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ABSTRACT In general design and analysis of a tunnel boring machine (TBM), many analytical models are
proposed to predict the TBM’s performance. Various models may result in different performance predictions
for the same TBM excavating under the same geological conditions. Therefore, it is essential to perform
the quantitative analysis of the impacts from different prediction models and the corresponding key input
factors on the TBM’s performance. Recently, there is almost no relevant study on such issues for TBM and
it is urgent to fill this gap. In this paper, by comparing and analyzing the TBM’s performance using different
prediction models, three types of total thrust prediction models (the rapid-growth type, the intermediate
type, and the slow-growth type) and two types of total torque prediction models (the rapid-growth type
and the slow-growth type) are classified and defined for the first time in the TBM-related fields. Then,
a global sensitivity analysis (SA) of TBM’s performance using the Sobol’ method is developed regarding
key input factors, including control, structural, and geological parameters. It is found that the relative
impacts of the input factors to TBM’s performance vary appreciably with the selection of prediction models.
Specifically, a global SA on the minimized construction period of a tunneling project with respect to
structure parameters is performed. The results show that the structure parameters have similar impacts on the
minimized construction period irrespective of the selection of prediction models. The impacts of different
prediction models on the minimized construction period of a tunneling project using Genetic Algorithm
(GA) are investigated by finding the optimal control and structure parameters. The results interestingly show
that the selection of the TBM’s performance prediction models has a marginal impact on the minimized
construction period but yields partly different key parameters.

INDEX TERMS Tunnel boring machine, global sensitivity analysis, performance prediction, minimized
construction period.

I. INTRODUCTION
As a complex electromechanical system, the Tunnel Boring
Machine (TBM) is widely used because of its high security,
high efficiency and environment friendly [1]. Figure 1 shows
a typical scheme of a hard rock TBM, which contains a
number of sub-systems, e.g., the cutterhead driving system,
the thrust system, the cutterhead system, etc. To ensure a
high-performance, every sub-system should work synergis-
tically and efficiently to maintain a high efficiency in hard
rock breaking and a low tool wear rate. The high efficiency in
hard rock breaking requires a sufficient thrust from the thrust
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system and a high torque from the cutterhead driving system.
The low tool wear rate makes demands on a reasonable struc-
ture of the cutterhead system. Based on the above analysis,
in this paper three performance metrics, including the total
normal thrust, the total torque of the cutterhead, and the cutter
life, are selected for evaluating the TBM’s performance in
tunneling projects, which are detailedly described as follows:
• Total normal thrust: Thrust is the power source of TBM’s
normal forward excavation, so the stability and reliabil-
ity of the thrust directly affect the construction period
of the whole tunneling operation. TBM usually works
under the ground where many unexpected conditions
may happen, such as the hydrops and the hard rocks. The
thrust should overcome the resistance coming from these
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FIGURE 1. A typical diagram of the hard rock TBM [1].

extreme conditions to move the machine forward. The
thrust is mainly affected by factors such as the fording
depth and rock properties.

• Total torque of the cutterhead: The torque provided by
the cutterhead driving system powers the cutterhead to
overcome the tangential rock resistance for excavating.
Under the complex underground geological conditions,
the locked rotor may happen due to some emergencies,
e.g., unexpected hard rock and overlarge penetration,
which can lead to unwanted maintenance shutdown
with great economical loss. Therefore, enough torque is
desired to drive the cutterhead to avoid such stoppage
and complete the tunneling projects within the scheduled
construction period and cost restriction.

• Cutter life: During the tunneling operation, cutter chang-
ing is generally complex and time consuming. Such a
complex process can greatly delay the construction and
largely increase the project cost. Thus, it is greatly sig-
nificant to accurately predict the cutter lifetime during
the tunneling engineering of the TBM to avoid expected
cutter failure.

Due to the complexity of TBM’s electromechanical sys-
tem, the above three performance metrics are generally
challenging to predict, especially combined with complex
geological conditions. In the literature, a number of mod-
els have been developed for predicting TBM’s total thrust,
total torque, and cutter life, such as the Evans model [2],
the Colorado School ofMines (CSM)model [3], and theWijk
model [4]. Among the prediction models, some are estab-
lished depending on relevant tests (e.g., rock squeeze), while
others are proposed based on the practical experience. All the
predictionmodels have totally different formular expressions,
so it is essential to explore the differences between various
prediction models of the total thrust, the total torque, and
the cutter life. Besides, the accuracy of TBM’s performance
preditcion greatly relies on the accuracy, flexibility, and relia-
bility of the prediction models. Each prediction model has its
specific characteristics and input factors, which may present
different effects on the prediction accuracy. Thus, it is impor-
tant to explore the sensitivity of the TBM’s performance to
the control, structural, and geological parameters. Sensitivity
analysis (SA) is the study of how the variation in the output

of a model can be apportioned qualitatively or quantitatively,
to different sources of variation, and of how the given model
depends upon the information fed into it [5]. By the process
of SA, the relevant engineers studying on the TBM and
tunneling engineering can have a deeper understanding on the
performance prediction and undertake a reasonable selection
from different prediction models. Sensitivity analysis could
help (i) determine the most influential parameter(s) to pro-
mote informed application, (ii) select a suitable prediction
model under complicated geological conditions, and (ii) fur-
ther advance the improvement of prediction models.

A. PERFORMANCE ANALYSIS FOR TBM
Currently, many existing literatures focus on the TBM’s per-
formance. For example, Armaghani et al. [6] proposed a new
model based on the gene expression programming (GEP) to
estimate TBM’s performance by means of the penetration
and results showed that the developed GEP model provides
higher capability in estimating TBM’s penetration compared
with some other methods. Liao et al. [7] proposed an adap-
tive robust control (ARC) law based torque allocation tech-
nique scheme for hard rock TBM, finding that the proposed
method can ensure better motion synchronization of the driv-
ing motors and driving torque allocation. Sun et al. [1], [8]
developed a multidisciplinary design optimization (MDO)
model for the design of TBM and proposed new excava-
tion strategies by considering both the control and structure
parameters, results showed the proposed excavation strategy
with adaptive structure and control parameters could signifi-
cantly shorten the construction period and reduce the cost and
energy consumption. Ghasemi et al. [9] developed a fuzzy
logic model to predict the penetration based on the collected
data from a hard rock TBM tunnel using rock properties such
as uniaxial compressive strength, rock brittleness, distance
between planes of weakness and the orientation of discon-
tinuities in the rock mass. Entacher et al. [10] designed a new
scaled rock cutting test rig and found that the scaled rock
cutting tests are superior input parameters for TBM perfor-
mance prediction compared to commonly used geotechnical
standard tests.

B. SA USED IN THE TUNNELING ENGINEERING
SA has been widely used in different tunneling engineering.
For example, Ebrahimy et al. [11] performed SA to explore
the impact of chosen variables on the duration of a tunneling
project and found that the total storage capacity had the
largest impact on tunneling duration. Kwon et al. [12] carried
out SA to investigate the influence of the Excavation Dam-
aged Zone (EDZ) on the mechanical stability of an under-
ground research tunnel, finding that the in situ stress ratio,
Young’s modules, and EDZ size are the three main param-
eters. Mahdevari and Torabi [13] used Relative Strength of
Effects (RES) in their modeling to perform an SA and found
that all input parameters have meaningful effects on the out-
put, which can be used to reasonably predict and manage
tunnel convergence. Yazdani-Chamzini et al. [14] employed
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TABLE 1. Thrust prediction models and inputs.

the cosine amplitude method (CAM) to identify the most
sensitive factors affecting road header performance that is
a crucial in tunneling projects, and found the most signifi-
cant parameters are the UCS and specific energy (SE), and
the least effective parameter is the rock quality designation
(RQD). Zhao et al. [15] conducted an SA to numerical simu-
lations of a shield supported mechanized tunnel excavation in
soft soil, finding that the global SA is more reliable than the
local SA for non-linear models, and the friction angle plays
the most significant role in plastic deformation and soil’s
elastic deformation that is highly dependent on the stiffness
and friction angle. Touran and Asai [16] developed several
simulation models to investigate the impact of a number
of variables on the tunnel advance rate of TBM by SA,
including the number of trains, travel time, TBM penetration
rate, and various rock types. Beiki et al. [17] performed two
approaches of sensitivity analyses, based on ‘‘statistical anal-
ysis of RSE values’’ and ‘‘SA about the mean’’ and found
that the variables of UCS, geological strength index (GSI),
and RQD play more prominent roles in predicting modu-
lus of the rock mass in tunneling projects. Yang et al. [18]
presented a no-tension elastic-plastic model and an opti-
mized back-analysis technique for stability analysis of under-
ground tunnels, during which they conducted an SA of the
genetic algorithm optimization procedure to identify suitable
geo-material properties. The results showed that the tunnel
displacement significantly depends on the elastic modulus
and internal friction angle, and less depends on the cohesion
strength.

Though the performance of TBM has been well studied in
literatures, most of the current work only focuses on a specific
aspect or single model rather than the analysis and com-
parison between different models. A better understanding
of the relationship between different performance prediction
models would be helpful to design and analyze the TBM
for special tunneling projects under complicated geological
conditions. To this end, the TBM’s performance, including
the total normal thrust, the total torque of the cutterhead, and
the cutter life, estimated using different prediction models is
compared and analyzed. Besides, global sensitivity analyses
are performed to explore the impacts of input factors on the
different prediction models and the minimized construction

period of the tunneling engineering, trying to provide reason-
able basis for suitable models selection.

The reminder of the paper is organized as follows.
Section II discusses different prediction models of the TBM,
based on which the TBM’s performance, including the
total thrust, the total torque, and the cutter life, estimated
using different prediction models is compared and analyzed.
In Section III, a global SA of TBM’s performance to control,
structure, and geology parameters using the Sobol’ method
are explored. A global SA on minimized construction period
of the tunneling engineering to structural parameters is per-
formed in Section IV. Section V presents a optimization to
explore the impacts of different prediction models of TBM
on the minimized construction period of a tunneling project.
Section VI provides the concluding remarks.

II. PERFORMANCE PREDICTION MODELS
A. TOTAL NORMAL THRUST
A number of thrust prediction models are available in the
literature. Among these models, seven are adopted in this
work as listed in Table 1, including the Evans model,
the Roxborough model [19], the CSM model, the Wijk
model, the Ozdemir model [20], the Akiyama model [21],
and the Frenzel model [22]. Many of these models have been
improved, e.g., the CSM being updated by Rostami [23], [24]
and modified by Yagiz [25] and Saffet [26]. Table 1 also lists
input parameters in each thrust prediction model, where σc
(MPa) is the compressive strength of the rock, h (m) is the
penetration, r (m) is the radius of the cutter, α (◦, degree)
is the blade angle of the cutter, N is the number of the
cutters, φ (◦, degree) is the cutter contact angle, στ (MPa)
is the brazilian tensile strength, s (m) is the cutter spacing,
δ (m) is the cutter wear flat, d (m) is the cutter diameter, τ
(MPa) is the shear strength without sideward-wall, and σis
(Mpa) is the point load index for the rock parallel to the
excavating surface. It is seen that the inputs to all the thrust
models can be categorized into three groups, i.e., control
parameters, structure parameters, and geology parameters.
But each model may utilize different number of parameters
from each category, e.g., the Evans model takes the structure
parameters r and α as the inputs, while the CSM model uses
r , δ, and N . Note that in practical tunneling projects, some
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TABLE 2. Torque prediction models and inputs.

TABLE 3. Cutter life prediction models and inputs.

special cutters differing from general ones are installed on
the edge and center of a cutterhead. To simplify the analysis
in this paper, it is assumed that only general cutters are used
and the cutters layout is uniformly distributed. Thus the cutter
spacing is described as

s =
D
2N

(1)

And the total thrust is obtained by

Fv = fvN (2)

B. TOTAL TORQUE OF THE CUTTERHEAD
For the torque output from the cutterhead driving system,
many models have also been proposed up to now. Table 2
lists four torque prediction models that are widely used in
practical tunneling engineering. In Table 2, D (m) is the
cutterhead diameter and fv (kN) is the normal thrust acting
on a single cutter. The rest parameters have been explained
in Section II-A. The same as the thrust models, the inputs to
these torque models also include three types of parameters,
i.e., the control parameters, structure parameters, and geology
parameters. As described in the Section II-A, it is assumed
that all cutters are general shape and uniformly distributed,
then the torque can be obtained by

Tt = ftN
D(N + 1)

4N
(3)

where ft (kN) is the tangential thrust acting on a single cutter.

C. CUTTER LIFE
The lifetime of a single cutter can be defined in many ways:
(i) the total volume of the rock breaking before the cutter’s
failure; (ii) the continuous excavating distance before the
cutter’s failure; (iii) the normal excavating time before the

cutter’s failure, etc. A significant amount of research has
been done in the literature to study the cutter life, which
is briefly summarized in Table 3. ϕ (Pa2/m) is the wear
coefficient of the cutter, σPLT (MPa) is the point load test
index for tensile rock strength, CAI is the Cerchar Abrasivity
Index of the rock, SJ (dmm) is the Sievers’ J-value, and AVS
(mg) is the Abrasion Value Steel. Among the four prediction
models, theWijkmodel [4] and the Frenzel model [27] utilize
the cutter rolling length to define the cutter life; the NTNU
model [28] quantifies the cutter life using boring hours for
cutter disc rings of steel; and the Gehring model [29] defines
the cutter life as the ring weight loss due to rock breaking
before the cutter’s failure. Due to such different defining
standards, it is meaningless to directly compared the cutter
life between different prediction models, so the TBM per-
formance analysis performed in Section II-D does not cover
the aspect of the cutter life. From Table 3, the Wijk model
utilizes all the three types of parameters, including control
parameters, structure parameters, and geology parameters,
to determine the cutter life; the Frenzel model uses the struc-
ture and geology parameters except the control parameters;
for the NTNU model and the Gehring model, only the geol-
ogy parameters are selected. This is because some of the
cutter life models are established depending on relevant tests,
while others are proposed based on the practical experience,
as mentioned in Section I.

D. ANALYSIS OF TBM’S PERFORMANCE PREDICTION
MODELS
1) NUMERICAL SETTINGS
In the analysis of this section, the rock type excavated by
the TBM is assumed to the limestone and its actual proper-
ties can be found in [30]. In this paper, the diameter of the
excavated tunnel D is assumed to be 10 m. Besides, it is also
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TABLE 4. Constant parameters of TBM.

assumed that there are 50 disc cutters uniformly laid on the
cutterhead with the cutter radius r and the cutter edge angle
α being 200 mm and 45◦ respectively. In order to achieve
the comparison and analysis between different prediction
models, the cutter wear flat δ is set to be 8 mm uniformly.
Overall, the related constant parameters of the TBM are listed
in Table 4.

2) THRUST MODELS ANALYSIS
Figure 2 shows the variation of the total thrust with increasing
penetration with respect to different prediction models. In the
practical engineering, the penetration is usually set to be
within the range less than 15 mm/r based on the general rock
hardness. But in order to figure out the difference between
various prediction models, the range of the penetration is
enlarged to be 0 to 30 mm/r. Among the seven prediction
models, the Wijk model estimates the largest thrust, while
the Evans Model predicts the smallest thrust. It is seen that
the tendencies of these seven models varying with the pene-
tration can be classified into three types: (i) the rapid-growth
type, including the Roxborough Model and the Wijk Model;
(ii) the intermediate type, including the Ozdemir Model and
the Akiyama Model; and (iii) the slow-growth type, includ-
ing the Evans Model, the CSM Model, and the Frenzel
Model. For the rapid-growth type, the thrust predicted by
the Wijk Model is continuously larger than that predicted by
the Roxborough Model in the entire region of penetration
h. For the intermediate type, when the penetration h is less
than 26 mm/r, the Ozdemir model predicts larger thrust than
the Akiyama model does; when the penetration h is over
26 mm/r, the Ozdemir model predicts smaller thrust than
the Akiyama model does. The slow-growth type shows a
more complicated situation. With the penetration h increas-
ing, the Frenzel model always predicts the largest thrust
within the slow-growth type. When the penetration h is less
than 20 mm/r, the predicted thrust by the three slow-growth
models ranks from large to small is: the Frenzel model,
the CSM model, and the Evans model. When the penetration
h is over 20 mm/r, the ranking changes to: the Frenzel model,
the Evans model, and the CSM model. From the overall
viewpoint, the ranking will be more complicated if all the
seven models are compared together. Take the range 7 mm/r
≤ h ≤ 9 mm/r as an example, the predicted thrust obtained
from the seven models ranks from large to small is: the Wijk
model, the Roxborough model, the Ozdemir model, the Fren-
zel Model, the CSM Model, the Akiyama model, and the
Evansmodel. This rankingwill fully changewithin a different
penetration region. It is concluded from Fig. 2 that the main
reason causing such different appearance of the three models

FIGURE 2. Variation of thrust with penetration.

is the different establishing ways for the thrust prediction
models, including relevant tests and practical experience.

3) TORQUE MODEL ANALYSIS
For the same purpose by enlarging the range of the penetra-
tion h for the thrust model, the range of penetration of the
torque prediction models is also enlarged to be 0 to 20 mm/r.
Figure 3 shows the variation of the torque with increasing
penetration. It is seen that the tendencies of these four models
can be classified into two types. One is the rapid-growth
type, including the Roxborough model and the Wijk model,
the other is the slow-growth type, including the CSM model
and the Ozdemir model. For the slow-growth type models,
the Roxborough model estimates a larger torque than the
Evans model does. While for the rapid-growth type models,
the Wijk model predicts a larger torque when the penetration
h is less than 12 mm/r, and the Roxborough model predicts a

FIGURE 3. Variation of torque with penetration.
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larger torque when the penetration h is larger than 12 mm/r.
With the changing penetration, the ranking of the torque
obtained from the four models is greatly different. It can be
also concluded that the different establishing ways for the
torque prediction models is again the main reason causing the
different appearances of the two models.

III. SA OF TBM’S PERFORMANCE
The SA focuses on the influences of the input changes on the
outputs of the system or the model, and also the influences on
the system or model itself, by giving quantitative sensitivity
results. It can find out which parameters have greater influ-
ences on the system performance, significantly analyze the
stability of optimal performance, and clearly direct the next
step of optimization process, especially when the raw data to
some degree is inaccurate or inconstant. Given the great sig-
nificance to the optimizationmethods and evaluations, the SA
has come to be one research hotpot and many SA methods
have been proposed. Currently, the Sobol’ method [31] and
the Fourier amplitude sensitivity test (FAST) [32] are two
popular methods of the SA. In this paper, the Sobol’ method is
adopted to perform the SA.An overview of the Sobol’method
is provided in Section III-A.

A. SOBOL’ METHOD
The Sobol’ SA method is a variance-based Monte Carlo
method. It was first proposed by Sobol [31] and has been
widely used in many fields, such as economics, environmen-
tal science, sociology, and machinery. For a function with k
input variables,

y = f (x) = f (x1, x2, x3, · · · , xk ) (4)

where 0≤ xi ≤1, the main idea behind Sobol’ method for the
computation of sensitivity indices is to decompose f (x) into
summands of increasing dimensionality as follows.

f (x1, · · · , xk ) = f0 +
k∑
i=1

fi(xi)

+

∑
1≤i<i≤k

fij(xi, xj)+ f1,2,··· ,k (x1, · · · , xk ) (5)

Based on the multiple integration method, f0 is a constant
and the integrations of every summand over any of its own
variables must be zero:∫ 1

0
fi1,i2,··· ,ik (xi1 , · · · , xik )dxi1 · · · dxis = 0 (1 ≤ k ≤ s)

(6)

Sobol [33] also certified that the decomposition of (5) is
unique and all the summands can be obtained using the
multiple integration method. Thus, the total variance of f (x)
can be described as:

V =
∫
�k
f 2(x)dx − f 20 (7)

where �k
= {x|0 ≤ xi ≤ 1}(i = 1, 2, · · · , k). The partial

variances can be obtained from (5), given by,

Vi1,i2,··· ,is =
∫ 1

0
· · ·

∫ 1

0
f 2i1,i2,··· ,is (xi1 , · · · , xik )dxi1 · · · xik (8)

where 1 ≤ i1 < · · · < is ≤ k and s = 1, 2, · · · , k .
By squaring and integrating (5) over the entire �k , it is
obtained that

V =
k∑
i=1

Vi +
∑

1≤i<j≤k

+ · · · + V1,2,··· ,k (9)

So the sensitivity Si1,i2,··· ,is can be described as

Si1,i2,··· ,is =
Si1,i2,··· ,is

V
1 ≤ i1 < · · · < is ≤ k (10)

Si is the first-order sensitivity index of xi that repre-
sents the main impact on the output y; Sij (i 6= j) is
the second-order sensitivity index that represents the cross
impact of xi and xj on the output y. The total sensitivity
index of xi is the sum of all order sensitivity indices [34],
given by

STi = Si +
∑
j 6=i

+ · · · (11)

The sensitivity indices of all the input variables must satisfy
the following condition:

k∑
i=1

Si +
∑

1≤i<j≤k

Sij + · · · + S1,2,··· ,k = 1 (12)

So the total sensitivity index of xi can be calculated using the
variance V∼i that is the sum of variances of all input variables
other than xi [35].

STi = 1−
V∼i
V

(13)

B. UPPER AND LOWER BOUNDS OF INPUT PARAMETERS
Defining reasonable bounds of studied parameters is impor-
tant for performing an efficient and accurate SA [36].
As described in Sections II-A ∼ II-C, one control parameter,
four structural parameters, and four geological parameters
should be investigated for thrust predictionmodels and torque
prediction models; two control parameters, four structural
parameters, and six geological parameters should be inves-
tigated for the cutter life prediction models. Based on the
practical engineering, the ranges of all the three types of
parameters are defined in Table 5.

C. SA RESULTS
1) SA OF THE TOTAL NORMAL THRUST
By setting the sample size of each input parameter being
1000, Fig. 4 presents the sensitivity of 7 thrust prediction
models to the 9 input parameters listed in Table 1. It is seen
that the relative impacts of the input parameters varies a lot
among different prediction models. For the Evans model and
the Roxborough model, the penetration h is the major factor
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TABLE 5. Upper and lower bounds of input parameters.

FIGURE 4. Sensitivity of the seven thrust prediction models to 9 input parameters: (a) Evans model; (b) Roxborough model; (c) CSM model; (d) Wijk
model; (e) Ozdemir model; (f) Akiyama model; (g) Frenzel model.

that affects the total thrust. While under the Wijk model,
the Ozdemir model, the Akiyama model, and the Frenzel
model, the blade angle α is the decisive factor. It is also found
that the most sensitive factor impacting the CSM model is
the cutter tip width δ. From the analysis above, one specific
parameter may be the decisive factor in one thrust model,
however, it will have no impact in another prediction model,
e.g., the cutter tip width δ. The reason of this phenomenon
is the different establishing ways for the thrust prediction
models, either relevant tests or vast practical experience.
For example, when establishing the Evans prediction model,
more attentions should be paid to the control and struc-
tural parameters rather than various geological parameters.
Nevertheless, more attentions should be paid to the various
geological parameters when building the CSM model for the
total thrust.

From Figs. 4(a) ∼ 4(g), it can be observed that all of the
total-order sensitivity indexes of the nine input parameters
are higher than the corresponding first-order indexes, which
reflects that the control parameters, the structural parameters,
and the geological parameters used in the prediction models
are strongly coupled with each other to influence the total
thrust. For the Wijk model, the Akiyama model, and the
Frenzel model, only the blade angle α presents a first-order
sensitivity index, while other input parameters only present
the total-order sensitivity indices. From this, it illustrates
that only the blade angle α impacts directly the output of
total thrust under these three prediction models, but in con-
trast other parameters impact the output entirely through the
coupling interactions. So when conducting the design and
optimization for TBM, the interaction between different types
of input parameters should be fully taken into account.
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FIGURE 5. Sensitivity analysis of the four torque prediction models to 9 input parameters. (a) Roxborough model;
(b) CSM model; (c) Wijk model; (d) Ozdemir model.

2) SA OF THE TOTAL TORQUE OF THE CUTTERHEAD
Figure 5 illustrates the sensitivity of four torque prediction
models to the 9 input parameters. It is observed that the
torques predicted by the four different models are affected
by different parameters. For the Roxborough model, the most
decisive factor is the blade angle α; for the CSM model,
the most decisive factor is the cutter tip width δ; for the
Wijk model, the most decisive factor is the disc cutter num-
ber N ; and for the Ozdemir model, the most decisive factor
is the penetration h. Again, some parameters, e.g., the cutter
tip width δ and the blade angle α, play a decisive role in
one prediction model while a useless role in another model,
the reason of which is still the different establishing ways for
the prediction models, either relevant tests or vast practical
experience, as analyzed in Section III-C.1.

It is also interesting to find that the torque is more sensitive
to the control and structural parameters than the geological
parameters. It is observed that all of the total-order sensitiv-
ity index is higher than the corresponding first-order index,
which means that the coupled interaction between different
types of input parameters are also important in the torque pre-
diction. Especially for the Roxborough model, only the blade
angle α has a direct impact on the output of torque, while
other parameters influence the torque through the coupling
effects.

3) SA OF THE CUTTER LIFE
As described in Section II-C, the cutter life can be defined in
different ways, so the sensitivity of the cutter life to 12 input

parameters should be analyzed based on specific defining
standards of corresponding prediction models. Besides, dif-
ferent ways to establish the prediction models makes the SA
of such various prediction models to corresponding input
factors lead to more different and complex situation, as illus-
trated in Fig. 6. It is found from Figs. 6(b) ∼ 6(d) that the
control parameters have no impact on the Frenzel model for
cutter life prediction, and the control and structural param-
eters have no impact on the NTNU model and the Gehring
model. Overall, it is observed from Figs. 4 ∼ 6 that the
geological parameters have more dominant impacts on the
cutter life than that on the total thrust and the total torque.

Under the Wijk model, it is observed that the first-order
sensitivity indices are all close to 0, while the total-order
sensitivity indexes are much higher than first-order sensi-
tivity indexes. The differences between the first-order and
total-order sensitivity indexes of other three cutter life pre-
diction models are relatively less than that of the Wijk model.
This illustrates that the coupling effects between different
types of parameters under the Wijk model are much stronger
than the other three models. Thus, when using the Wijk
model, more attentions should be paid to the interactions
among the input parameters.

IV. SA ON MINIMIZED CONSTRUCTION PERIOD
From the point of view of the whole tunneling engineering,
a minimum construction period t (month) is usually set as
the overall project objective by taking into account both of
the cost and the energy consumption. Therefore, it has great
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FIGURE 6. Sensitivity analysis of the four cutter life prediction models to 12 input parameters: (a) Wijk model; (b) Frenzel model;
(c) NTNU model; (d) Gehring model.

practical significance to study the SA on the minimized con-
struction period of a tunneling engineering. Figure 7 shows
the differences between the general SA (enclosed by the green
dotted line) and the SA on an optimization process (enclosed
by the red dotted line). The general SA is performed based
on the pure simulation model or pure formula model. But for
the SA on optimization process, an optimization model takes
role of the simulation model in general SA process. At each
iteration of the SA process, a complete optimization process
is carried out and the objective function value is served as the
analysis target of the SA.

FIGURE 7. Differences between the general SA and the SA of an
optimization process.

In this section, the sensitivity of the minimized construc-
tion period to the structure parameters is analyzed, includ-
ing the cutter redias r , the blade angle α, and the cutters
number N . The working conditions of a TBM are so poor
and complex, and the rock type excavated by the TBM is
usually predetermined by spot sampling. Then, based on the

obtained geological conditions, the structure parameters of
the TBM are initially designed in the early stage of the engi-
neering. As seen, the structure parameters greatly influence
the construction period within suitable range of the control
parameters in the practical tunneling engineering.

Stoppages may happen during TBM’s normal excavation
due to some irresistible factors, e.g., the cutters change, so the
construction period usually consists of two parts: the nor-
mal construction time tn (month) and the auxiliary time ta
(month), as given by Eqs. 14 and 15.

t = tn + ta (14)
tn =

l
hn
=

Nlft R̄
4.1256× 105Pth

ta = floor(
L
l
) · tc + εtn

(15)

where floor(·) is the top integral function and aims to obtain
the cutter change times, l (m) is the cutter life, R̄ (m) is the
average installation radius of cutters, Pt (kW) is the total cut-
terhead driving power, and L (m) is the length of the tunnel.
The expert coefficient (ε) is set to be 5, the simple cutter
changing time (tc) is set to be 3 hours based on engineering
experience, and the time factor (ε) for maintenance is set to
be 0.2. In this paper, a tunnel with a length 10 km is assumed
and its diameter D is 10 m. The rock type excavated by TBM
is again set to be the limestone.

As mentioned above, the SA in this section is to investigate
the impacts of the structure parameters of different prediction
models on the minimized construction period within suitable
range of the control parameters. So the control parameters
are set as the design variables: X = [Pc] = [h, n], and the
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boundaries are listed in the Table 5. In this Section, three
different prediction models, including the Ozdemir model,
the Roxborough model, and the Wijk model, are selected to
establish the optimization problems. Thus, the optimization
models can be shown as follows:

find Xi = [Pci] = [hi, ni]
min fi = ti
s.t. gi,

i = 1, 2, 3 (16)

where i denotes the selected performance prediction models:
1 denotes the Ozdemir model, 2 denotes the Roxborough
model, and 3 denotes the Wijk model, respectively.

Based on the performance and structure requirements
obtained from the subsystem analysis performed in [1],
the constraint gi can be summarized as (17):

gi =



gcutterlife : li ≥ 600
gthrust : Fvi ≤ 15000
gshear : Tti ≤ 4× 106

gthrust power : Pvi ≤ 10
gshear power : Pti ≤ 5000
gstructure : λi ≤ 1.5

(17)

where, Pv (kW) is the total hydraulic power and λi is the
structure parameter of the cutter [4].

Thus the global SA problem can be established. In this
section, the Sobol’ method is again adopted and the sample
size of each input parameter is set to 1000. The ranges of
the three structure parameters are listed in Table 5. Figures 8
illustrate the sensitivity of the minimized construction period
to the three structure parameters. It is interesting to find
that all the three parameters have similar impacts on the
minimized construction period irrespective of the selection
of prediction models, which is different from the greatly
various impacts of the structure parameters on the TBM’s
performance as described in Section III. It is seen that the
blade angle α is the dominant factor influencing the mini-
mized construction period, irrespective of the choice of the
prediction models. However, on closer observation, the rel-
ative impact of the other two input parameters including the
cutter radius r and the cutters number N varies mildly with
the choice of the prediction models. From Figs. 8(a) ∼ 8(c),
it is observed that the cutters numberN is the second strongest
influencing factor for the Ozdemirmodel and theWijkmodel,
while the cutter radius r is the second strongest influencing
factor for the Roxborough model. It is also observed from
Figs. 8(a) ∼ 8(c) that the total-order sensitivity indexes of r ,
α, and N are all higher than the corresponding first-order
indexes, which reflect that these three parameters are strongly
coupled with other parameters to influence the maximized
construction period, irrespective of the choice of the predic-
tion models. Such coupling effects indirectly indicate that
the construction period function is highly nonlinear, so the
engineers should carefully take into account the interactions
between the input parameters when performing the TBM’s
design optimization using different prediction models.

FIGURE 8. Sensitivity analysis on the minimized construction period
using different prediction models. (a) Ozdemir model; (b) Roxborough
model; and (c) Wijk model.

V. IMPACTS OF DIFFERENT PREDICTION MODELS’
SELECTION ON THE MINIMIZED CONSTRUCTION PERIOD
In order to explore the detailed impacts of different prediction
models selection on TBM’s practical engineering, the min-
imization of the construction period using three different
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prediction models are performed, including the Ozdemir
model, the Roxborough model, and theWijk model. From the
results of [1], the design strategy with adaptive structure and
control parameters could furthest shorten the construction
period by reducing the cost and energy consumption. So in
this section both the structure and control parameters are
taken into account as the design variables: X = [Pc,Ps] =
[(h, n), (r, α,N )], and the boundaries are listed in the Table 5.
Thus, the optimization models can be shown as follows:

find X i = [Pci,Psi]
= [(hi, ni), (ri, αi,Ni)]

min fi = ti
s.t. gi,

i = 1, 2, 3 (18)

where i denotes the selected performance prediction models:
1 denotes the Ozdemir model, 2 denotes the Roxborough
model, and 3 denotes the Wijk model, respectively.

In order to roundly reflect the effects of the structural
and control parameters on the optimization process for the
TBM’s performance, h and α are selected to depict the
feasible regions. Figure 9 illustrates the feasible regions of
the corresponding optimization models with respect to dif-
ferent prediction models: (a) the Ozdemir model, (b) the
Roxborough model, and (c) the Wijk model. It is observed
from Figs. 9(a) and 9(c) that the Ozdemir model and theWijk
model have the similar shape and similar area of the feasible
regions, both of which are encircled by the constraints of
L≥600 m, Pv≤10 kW, and λ≤1.5. From Fig. 9(b), the fea-
sible region of the optimization model using the Roxborough
model is rather different compared with the Ozdemir and
Wijkmodels. The shape of the feasible region of the optimiza-
tion model using the Roxborough model is complex and the
corresponding area is much larger than that of the other two
models. The corresponding valid constraints include not only
L≥600 m, Pv≤10 kW, and λ≤1.5, but also Pt≤5000 kW and
Tt≤4×106 Nm. As can be seen, the Roxborough prediction
model can lead to a much larger spatial domain for the
TBM’s design optimization, which will provide more design
flexibility than that the Ozdemir and Wijk models can do in
the practical engineering.

In this paper, the binary Non-Dominated Sorting Genetic
Algorithm II (NSGA-II) [37] is used to solve these three
optimizations, and the sample size and the generations are
set to be 50 and 200, respectively. After many iterations, all
the convergence histories of objective and constraint violation
during the three optimizations using different predictionmod-
els are obtained as illustrated in Fig. 10. From Fig. 10(a), all
the convergence curves of the optimization processes reach
the optimal solutions at the different iterations: the 169th
iteration for the Ozdemir model, the 175th iteration for the
Roxborougmodel, and the 145th iteration for theWijkmodel.
Thus, the corresponding optimization efficiency ranks from
high to low is: the Wijk model, the Ozdemir model, and the
Wijk model. It is observed that all the optimization processes
built by the three different prediction models can converge to

FIGURE 9. The feasible regions under different prediction models.
(a) Ozdemir model; (b) Roxborough model; and (c) Wijk model.

such similar optimal construction periods: 3.65 month for the
Ozdemir model, 3.66 month for the Roxboroug model, and
3.68 month for the Wijk model, among which the Ozdemir
model performs the minimum value while the Wijk model
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FIGURE 10. The convergence history of objective and constraint violation during the
optimization using different prediction models: (a) the optimization history; (b) the constraint
violations history.

TABLE 6. The optimization results of the design variables and the objective function.

outputs the maximum value. Figure 10(b) shows that the
constraint violations are all zero after the 6th iteration, which
shows the credibility of the three optimization processes for
the TBM engineering performed in this paper.

The optimization results of the design variables and the
objective function are listed in Table 6, where the gray cell
backgrounds donate the histograms based on cell contents.
It is observed that, although all the three optimization
processes using different prediction models output similar
construction periods, some of the control and structure
parameters are partly different. Detailedly, the penetration h,
the blade angle α, and the cutterhead speed n of all the three
models have little difference compared with each other, while
the difference of the cutter radius r and the cutters number N
are relatively big among different models. As seen, the Wijk
model uses the largest cutters with the smallest number to
complete the same tunneling engineering compared with the

other two models. Table 7 lists the optimization results of the
TBM’s performance/constraints using these three different
prediction models. Results show that the performance includ-
ing Fv, Pv, and λ are almost the same, however, L, Tt , and Pt
vary appreciably with the choice of prediction models. Under
the same geological conditions, the Wijk model predicts the
shortest cutterlife L, while the largest total torque of the
cutterhead Tt and the total hydraulic power Pt .

Based on the study of the construction period optimiza-
tion using different prediction models, it is concluded that:
although different prediction models predict different types
of tendencies for the TBM’s performance (e.g., the thrust and
the torque) as described in Section II, but synthetically dif-
ferent prediction models can predict almost the same overall
engineering construction period by obtaining partly differ-
ent structural parameters, control parameters, and constraints
(TBM’s performance). From the standpoint of performance,
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TABLE 7. Optimization results of the constraints using three different
prediction models.

when the working conditions (e.g., the rock type) are pre-set
as this paper, the Wijk model can ensure the tunneling engi-
neering a best performance by outputting a shorter cutterlife
L, a larger total torque of the cutterhead Tt , and a larger total
hydraulic power Pt . While from the computational efficiency,
the Roxborough model performs best. While in actual work-
ing conditions which are different from the pre-set conditions
in this paper, the priorities of these prediction models will
be totally different. In addition, it can be extended that some
combined models can also be adopted in the practical engi-
neering based on specific requirements. For example, if more
attentions are paid to the energy consumption rather than the
cost of the cutters, thus, the Wijk model can be selected to
build the power models of the TBM and the Ozdemir model
can be selected to build the cutterlife model for the overall
TBM’s performance prediction.

VI. CONCLUSION
In this paper, the TBM’s performance, including the total
normal thrust, the total torque of the cutterhead, and the
cutter life, estimated using different prediction models is
compared and analyzed. Three types of total thrust prediction
models (the rapid-growth type, the intermediate type, and the
slow-growth type) and two types of torque prediction models
(the rapid-growth type and the slow-growth type) are classi-
fied and defined for the first time in TBM-related fields. The
global sensitivity analyses (SA) of the TBM’s performance to
control, structure, and geology parameters using the Sobol’
method are explored. Results show that the relative impacts
of the input parameters on the TBM’s performance vary
appreciably with the selection of prediction models. From
the SA on the minimized construction period of a tunneling
engineering, it is found the structure parameters have similar
impacts on the minimized construction period irrespective of

the selection of prediction models. In order to further explore
the impacts of different prediction models on the minimized
construction period of a tunneling project, the construction
period is optimized using different prediction models, includ-
ing the Ozdemir model, the Roxborough model, and theWijk
model. It is found that different prediction models can pre-
dict similar construction periods by obtaining partly different
structure parameters, control parameters.

Different types of prediction models for TBM’s perfor-
mance are usually adopted under specific assumptions, which
leads to their limited scope of applications. Thus, such
straightforward comparison may not reflect the real applica-
bility of the models from a global perspective. In the future
work, a more comprehensive SA can be performed by taking
into account the specific application conditions of the pre-
diction models. Besides, different types of uncertainties may
present in such a complex system, such as the uncertainty in
the manufacturing process and the uncertainty caused during
the assembly process. Therefore, an uncertainty analysis of
different prediction models could further improve TBM’s
overall performance, which could be a significant extension
for the future work.
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