FINDING DIFFERENTIAL PATHS
In SPECK cipher, the only source of non-linearity is the
modular addition, and its complete differential properties
(differential distribution tables) are infeasible to calculate.
Therefore, we use our heuristics algorithm to circumvent this
limitation and to find the best differential trails. As described
earlier, the algorithm takes a random decision from the search
space. For the larger variant of SPECK this random property
of the algorithm is not enough to produce good results. There-
fore, we decide to reduce the search space of the algorithm
by introducing a partial difference distribution table (pDDT).
This table is used in our algorithm and instead of taking
random inputs for SPECK, we take the initial inputs from
pDDT table, which contains valid differentials above the
threshold value. We show the details in Algorithm VIII. Each
time SPECK starts the next round, the algorithm initially
checks the values in the pDDT table. If it does not find
such a value in the pDDT set, it simply calculates a valid
differential output for given inputs, without any threshold
condition. In our experiment with SPECK cipher, modular
addition for each round is treated as a node where we need

Algorithm 6 Finding Differential Paths in SPECK Through
Nested Monte-Carlo Search
1: function int Nested(st0, st1, rounds, best_weight ,
weight_above)

2: while not end of the rounds do
3: temp_path_list , temp_weight = FIND-BEST-
4: PATH(st0,st1, rounds)
5: if (temp_weight+weight_above < best_weight)

then
6: best_weight = temp_weight+weight_above
7: Update best_path_list by temp_path_list

(from
8: current round to end of the round)
9: Update weight_list by temp_weight (from
10: current round to end of the round)
11: end if
12: update st0 and st1 from best_path_list with the
13: decision for current rounds
14: weight_above = weight from first round to cur-

rent
15: speck round
16: rounds = rounds+ 1
17: end while
18: return best_weight
19: end function

Algorithm 7 Searching a Differential Path With NESTED
1: while best_weight > weight_threshold do
2: Take the ith indexed value of st0, st1 from pDDT list
3: path, best_weight = Nested (st0, st1,)
4: rounds, best_weight,weight_above
5: i = i+ 1
6: end while

to take a decision of required output (valid differential) and
the weight of a valid differential is treated as a score. Our aim
is to find a different path for a given number of rounds with
lower weight.

The basic FIND-BEST-PATH function runs the cipher for a
given number of rounds. The function checks the differential
values in the pDDT table having a probability greater than
some threshold value. In case the algorithm does not find
such a value in the table then it calculates a valid differential
output by XOR-ing the two inputs, which gives the highest
probability with given inputs (best possible path for given
differences). We have not mentioned the SPECK encryption
operations in the algorithm for simplicity, and it is trivial that
after each round of encryption st0 and st1 changes its value
and every time we check these two values in the pDDT table
list.

To calculate the differential path by our algorithm using
the pDDT table, we use the main function in Algorithm 6.
The calculated weight from round 1 to the current round
is represented by weight_above. The two lists weight_list

VOLUME 7, 2019 16481

A. D. Dwivedi et al.: Differential Cryptanalysis of Round-Reduced SPECK

FIGURE 7. Algorithm applying on SPECK Cipher.

and best_path_list saves the weight and list of the path for
each decision from one round onwards. Both lists are ini-
tially empty, and the value of weight_above and best_weight
given to algorithm is 0 and 9999 respectively. Every time
the weight_list and best_path_list is updated with the newly
found sequence, and the best move is played. The total num-
ber of rounds for whichwe are trying to find the lowest weight
is represented by srounds. The first and second half block of
SPECK cipher is represented by st0 and st1.
We can now call NESTED in a loop until a criterion is met

(for example best weight threshold).

IX. OBTAINING LONG CHARACTERISTIC
It is easier to find a short characteristic (for a small number
of rounds) instead of a long characteristic. Therefore, we use
the start-in-the-middle approach to find a long characteristic
from two shorter ones. In this method, we start our algorithm
from the middle of the rounds in two directions, forward and
backwards. In this experiment, we apply internal difference
inputs from in the middle of the given number of rounds.
For example, if we want to find a path for 14 rounds, then
we pass inputs to our algorithm and let it run for 7 rounds
in the forward direction and 7 rounds in backwards (reverse)
direction. Once results from both are achieved, we combine
them to get a long characteristic of 14 rounds. This method
also increases time efficiency and provides better results.

X. RESULTS
In this paper, we use our naive algorithm extended with
the partial difference distribution table (pDDT) for finding the
best differential trails in ARX cipher SPECK. We show the
practical application of the new method on round-reduced
variants of block cipher from the SPECK family. For the
32-bit state of the cipher, it only makes sense to analyze
the differential paths with probability higher than 2−32. It is
because a path with lower probability would not lead to any
meaningful attack, which would be faster than exhaustive
search in the 32-bit state. Similarly for SPECK48, SPECK64,
SPECK96 and SPECK128 probability should be higher than
2−48, 2−64, 2−96 and 2−128 respectively. We run the exper-
iments for long characteristics starting from the first round.

We report the differential path in Appendix I (Table 3,4) for
up to 8, 9, 11, 10 and 11 rounds of SPECK32, SPECK48,
SPECK64, SPECK96 and SPECK128 respectively. In the
table left and right part of the state are denoted by 1L and
1R, respectively. Differences are encoded as hexadecimal
numbers (Probability for a given weight is 2−weight).

In the second part, we also perform the experiment starting
from the middle round and run our tool in both directions,
reverse as well as forward. Using this method we improved
our results and report the differential path in Appendix I
(Table 6,7) for up to 9, 10, 12, 13 and 15 rounds of SPECK32,
SPECK48, SPECK64, SPECK96 and SPECK128 respec-
tively. For variants with larger block size, say 96 or 128,
we achieved better results.

XI. DIFFERENTIAL ATTACKS
Dinur [20] proposed an enumeration technique for key recov-
ery in differential attacks against SPECK. Consider we have
differential characteristic of SPECK2n/mn with r number of
rounds that has probability p > 2·2−2n. The technique can be
used to recover (r+m) rounds. We first attack (r+m) rounds
with the value m = 2. The number of plaintexts required to
recover the keywill be 2·p−1 with an average time complexity
of 2 ·p−1 ·2(m−2)n encryptions. Then we can extend the attack
to the remaining instances, with m = 3 and m = 4.
Let us take one variant SPECK32, we have 8 rounds

differential characteristics with probability 2−30. Combined
with Dinur’s enumeration technique for key recovery, given
differential characteristics can be used to attack 12-round
SPECK32with 2·230 = 2·231 plaintexts and 2·230 ·232 = 263

encryptions.

XII. CONCLUSION
By applying our algorithm based on Nested and by reduc-
ing the search space using the partial difference distribution
table (pDDT) to all five instances of block cipher SPECK,
we obtain better results for all variants. Another method
we attempted was starting from the middle and working
in both directions. This method produced good results for
bigger state sizes. By changing the threshold, we can
increase or decrease the size of pDDT table. For a bigger
threshold value, pDDT size is small, and speed of experiment
is fast because of smaller search space. However, the trade-
off is that we may miss a few values which are necessary to
make a good differential path. On the other hand, for smaller
threshold values, pDDT table is large, and the resulting exper-
iment speed is slow because of the bigger search space. That
being said, the larger search space might include the values
which are necessary to make a good differential path.

APPENDIX I.
APPENDIX II.
DINUR’s ENUMERATION TECHNIQUE FOR KEY
RECOVERY ATTACK AGAINST SPECK
Generally for the key recovery of differential cryptanaly-
sis, counting techniques are common. We extract partial

16482 VOLUME 7, 2019

A. D. Dwivedi et al.: Differential Cryptanalysis of Round-Reduced SPECK

TABLE 3. Differential trails for SPECK32, SPECK48, SPECK64.

TABLE 4. Differential trails for SPECK96, SPECK128.

TABLE 5. Differential attack on SPECK.

key material from outer rounds of the cipher using sta-
tistical analysis. However in case of SPECK, Dinur [20]
increased the number of rounds attacked with the application
of enumaration techniques in the key recovery. The enumer-
ation technique tries all suggestions for the full key proposed
by a sub-cipher attack. To describe the attack on SPECKwith

enumeration technique, we consider the case when m = 2,
master key contains 2 words. This attack can be extended
to other cases when m = 3 or m = 4. Let us say, we have
r-round differential (1x0,1y0)→ (1xr ,1yr) of the cipher
with probability p. In such case we can proceed to attack as
follow:

VOLUME 7, 2019 16483

A. D. Dwivedi et al.: Differential Cryptanalysis of Round-Reduced SPECK

TABLE 6. Differential trails for SPECK32, SPECK48, SPECK64.

TABLE 7. Differential trails for SPECK96, SPECK128.

• Request the encryption of p−1 plaintext pairs P and P′ =
P⊕(1x0,1y0) and denote the corresponding ciphertexts
by C and C ′, respectively.

• For the plaintext pairs P and P′: Execute the 2
round attack (Section ‘‘The 2-Round Attack’’) using
(1xr ,1yr), C and C ′ and get suggestions for kr+1 and
kr . For the suggested value of kr+1 and kr , reverse the
key schedule to obtain the master key. Test the master
key using additional encryptions and if passes the test
return the master key.

In the given attack, we need 2 ·p−1 plaintexts. The average
time complexity is less than 2 encryptions in the key recovery
of 2 round attack (Section ‘‘The 2-Round Attack’’) and there-
fore the total time complexity of the attack is 2 · p−1. For
m = 3 or m = 4, by guessing the last m − 2 round keys,
we can recover r+m rounds with complexity 2 ·p−1 ·2(m−2)n

encryptions.

THE 2-ROUND ATTACK
In this section we present the details of 2 round attack on
cipher. We use r-round differential path for this attack. Con-
sider we have initial difference (1x0,1y0) and final differ-
ence (1xr ,1yr). We take final differences (1xr ,1yr) as
the input of 2-round differential attack. We are given actual
values of (xr+2, yr+2) and (xr+2 ⊕ 1xr+2, yr+2 ⊕ 1yr+2).
We try to enumerate possible round keys kr and kr+1 so that
partial decryption of 2 round of the pairs (xr+2, yr+2) and
(xr+2 ⊕1xr+2, yr+2 ⊕1yr+2) is equal to (1xr ,1yr).
The notation we use in our analysis is given in Figure 8,

where the XOR differential notation is given on the left,
and the notation of the intermediate encryption values for
(xr+2, yr+2) is given on the right.
All the XOR differences in the 2 round scheme can be

easily determined. Since1xr+1 = 1yr+1⊕ (1yr ≪ β) and
1yr+1 = (1xr+2 ⊕ 1yr+2) ≫ β can be calculated using

16484 VOLUME 7, 2019

A. D. Dwivedi et al.: Differential Cryptanalysis of Round-Reduced SPECK

TABLE 8. Differential Attack on SPECK.

FIGURE 8. Two rounds of Speck.

known variables. The value of yr+1 = (xr+2 ⊕ yr+2)≫ β

can be calculated using the known values of (xr+2, yr+2)
whereas xr+1 and (xr , yr) remains unknown. Finding the
values of kr+1 and kr is equivalent to find the values of xr
and xr+1, as kr+1 = (yr+1 � (xr+1 ≫ α)) ⊕ xr+2 and as
yr = (xr+1⊕ yr+1)≫ β, then kr = (yr � (xr ≫ α))⊕ xr+1
can be derived as well. Therefore we concentrate on finding
the intermediate values of xr and xr+1.
The problem of solving differential equations of addition

(DEA) of the form (x ⊕ δ1) � (y ⊕ δ2) = (x � y) ⊕ δ3
(where δ1, δ2, δ3 are given and x, y are unknown variables)
is a basic problem in the analysis of ARX cryptosystems, and
was extensively studied in several papers. For SPECKwe can
also write the same equation and find values of xr and xr+1,
we omit the right circular shift≫, and then we have two
differential equations of addition:

(xr ⊕1xr)� (yr ⊕1yr) = (xr � yr)⊕1xr+1
(xr+1⊕1xr+1)�(yr+1 ⊕1yr+1) = (xr+1 � yr+1)⊕1xr+2

where all differences are known, and in the second equation
yr+1 and yr+1 ⊕1yr+1.

REFERENCES
[1] R. Beaulieu, D. Shors, J. Smith, S. Treatman-Clark, B. Weeks, and

L. Wingers, ‘‘The SIMON and SPECK families of lightweight block
ciphers,’’ IACR Cryptol. ePrint Arch., Santa Barbara, CA, USA, Tech.
Rep. 404, 2013.

[2] N. Ferguson et al., ‘‘The skein hash function family,’’ in Proc. NIST SHA-3
Competition (Round 2), 2009, p. 3.

[3] T. Cazenave, ‘‘Nested Monte-Carlo search,’’ in Proc. 21st Int. Joint Conf.
Artif. Intell. (IJCAI), Pasadena, CA, USA, Jul. 2009, pp. 456–461.

[4] A. D. Dwivedi, P. Morawiecki, and S. Wójtowicz, ‘‘Finding differential
paths in ARX ciphers through nestedMonte-Carlo search,’’ Int. J. Electron.
Telecommun., vol. 64, no. 2, pp. 147–150, 2018.

[5] A. D. Dwivedi and G. Srivastava, ‘‘Differential cryptanalysis of
round-reduced LEA,’’ IEEE Access, vol. 6, pp. 79105–79113,
2018.

[6] A. Biryukov and V. Velichkov, ‘‘Automatic search for differential trails in
ARX ciphers,’’ in Proc. Cryptographer’s Track RSA Conf. (CT-RSA), in
Lecture Notes in Computer Science, San Francisco, CA, USA, vol. 8366,
J. Benaloh, Ed. Springer, Feb. 2014, pp. 227–250.

[7] A. Biryukov, V. Velichkov, and Y. Le Corre, ‘‘Automatic search for the best
trails in ARX:Application to block cipher SPECK,’’ inProc. Int. Conf. Fast
Softw. Encryption. Berlin, Germany: Springer, 2016, pp. 289–310.

[8] L. Song, Z. Huang, and Q. Yang, ‘‘Automatic differential analysis of
ARX block ciphers with application to SPECK and LEA,’’ in Proc.
ACISP, in Lecture Notes in Computer Science, vol. 9723. Springer, 2016,
pp. 379–394.

[9] J. Wu, S. Luo, S. Wang, and H. Wang, ‘‘NLES: A novel lifetime extension
scheme for safety-critical cyber-physical systems using SDN and NFV,’’
IEEE Internet Things J., to be published.

[10] J. Wu, M. Dong, K. Ota, J. Li, and Z. Guan, ‘‘Big data analysis-based
secure cluster management for optimized control plane in software-defined
networks,’’ IEEE Trans. Netw. Service Manage., vol. 15, no. 1, pp. 27–38,
Mar. 2018.

[11] J. Wu, M. Dong, K. Ota, J. Li, and Z. Guan, ‘‘FCSS: Fog computing based
content-aware filtering for security services in information centric social
networks,’’ IEEE Trans. Emerg. Topics Comput., to be published.

[12] J. Wu, K. Ota, M. Dong, and C. Li, ‘‘A hierarchical security frame-
work for defending against sophisticated attacks on wireless sen-
sor networks in smart cities,’’ IEEE Access, vol. 4, pp. 416–424,
2016.

[13] R. Beaulieu, S. Treatman-Clark, D. Shors, B. Weeks, J. Smith, and
L.Wingers, ‘‘The SIMON and SPECK lightweight block ciphers,’’ inProc.
52nd ACM/EDAC/IEEE Design Autom. Conf. (DAC), Jun. 2015, pp. 1–6.

[14] F. Abed, E. List, S. Lucks, and J. Wenzel, ‘‘Differential cryptanalysis of
round-reduced SIMON and SPECK,’’ in Proc. Int. Workshop Fast Softw.
Encryption. London, U.K.: Springer, 2014, pp. 525–545.

[15] D. Dinu, Y. Le Corre, D. Khovratovich, L. Perrin, J. Großschädl, and
A. Biryukov, ‘‘Triathlon of lightweight block ciphers for the Internet of
Things,’’ J. Cryptograph. Eng., pp. 1–20, 2015.

VOLUME 7, 2019 16485

A. D. Dwivedi et al.: Differential Cryptanalysis of Round-Reduced SPECK

[16] H. Lipmaa and S. Moriai, ‘‘Efficient algorithms for computing differential
properties of addition,’’ in Proc. FSE, in Lecture Notes in Computer
Science, vol. 2355. Springer, 2001, pp. 336–350.

[17] R. Coulom, ‘‘Computing ‘Elo ratings’ of move patterns in the game of go,’’
ICGA J., vol. 30, no. 4, pp. 198–208, 2007.

[18] I. Dinur, ‘‘Improved differential cryptanalysis of round-reduced SPECK,’’
in Selected Areas in Cryptography (Lecture Notes in Computer Science),
vol. 8781. Springer, 2014, pp. 147–164.

ASHUTOSH DHAR DWIVEDI received the
B.Sc.(Maths) degree from the Ewing Christian
College (an autonomous college of the University
of Allahabad), Allahabad, India, and the M.C.A.
degree from the Amity School of Computer Sci-
ences, Noida, India, in 2013. He is having a rich
experience of industry and academia of around
six years. He was an Intern (under his master’s
project) with the prestigious organization ‘‘Centre
for Railway Information Systems, New Delhi,’’

governed by the Ministry of Railways, India. He was with organizations
related to software development projects for two years. In 2015, he moved
to Poland and started career in cryptography research. He is currently a
Cryptography Researcher with the Institute of Computer Science, Polish
Academy of Sciences, Warsaw, Poland, where he focuses on symmetric-
key cryptography. He is also a Visiting Researcher with the Department of
Mathematics and Computer Science, Brandon University, Brandon, Canada,
where he is doing research focusing on blockchains, bitcoin, and game
theory. His primary research interests include symmetric-key cryptography,
cryptanalysis of block ciphers, blockchains, and bitcoin. He has been serving
as a Reviewer for few international journals and conferences in the area of
cryptography, including the IEEE ACCESS.

PAWEL MORAWIECKI is currently an Asso-
ciate Professor with the Institute of Computer
Science, Polish Academy of Sciences. He is one
of the designers of cipher ICEPOLE: high-speed,
hardware-oriented authenticated encryption. He
has several publications in top venues, such as
Eurocrypt, FSE, and CHES. He is currently very
interested in the intersection between machine
learning and security. His main field of expertise
is cryptography and cryptanalysis.

GAUTAM SRIVASTAVA received the B.Sc. degree
from Briar Cliff University, USA, in 2004, and
the M.Sc. and Ph.D. degrees from the University
of Victoria, Victoria, BC, Canada, in 2006 and
2011, respectively. He then taught for three years
with the Department of Computer Science, Uni-
versity of Victoria, where he was regarded as one
of the top undergraduate professors in the com-
puter science course instruction. In 2014, he joined
a tenure-track position with Brandon University,

Brandon, MB, Canada, where he was promoted to an Associate Professor,
in 2018, and is currently active in various professional and scholarly activi-
ties. He is active in research in the field of data mining and big data. In his
seven-year academic career, he has published a total of 33 papers in high-
impact conferences in many countries and in high-status journals and has
also delivered invited guest lectures on big data at many Taiwanese univer-
sities. He is an Editor of several international scientific research journals.
He currently has active research projects with other academics in Taiwan,
Singapore, Canada, Czech Republic, Poland, and USA. He is constantly
looking for collaboration opportunities with foreign professors and students.
Dr. Srivastava received the Best Oral Presenter Award from the FSDM
2017 which was held at National Dong Hwa University, Shoufeng (Hualien
County), Taiwan, in 2017.

16486 VOLUME 7, 2019

	INTRODUCTION
	RELATED WORK
	DESCRIPTION OF SPECK
	CALCULATING DIFFERENTIAL PROBABILITIES
	PARTIAL DIFFERENCE DISTRIBUTION TABLES (PDDT)
	NESTED MONTE CARLO SEARCH
	FORMAL DESCRIPTION OF OUR ALGORITHM BASED ON NMCS
	FINDING DIFFERENTIAL PATHS
	OBTAINING LONG CHARACTERISTIC
	RESULTS
	DIFFERENTIAL ATTACKS
	CONCLUSION
	
	
	REFERENCES
	Biographies
	ASHUTOSH DHAR DWIVEDI
	PAWEL MORAWIECKI
	GAUTAM SRIVASTAVA

