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ABSTRACT The sketch-based image retrieval (SBIR) finds the natural images according to the features and
rules defined by human beings. The retrieval results are generally similar in contour; however, their complete
semantic information of the image is missing. From the user’s point of view, the same hand-drawn imagemay
represent many different things, due to the semantic ‘‘one-to-many’’ category mapping relationship between
the hand-drawn image and the natural image, that is the inherent ambiguity of hand-drawn image. In addition,
the user’s drawing has many different characteristics, so the retrieval results generally cannot fully match
with his intent. For the above-mentioned challenges, a personalized SBIR architecture is proposed, including
a deep full convolutional neural network as a general model and a personalized model using transfer learning
to achieve fine-grained image semantic feature. On the basis of the pre-trained general model and the images
selected by the user in history, we construct the personalized model training dataset. Moreover, the user
history feedback with the current hand-drawn image is combined as the input of the transfer learning model,
to fine-tune the distribution of features in vector space, so that the neural network can learn the personalized
semantic information. The experiments show that the general model has strong generalization ability with
the mean average precision as 0.64 on the Flickr15 K dataset. The migration model can realize fine-grained
image semantic vector space division, which perfectly satisfies the personalized retrieval requirements by
hand-drawn sketch-based image input.

INDEX TERMS Sketch-based image retrieval, deep full convolutional neural network, transfer learning,
feature extraction.

I. INTRODUCTION
With the widely use of smart mobile devices, people can
outline a simple contour image by the touch screen easily,
without some color or texture information. This outline draw-
ing with simple lines is called hand-drawn sketches. As an
intuitive, concise and convenient human-computer interac-
tion method, the hand-drawn sketching can help the users to
present their mind, especially for the abstract visual content.
However, the variability and uncertainty of lines in hand-
drawn sketches make it difficult and challenging to make
feature expressions, feature matching, and the establishment
of an index structure suitable for large-scale databases. When
applying the hand-draw sketches to art creation, there should

be a precise sketch-based image retrieval (SBIR), which has
not been widely used in the computer visual search.

The sketches and natural images are represented in the
underlying pixel representation and high-level visual percep-
tion. The pending hand-drawn image input into computer
contains only the contour and shape information of the image,
with little color and texture information. On the contrary,
the natural image has rich detailed information and interfer-
ence noise information, which usually determine the human
visual understanding and the judgment of image content.
Despite the in-depth research on sketch retrieval in recent
years and the continual emergence of algorithms in the field
of sketch retrieval, however, there are still two inevitable
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problems in sketch retrieval. Firstly, affected by the drawing
level, some users cannot paint the global edge line informa-
tion of a natural image, and even the manual input cannot
be accurately understood. In this case, the retrieval system
has a high probability of misjudgment. In addition, the same
object hand drawn by different users may present different
characteristics, but the result though computer operation is
different. Second, due to the inherent ambiguity of the hand-
drawn image, the same hand drawing can express different
semantics [1]. For example, when the user draws a circular by
hand, the computer receives the input, and the result of sorting
by the degree of similarity may appear hot air balloon, moon,
Eye of London, ancient coins and so on. These phenomena
make it a considerable challenge to determine user intent from
a machine vision perspective. Usually hand-drawn images
and natural images have a ‘one-to-many’’ category mapping
relationship from outline to semantic. Semantic information
is implicit compared to explicit visual outline information.
As a way of human-computer interaction, user feedback can
provide a deep data mining method for the system. Accord-
ingly, it requires adding user feedback information when
doing fine-grained semantic feature retrieval. In the field of
SBIR, based on feedback, the system shouldmodify its search
mechanism and try to return a more optimal picture set to the
user [2], [3].

In this paper, we propose a personalized SBIR for natural
image, which focus on the user intent by taking use of the
feedback information to avoid ambiguous of hand-drawn
sketch. Based on the natural image cross-image scoping
method, we try to establish the feature mapping from the
natural image source domain to the hand-drawn image target
domain. The bottom pixel-level edge line information of the
natural image is extracted, which is input to the improved
deep full-convolution neural network simultaneously with the
hand-drawn image information. We change the statistical dis-
tribution of feature vectors controlled by the tag supervision
information in order to learn the network parameters. After
training, the Mean Average Precision (MAP) of the model
evaluation is greatly improved compared with the traditional
image algorithm [4]–[7] and the deep learning algorithm
[8]–[11] in recent years. Moreover, for the ‘‘one-to-many’’
relationships between hand-drawing and the categories of
natural images, we propose a data modeling method based
on user feedback and the transfer learning [12]. On the basis
of the trained general model, we combine user historical feed-
back data and semantic features mined from the data set, for
fine-tuning the distribution of the sub-category image feature
vector. The semantic tag information in the parent category
by the contour feature vector is established. Furthermore,
we divide the feature subspace in which the user prefers the
fine-grained natural image in the overall feature space of each
parent category, use the default or user-defined similarity
measure to calculate the similarity of the query task, and
update the similarity between the feature subspaces. The
migrated model completes the fine-grained image advanced
semantic retrieval task, and satisfies the user’s individual

needs to the greatest extent on the basis of ensuring the image
content information.

II. RELATED WORK
Sketch-based image retrieval began in the 1990s, when early
researchers matched the photos with underlying colors and
texture features, such as matching a photo with a query
containing a color spot or a predefined texture. The selec-
tion of these features is mainly based on the global color
histogram, spatial mode or regional adjacency, and the early
SBIR focused more on contour or line changes. For example,
the curvature scale space (CSS) as a robust contour represen-
tation to extract the closed contour of the image in order to
implement image retrieval similar to sketches.

The researchers attempted to combine the global descrip-
tors of colors (e.g. RGB histograms) with shapes (e.g. edge
direction histograms) as similarity measures for image
retrieval. Eitz et al. [13] divided the image into regular
grids and calculated each cell’s descriptor (EHD or structure
tensor). Belongie et al. [14] attached shape context infor-
mation to points on each shape to measure the similarity
between shapes. The shape context at the reference point
captured the distribution of the remaining points relative to it,
thus providing a globally distinguishing feature. Shechtman
and Irani [4] proposed Self-Similarity (SSIM) as descriptive
style-invariant image descriptors. The self-correlation was
obtained by the difference between the squared sum of a patch
and its surrounding neighborhood. Hu and Collomosse [6]
calculate the SIFT [5] descriptor as a key point for each
pixel of the edge map for database images or stroke mask
for sketches. After applying Histogram of Oriented Gradi-
ent (HOG) features to binary edge maps, k-means clustered
the visual dictionary and then calculated the characteristic
frequency histogram for the data. After the optimization,
the retrieval effect has been effectively improved.

However, the method based on sketch visual feature
matching has some limitations. Most of the methods of
extracting features are based on artificially defined rules.
Manual definition of feature description rules is usually a
slow experience accumulation process, and it is not universal.
In recent years, deep learning has continuously made break-
throughs in the field of computer vision, speech recognition
and NLP refreshing achievements in various fields over
and over again [15], [16]. In the field of sketch retrieval,
the earliest use of multi-branch sketch retrieval was a hand-
based 3D shape retrieval proposed in work [17]. Using
a Siamese Convolutional Neural Network (CNN) network
model to query sketches through predefined features matched
one of the 2D projections of the corresponding 3D model.
Qi et al. [8] demonstrated a Siamese CNN to learn how to
perform search semantic embedding, where the hand-drawn
and natural images are respectively in the input of two shared
weighted branches. Recently, Bui et al. [17] and Tu et al. [18]
propose a semi-shared ternary network and a three-branch
CNN architecture with a modified triple loss function to
perform a regression. A cross-domain model is built to
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FIGURE 1. Two-branch CNN structure and migration learning model outline diagram.

learn the sketch descriptions and characterization information
for photo data. In order to achieve instance-level search,
Sangkloy et al. [11] designed a Sketchy database,
which were used to train cross-domain CNN that embed
sketches and photographs in a common feature space.
Tolias and Chum [19] proposed an Asymmetric FeatureMaps
(AFM), which supported efficient scale and translation invari-
ant sketch-based image retrieval. Unlike most of the short-
code based retrieval systems, the proposed method provided
the query localization in the retrieved image. Based on the
AFM, sketch-based image retrieval was further boosted by
query expansion, for which a global CNN image descriptor
was used. It can be seen that most of the features learned
from this shallow model are shallow visual features, and
there is still no universal adaptability to the description of
deep semantic features and contextual features. Since the
concept of transfer learningwas put forward, researchers have
re-understood the essence and way of ‘‘learning’’ of neural
networks. Moreover, some work [20] obtained the hierarchi-
cal features of data through pre-training networks, and then
changed the model of high-level semantic classification. The
work [21] introduced and compared a series of state-of-the-
art cross-modal subspace learning methods and benchmarked
them on two recently released fine-grained SBIR datasets.
Through thorough examination of the experimental results,
they demonstrated that the subspace learning can effectively
model the sketch-photo domain-gap. As researchers tend to
prefer to use the new dataset to update AlexNet, GoogleNet’s
last few layers of network weights, to achieve a simple
‘‘migration’’, we are inspired by this and introduce transfer
learning into the training of the SBIR personalization model.

III. THE GENERAL MODEL FOR SBIR
A. OVERVIEW
Hand-drawn sketches are ambiguous in nature. They are usu-
ally monotonous, inaccurate, and vague. This determines that
the processing of hand-drawn images is based more on the
representation of its higher-level features. The image features
extracted from the first few layers of the neural network are
mostly the deformation of the graphic lines, the structure,
the orientation, the position of the inflection point, and the
connection. In order to fully express the content of the sketch,

in the feature extraction process, our focus is on the sketch’s
global features and high-level semantic features. As a natural
feature extractor, CNNs are widely used for feature extraction
in classification, detection and other issues from the begin-
ning of design.

This section focuses on the design and algorithm of the
general model for sketch retrieval. Our goal is to extract
the complete image feature information as much as possible.
The more complete the hand-drawn feature is, the more the
real content of the hand-drawn can be expressed, and the
more accurate the sketch matching is. At the same time,
this step is also the basis of data collection for personalized
model training. The quality of the general model directly
affects the accuracy of the feedback results, which in turn
affects the training and evaluation of the personalized model
process.

B. IMAGE PRE-PROCESSING
Because of the difference between natural image and hand-
painted image scopes, pre-processing needs to extract contour
features information from natural images. The goal is achiev-
ing the unity of the natural image and hand-drawn image
on the image domain, and adapting to the treatment of deep
neural network.

In the natural image contour extraction process, we use
the global probability of boundary (gPb) [22] edge detection
algorithm to extracts global edge information from natural
images to obtain an edge matrix. Next, the dual threshold
processing method is used to obtain the binary edge map.
The strongest edge information is retained 25%, and the
weakest edge information is removed 25%. Then, the canny
edge extraction performs the lag threshold processing, so that
the pixels connected to the strong edges are left and the
isolated edge pixels are removed [10]. The image after filling
the remaining blank to a size of 256×256, is then binary
processed with a threshold of 127 and is converted to the
final 0-1 image.

Since the hand-drawn image in the data set is a square
image, the pixel relationship re-sampling is directly applied
to the scaling process, and the resulting image processed
to 256×256 size is subjected to binary processing with a
threshold of 200 and converted to the final 0-1 image.
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C. FEATURE EXTRACTION
As shown in Fig. 1, in the feature extraction phase, we first
establish a system model and adopt a two-branch CNN struc-
ture. Each layer of the network shares weight parameters.
Therefore, the model can be approximated as the same neural
network receiving two input information at the same time.
The secondary input data is a pair of hand-drawn image XS

and a contour image XC , both of them are the matrix. After
pre-processing, the final output of each time is paired two
eigenvectors V S and VC . The middle hidden layer output
information is independent of each other and directly used
as the input information of the next hidden layer.

TABLE 1. Neural network structure.

Here we propose an improved full convolutional neural
network. The numerical description of each layer struc-
ture is shown in Table 1. The first five layers of the net-
work use the first five layers of VGG-16 [23]. The sixth
layer contains three convolution sublayers and a maximum
pooling template. Based on the forward calculation of the
network, the original 256×256 size image data outputs a
512-dimensional feature vector after a six-layer network
operation. It is recorded as the hand-drawn image feature
vector V S and the contour image feature vector after the edge
extraction of the color image VC . And the output feature map
for each layer can be expressed as:

Xl = σ (zl) = σ (
m∑
k=0

Wl,kX(l−1),k + bl,k ) (1)

where σ is the activation function, Xl is the feature map of the
l−1th layer convolution output, X1 is the input image matrix,
and m is the number of convolution sub-layers included in
each layer. Let FN be the network forward calculation func-
tion, then

V = FN (X1) = X7 (2)

The two 512-dimensional eigenvectors of the output are thus
obtained

VC
= FN (XC ),V S

= FN (XS ) (3)

D. ESTABLISH A JOINT LOSS FUNCTION
We hope that the feature vectors extracted in Section III.B
include both global feature information of the hand-drawn
image/contour image and detailed feature information. The
final feature vector expresses not only the content information
of the image at the same time but also part of the high-level
semantic information of the image. The content information
of an image is the change in the shape and contour infor-
mation that humans can feel from the visual angle, and to
a certain degree also reflects the semantic information of the
image. As for the extraction of semantic features, the common
method now is to use tag information. In order to accomplish
the task of completing the sketch search indiscriminately,
it is necessary to establish a class label mapping relationship.
The two feature vectors V S and VC in the same category
extracted by the neural network is pulled closer and the
different categories of V S and VC is made farther. At this
time, the task becomes a supervised learning case. The final
vector Euclidean Distance is controlled by the category label.
When constructing the loss function, the label information
needs to be jointly calculated.

The construction of label information is based on the rela-
tionship between the hand-drawn image XS and the contour
image XC provided in the data set. First define the input tag
Y , which value is 0 or 1. When the i-th hand-drawn image
XSi and the contour image XCi are in the same category, it is
a positive sample, and the triplet < XSi ,X

C
i ,Yi = 0 > is

constructed. Conversely, it is a negative sample, construct a
triplet < XSi ,X

C
i ,Yi = 1 >.

When the triplet is input into the neural network, XSi and
XCi are used to calculate V S

i and VC
i , where V S

i = fN (XSi ) and
VC
i = fN (XCi ), fN is the neural network forward propagation

calculation function. According to [18], the loss function is:

L(V S ,VC ,Y ) = (1− Y )
2
Q
d2 + Y × 2Q× e−

2.77
Q d (4)

Here, d = ||V S
− VC

||2 is the Euclidean Distance between
the two vectors. The Q is a constant, which is the maximum
value of d when the final category is discriminated. The loss
function graph is shown in Fig. 2 (a).

loss =
1

batch_size

batch_size∑
i=0

L(V S
i ,V

C
i ,Yi) (5)

In order to keep the loss decay smoothly, the ratio of design
sample to counter sample in each batch is 1:1.

E. IMAGE SIMILARITY MATCHING AND RETRIEVAL
After the network training is completed, all natural images
in the image library can be input via the network to obtain
the final natural image feature vector library, which is stored
in the database as the basis for image feature matching.
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FIGURE 2. General model and personalized model loss with Euclidean distance change graph. (a) General model loss.
(b) Personalization model loss.

FIGURE 3. Different retrieval results of general model and personalization model. (a) General model. (b) Personalization model.

In image retrieval, when inputting a hand-drawn image XS ,
the network outputs the V S , and the Euclidean Distance of
the feature vectors of all the pictures in the hand-drawn image
and the image library is calculated by traversing the entire list.

di(V S ,VC
i ) = ||V S

− VC
i ||2 (6)

As a similarity metric, the list is obtained:

Simcommon = [d1, d2, d3, . . . , dn] (7)

From the calculation of (6) and (7), the closer the distance is,
the higher the similarity. Therefore, the index number of the
top K images in the list of small to large is the searched result,
which is provided to users as candidates. The R is the set of
nature images.

index = arg
K
min
i∈R

di (8)

IV. PERSONALIZED MODEL BASED ON
TRANSFER LEARNING
Through the discussion in the previous section, we can obtain
a general model after the training process has converged. The
general model obtains candidate results based on low-level
similarity matching. In Fig. 2(a), we see that there is no strong
correlation between the top K results retrieved, and all of the
sub-categories under the same category may be retrieved. For
example, in Fig. 3 the user enters a circular sketch, and the
sorting results are calculated based on similarity. There are

ferris wheel, moon and hot air balloon. It shows that the
general model of training only obtains the overall shape
information by category label information, and does not add
the semantic content information of the image.

FIGURE 4. The general model is sampled by T-SNE 2D projection.

Moreover, the general model is sampled by T-Distributed
Stochastic Neighbor Embedding (T-SNE) 2D projection,
depicted in the Fig. 4. We selected a part of the image of
the entire projection result. The feature vector of all natural
images is divided into multiple heaps, representing different
parent categories. Different colors represent different parent
categories. But in the same parent category feature space, sub-
categories of different semantics are randomly distributed.
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Such as each of blue dots has a circular contour feature that
is clustered together. Sub-categories are not further divided
according to semantic features.

It can be seen that the general model does not effectively
solve the ‘‘one-to-many’’ category mapping relationship
between sketch and natural image, and further fine-grained
retrieval is needed. In the overall feature space, the space
occupied by each category has obvious boundaries, but within
the category’s internal feature space, the distribution of each
sub-category’s features is disorganized, and only relying on
similarity comes closer together.

Different from static visual features such as image shape,
contour, and line, user preference feature information is
dynamic without rules to follow. This determines that we
need to scientifically evaluate user preferences which reflects
his hobbies, in training the personalized SBIR models. There
is no way to do offline calculations, only through user sur-
veys or online experiments. Therefore, we define the criteria
for user preferences for the design of a personalized model.
Based on the general model, we combine the user’s feedback
on the fine-grained semantic features of the natural image,
with the model migration method in transfer learning, so that
part of parameters in the general model are fine-tuned. The
average accuracy of the semantic feature calculation after
the second retrieval is approximated as the quantization of
the user preference.

By introducing the feedback information of the user,
the natural image information is selected by the user’s history
to reflect his preferences. When the general model gives
candidate results according to the similarity measure, the user
is provided with the pictures selected for the user. Then,
according to the user history, the system selects and assem-
bles the positive correlation example, the negative correlation
example and the general correlation sample. We use these
data as training sample for a personalized model. By learn-
ing user feedback, the personalized model will fine-tune the
distribution of input hand-drawn images and various related
examples within the feature space. Then, according to the
vector distribution after the feature space rearrangement,
the system retrieves the image with the closest similarity to
the user according to the similarity measure method.

A. DATA CONSTRUCTION AND QUANTIZATION
When it comes to user feedback, only those marked results
which are of interest to him can be manipulated at the user
level, but those which are unmarked do not mean that the
image he interests in is irrelevant. The key to solve this
problem is to jointly calculate the correlation of different
subcategories of the same parent category. The subcategories
which users are interested in are marked as positive corre-
lation samples, and other subcategories that belong to the
same parent category are marked as general correlation sam-
ples [24]. Samples that do not belong to the same parent
category are marked as negatively correlated. The goal of
adjusting the feature space of the neural network in this
way is to shorten the distance between the input hand-drawn

FIGURE 5. The feature space output of the sketch retrieval model
retrieval result.

image and the positive correlation sample space, maintain the
constant distance of the general correlated sample space, and
continue to increase the negative correlation sample distance.
From Fig 5, we can see the mapping relationship for the
input of personalized model when the user chooses the moon
instead of the hot air balloon. The distance between each
natural image in the parent category and the input hand-
drawn image based on the contour matching is not much
different, while the natural images of different contours are
far apart. The distribution of the feature vector space needs to
be rearranged for further fine-grained semantic retrieval.

For constructing the training sample data set, we define a
correlation set as RU ,S,Fi,Si , where U is user set, S is input
hand-drawing set, Fi is the set of user feedback natural image
outline, and Si is the constructed training data set by sampling
natural image outline. The set FC denotes the parent category
of the Fi in the feedback data pair < S,Fi >, and the set
SC denotes the sub-category where Fi is located. The input
tag Y ∈ {0, 0.5, 1} is used to train the input data of the
neural network model. The actual meaning represented is
the quantification value of the correlation degree. The rules
defining the relationship between samples are defined as
follows.

Y =


0, if Si ∈ FC and Si ∈ SC
0.5, if Si ∈ FC and Si /∈ SC
1, if Si /∈ FC and Si /∈ SC

(9)

In terms of the user feedback result, the training data is
constructed with the positive correlation, negative correlation
and general correlation sample 1:1:1 ratio when training sam-
ples are selected, and the input data format is a quadruple
< U , S, Si,Y >.
According to the above method, the bolded image in the

Fig.6 is the image that simulates the user feedback. The
outline parent category ID and the semantic sub-category
label content in the dataset are displayed. The images with
only single semantic correspondence are not listed.
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FIGURE 6. Training data collection for the personalized model and the semantic label.

B. TRANSFER LEARNING IN PERSONALIZED SBIR
After the data collection and quantification of the personal-
ized model, the personalized model is trained. In this task,
the user personalized feedback data is very small relative
to the scale of the training set of the entire general model.
Since we do not hope to change the overall feature space
of the personalized model data, only the distribution of the
sub-feature space is changed. If the personalized model is
trained from scratch for each user, the network training may
not converge at a certain stage due to the random initialization
of the parameters. The transfer learning is utilized to guide the
learning tasks in the newfield from the knowledge or distribu-
tion that has been learned from one field. Comparing with the
supervised learning, transfer learning relaxes the requirement
for data volume, allows the migration of prior knowledge
from the trained models based on big-data to small data
when training new models, and establishes joint solutions for
problems in different fields.

In the problem of personalized SBIR, since the feature
space and the prior distribution of the source domain and the
target domain are basically the same, only the data size and
the objective function of the problem are different. Therefore,
in order to learn a new network model on a small sample
set, a transfer learning method based on model migration is
introduced based on the pre-trained general model, aiming
to archive fine-grained semantic feature learning, depicted
in Fig.7. The feature extraction part uses the same model
parameters to obtain a visual image convolution feature.
Maintaining the visual characteristics unchanged, through
the improved joint loss function, the high-level convolu-
tion template is randomly initialized and then retrained to
represent the learning of semantic features. The final out-
put feature vector has a powerful global feature descrip-
tion, which can further classify the sketch semantic feature
space.

FIGURE 7. The transfer learning to achieve fine-grained semantic feature
learning.

FIGURE 8. The network structure when the personalized model using
transfer learning.

C. NETWORK STRUCTURE
For the transfer learning based on the pre-trained general
model, the basic idea is to apply the knowledge learned from
the general model (original domain) to the new personalized
model (target domain) to make predictions and make full use
of the similarities between the models. The network struc-
ture deep transfer learning is shown in Fig. 8. The specific
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implementation is to fix the parameters of the first five layers
of the VGG network feature extraction part, and establish a
new joint loss function to fine-tune the parameter information
of the last layer of the network to adjust the changes of
the sub-feature space. The network after the parameters are
changed still outputs hand-drawn image and sample contour
image feature vectors.

In the personalized model, the output feature map for each
layer is still represented as (1). In the network, φg is set as the
parameter constant layer, and the layer receives the picture of
the image layer as an input, and outputs the feature map after
the fifth layer through the operation of Table 1.

X6 = φg(X1) (10)

Since this part of the parameters is unchanged, the result
of X6 is actually consistent with the output of this layer
in the general model. φs is the parameter change layer,
in which the high-level semantic features of the image will
be learned. The feature vector after the model converges can
be expressed as:

V P
= φs(X6) (11)

The hand-drawn feature vector V PS and the natural image
feature vector V PC in the personalized model are obtained.
The two-branch independent joint loss function based

on strong and weak relations needs to be rewritten as a
three-branch independent function.

Lp(d,Y ) = δ1LS (d)+ δ2LM (d)+ δ3LW (d) (12)

Here, LS (d), LM (d), and LW (d) are the loss functions
calculated by the positive correlation sample, the general cor-
relation sample, and the negative correlation sample relation-
ship respectively. The three loss functions are also depicted
in Fig.2 (b). The prefix term δ is defined here as an indepen-
dent factor, which is determined according to the value of Y .
The label of the positive correlation sample is set to Y = 0.
In order to ensure that the value of the branch function LS (d)
is not 0 and the other branch functions LM (d) and LW (d)
take a value of 0, δ1 should not contain Y but δ2, δ3 should
contain Y . The same reason can draw the conclusion that the
δ1 contains the terms of Y − 0.5 and Y − 1, δ2 contains
the term of Y − 1, and δ3 contains the term of Y − 0.5.
In summary, in order to ensure the independence of branches,
set: δ1 = 2 × |Y − 1| × |Y − 0.5|, δ2 = 4 × |Y − 1| × Y ,
δ3 = 2× |Y − 0.5| × Y .

As for the loss function of each independent branch,
to ensure that the overall feature space does not change, con-
tinue to use LW (d) = 2Q×e−

2.77
Q d as the branch loss function.

For positively correlated samples, since this part of the sample
is the picture that the user is most interested in, the function
of the branching function is to reduce the distance between
the hand-drawn image and the positive-associated natural
contour image as much as possible. For generally related
samples, the function of the branching function is also to
reduce the distance between the hand-drawn image and the

natural contour image, but the magnitude of reduction cannot
exceed the positive correlation sample. To solve this problem,
double-threshold method is used to control the amplitude.
Define {

LS (d) = 2
Q (d − h1)

2

LM (d) = 2
Q (d − h2)

2 (13)

The coefficients in LW (d) and 2
Q have the same effect, which

are set in order to control the steady decline of the gradient.
The purpose of using a quadratic function is to pass points
distributed on both sides of the threshold to the vicinity of the
threshold by gradient descent. h1 and h2 are set as thresholds,
where h1 < h2 < Q. Thus, the joint loss function is
converted to:

CLp(d,Y ) = 2× |Yi − 1| × (0.5− Yi)
2
Q
(di − h1)2

+ 4× |Yi − 1| × Yi
2
Q
× (di − h2)2

+ 2× |Yi − 0.5| × Yi × 2Q× e−
2.77
Q di (14)

Here, the value of Q is a constant value equals which in the
Section III.D. The two threshold values can be arbitrary, for
the purpose of accurate individualization, so that h2−h1 ≈

Q
2 .

The loss function graph is shown in Fig. 2 (b). When it adds
the BATCH variable, the final loss function turns into:

loss =
1

batch_size

batch_size∑
i=0

Lp(di,Yi) (15)

D. SIMILARITY MEASURE AND PERSONALIZED SBIR
After the personalized model is trained to converge, all the
natural images in the image library are still forwarded cal-
culated by the personalized model to obtain the final natu-
ral image feature vector library, which is used as the basis
of image feature matching. The similarity metrics use the
Euclidean Distance dpi of the output eigenvector after using
the personalized model.

dPi = ‖V
PS
− V PC

i ‖2 (16)

We obtain a list of similarity results for the personalized
models:

Simpersonal = [dP1 , d
P
2 , d

P
3 , . . . . . . , d

P
n ] (17)

Then, the final similarity list is:

Similarity = w× Simpersonal + (1− w)× Simcommon (18)

where w ∈ [0, 1] is the weighting factor.

index = arg
K
min

i∈R
⋃

P
((1− w)× di + w× dPi ) (19)

where R
⋃

P is the union of the general model and the
personalized model vector space in which all the images are
located. The retrieval images are arranged in ascending order
and taken the TOP-K pictures suitable for the user’s prefer-
ence to return to the user interface as the final fine-grained
retrieval result
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FIGURE 9. The personalized SBIR system.

V. EXPERIMENTS AND RESULTS
A. SYSTEM IMPLEMENTATION
We have integrated the personalized sketch-based image
retrieval to our previous work, MindCamera [25], which
provides an interactive sketch-based image retrieval and syn-
thesis system. As shown in Fig. 9, the input is a hand-
drawn outline image, and the output is the color image with
the highest similarity of the system after calculation, and
the complicated implementation steps are performed in the
system.

We build a contour-category label mapping relationship
based on the public dataset to train a general model for
SBIR. The general model trains the model parameters in a
supervised learning manner according to the image contour
input and the label information. After convergence, the color
image processing in the image library is obtained, and the
general image feature vector is stored in the background
database. After the user submits the hand-drawn image query
online to the general model, feature extraction is performed,
and the feature is represented in the form of a vector. After
the content-based similarity matching is performed with the
feature vector stored in the database, the color image with the
highest similarity in the database is extracted as a candidate
result set and returned to the user on the interface.

After generating the candidate result set, user feedback is
used to refine the results based on user preferences. The user
interface design marks option buttons that are provided to
the user for preference selection. A mapping relationship is
established according to the natural image feedback by the
user and the input hand-drawn image, then the part of the
image information is stored in the database. The background
will maintain a timer for data size monitoring. When the
data size reaches a certain level, the background will build
a transfer learning dataset based on this part of the data.
The improved model loss function is used to adjust some
parameters of the general model, and then the training of
the personalized model is completed. After the personalized
model training converges, the general model used by the user
is updated to implement the personalized search based on the
user.

B. DATASET AND EXPERIMENT SETTINGS
The SBIR general model training experiment is based on the
public dataset Flickr15K [6], which is an important photo

sharing site of Yahoo. The natural images in the dataset are
all from the website and are a benchmark dataset in the field
of SBIR. The data set contains 33 categories of informa-
tion, each containing 10manually drawn hand-drawn images.
Most of the conventional color images are natural landscape
images, which are more complicated in description of shape
features than ordinary object images. A total of 14,501 sheets
are scientifically classified into 33 categories. In the exper-
iment, the hand-drawn sketches are divided according to
the ratio of the training set and the test set number of 7:3,
and the natural image participates in the operation according
to the correspondence with the hand-drawn sketches. The
experiment is limited to the memory limit of the server GPU,
so we set the BATCH_SIZE to 16, that is, each batch of input
operations contains 8 triples < XSi ,X

C
i ,Yi >. Each of the

two tuples is a positive example by randomly matching a
hand-drawn image and a contour image which come from
the same categories andmatches sketches and contour images
come from different categories as negative example to form
a sample. In order to effectively extend the training data and
solve the model over-fitting problem, during each batch of
input data, we set up a random hand-drawn image/contour
image cropping and flipping to perform data enhancement
operations. The RMSProp algorithm is used to train the net-
work for a total of 20 epochs on the Tensorflow platform,
with the parameters set to 0.9 for DECAY_TERM, 0.9 for
MOMENTUM, and 1.0 for EPSILON_TERM. Each epoch of
data is the amount of natural image data in the entire training
set ×7 × 2. The significance of multiplying by 2 lies in the
need to calculate positive samples and negative samples. The
initial learning rate is set to 0.0001, and the learning rate
decay is performed every 5 epochs, and the degree of decay is
0.5. We select 100 for the boundary Euclidean Distance Q for
the positive and negative sample pairs in the general model.

The personalized sketch-based image retrieval model is
also based on the 330 hand-drawn sketches in the Flickr15K
data set. Each natural image belongs to a definite sub-
category. The sub-category can be determined to have a total
of 60 according to the high-level semantic division. Each type
of feedback map selects the first natural image in the general
model to simulate a single-user selection operation, and the
natural image is randomly selected from the specific sub-
category to be used as the sampling data of the training set and
the label is added according to the above rules. Each set of
hand-drawn sketches randomly corresponds to 100 positive
correlation instances, and the general related examples and
negative correlation examples are configured at 1:1:1. The
initial learning rate is set to 0.0001, and the learning rate
attenuation is performed every 5 rounds, and the attenuation
is set to 0.5. The Adam optimization algorithm was used
to train the network for a total of 20 rounds. The amount
of data for each round of training is the number of hand-
drawn sketches × 3 × 100. We maintain the Q value in the
personalized model, and still choose 100. Threshold value
h1 =

Q
10 , h2 =

Q
2 is set in the personalized model. The

MAP and loss value during the training process of the general
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FIGURE 10. MAP and loss values for general model.

FIGURE 11. MAP and loss values for personalization model.

model and personalized model are shown in Fig. 10 and
Fig. 11, respectively.

C. MODEL EVALUATION
For the evaluation of the general model, we can explain it
intuitively and quantitatively. Intuitively, we visually feel the
matching of the hand-drawn images with the top images of
the search results in contour, shapes and other features, as is
shown in Fig. 3 (a). A good way to represent such retrieval
problems is to observe the changes in accuracy and recall
rate of various algorithms during retrieval. The characteristics
of a good search model is that along with the increase of
the recall rate, the accuracy can still maintain a high level,
achieves higher AP value. In contrast, A bad model suffers
a lot of precision in order to get a higher recall rate. In the
SBIR general model, the average precision (AP) of a single
category is the average of the precision of the natural images
in each category retrieved after entering the sketch for that
category. The MAP of the primary set is the average pre-
cision for each category, which reflects the performance of
the retrieval system across all relevant samples. The more
forward the relevant natural image retrieved by the system,
the higher the MAP may be. If the system does not return a
related natural image, the precision is certainly zero.

TABLE 2. Comparison of MAP.

As shown in Table 2, compared with the results obtained
from several shallow neural networks, we see that most of
the shallow network models provide image local information.
Due to the limited amount of template parameter information,
the shallow model has limited ability to extract global fea-
tures and context feature information, and the extracted fea-
tures can easily lead to classification errors. On the contrary,
the depth model has a powerful learning ability, an efficient
feature expression capability, and realize the layer-by-layer
information extraction from the pixel-level primitive data
of the sketches to the abstract semantic concept. Deep net-
work makes it possible to extract global features and context
information.

For the personalized SBIR model, intuitively, we simulate
the user feedback image on the general model. After the
personalized model training is completed, the effect of the
semantic feature learning model is judged based on the result
of the second retrieval of the hand-drawn on a specific sub-
category.We sort out part of the secondary search results from
the personalized models, and take the top 10 results, shown
in Fig. 3(b). Although the measurement of the personalized
model also uses the three indicators of precision, recall and
mean average precision, the quantitative evaluation is based
on the fine-grained semantic tag category, and the precision
of the calculation is more demanding for the positive case.
Different from the general model in which all the positive
samples with similar contours are used to calculate the pre-
cision and recall rate, in the personalized model, only the
positive correlation samples with semantic consistency are
used for the calculation of precision and recall rate. In order
to obtain an indicator that can fully reflect the global perfor-
mance of the personalized model, the MAP is also based on
the semantic label.

For personalized training model evaluation, the general
model and the personalized model are jointly calculated, and
based on the ordered retrieval results of the model output,
the calculation and comparison of the above several indi-
cators are completed. When the general model calculates
the precision and recall rate, it is no longer evaluated in
the dataset by the existing contour category label, but on the
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TABLE 3. Personalization models and General model through fine-grained search subcategories AP and MAP in Flickr15K comparison tables.

FIGURE 12. P-R curves of general and personalized models tested on the
entire data set.

FIGURE 13. Personalization retrieval model MAP and weight factor line
chart.

semantic category label. Whether it is a general model or a
personalized model, in the process of statistics, for the case
where there is only one semantic sub-category in the contour
parent category, the statistics are calculated according to the
contour category label. When calculating the precision and
recall rate, all the images in the parent category defined by
the contour are all involved in the calculation, and the P-R
curves of the two models are plotted on the entire data set
by the change of the accuracy rate and the recall rate, shown
in Fig. 12.

In the fine-grained semantic feature retrieval, only the sam-
ples with the ‘‘one-to-many’’ category mapping relationship
between the contour and the semantics are considered, that
is, the contour parent category containing more than one
semantic sub-category. In the evaluation, based on the two
models, the AP values of the fine-grained semantic cate-
gories of the search results in each contour parent category

are calculated separately. The AP values of each model are
counted and compared, and the MAP value of the model in
the fine-grained semantic retrieval is calculated according to
the average of the AP values.

Table 3 shows the AP values and the comprehensive per-
formance mAP values when the generic model and the per-
sonalized model are searched on each specific category. The
10 categories in the table are the serial number of parent
category containing more than one sub-category. Comparing
with Table 2, it can be seen that although the general model
has higher precision in retrieving the contour parent category,
it does not achieve good results when retrieving the natural
image in the fine-grained sub-category. Through the model-
ing and analysis of the overall feature space, the reason is
that although the parent category sample is properly classified
in the whole feature space, there is no obvious boundary for
the sub-category feature space, and the sub-category sample
features are randomly distributed in the parent category.
Therefore, when searching, there is a high probability that
the correct sample of the same parent category will appear,
but the sub-category will appear randomly. The personal-
ized model successfully divides the spatial range of sub-
features determined according to semantics. When the input
hand-drawn is calculated and obtained the feature vector,
the semantic extraction layer changes its position in the fea-
ture space of the general model so that the calculated feature
vector of the hand-drawn is as close as possible to the vicinity
of the sub-category sample fed back by the user, so that
the sub-category natural image is accurately and efficiently
retrieved.

In order to improve the adaptability of the model in
the application field, we add w weighting factor control to
the trained personalized model. According to the formula,
w mainly controls the proportion of the user’s preference
information in the final feature space. Therefore, it is a com-
bined result of image content information and user preference
information. When calculating, we set the value of w to be
0, 0.25, 0.5, 0.75 and 1. The final change line is depicted
in Fig.13.Whenw = 0, it is the fine-grained retrieval result of
the SBIR general model without adding any user preference
information, and w = 1 is the evaluation result of the SBIR
personalized model under the strongest user preference infor-
mation. The results in the figure can be further verified that
as the value of w becomes closer to 1, the effect of learning
fine-grained semantic features is better.

VI. CONCLUSIONS
This paper combines the rapid development of deep learn-
ing and convolutional neural network technology in recent
years to demonstrate the whole design and implementation
of a user personalized SBIR system, which is an extension
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of our previous work [26]. In order to complete the pre-
training work of the general model based on contour features,
we propose a dual-input shared full convolutional neural
network structure for image visualization feature extraction.
The feature vector, category label supervision information
and back propagation algorithm extracted by CNN are used
to reduce the value of the joint loss function to dynamically
adjust the parameter information of each layer of the net-
work. After training the network to convergence, the general
model obtained has achieved higher mean average precision
in recent years. Combined the pre-trained general model
and user history feedback, the network by transfer learning
can further learn the distribution change from shape con-
tour feature to semantic feature space. The secondary fine-
grained retrieval result after the system processing meets
the needs of the user’s hand-drawn image, while taking full
account of the image content information.We have integrated
the personalized SBIR to our previous work, MindCam-
era [25], which provides an interactive sketch-based image
retrieval and synthesis. However, our implementation of fine-
grained image retrieval is based on user feedback informa-
tion, and the results of the retrieval are given in the second
search. There is a layer of training in the middle. Once the
data volume or data relationship cannot meet the require-
ments, it will cause poor training results. Meanwhile, as we
used a method of strong supervised learning, the mislabeling
of the label information or the incomplete information has a
high probability of affecting the final precision. Therefore,
in the future, some non-Gauss feature selection theories [27]
and the matrix factorization technology [28], will be used
to improve the accuracy of tags. Moreover, realizing fine-
grained sketch retrieval based on weak supervision infor-
mation needs to design more powerful neural networks and
scientific algorithmmodels. Additionally, realizing users per-
sonalized SBIR also requires comprehensive consideration of
data involving various dimensions of users.
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